tick-broadcast.c 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * linux/kernel/time/tick-broadcast.c
 *
 * This file contains functions which emulate a local clock-event
 * device via a broadcast event source.
 *
 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 *
 * This code is licenced under the GPL version 2. For details see
 * kernel-base/COPYING.
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
17
#include <linux/interrupt.h>
18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/tick.h>

#include "tick-internal.h"

/*
 * Broadcast support for broken x86 hardware, where the local apic
 * timer stops in C3 state.
 */

30
static struct tick_device tick_broadcast_device;
31 32 33
/* FIXME: Use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
static DECLARE_BITMAP(tmpmask, NR_CPUS);
34
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
35
static int tick_broadcast_force;
36

37 38 39 40 41 42
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
#endif

43 44 45 46 47 48 49 50
/*
 * Debugging: see timer_list.c
 */
struct tick_device *tick_get_broadcast_device(void)
{
	return &tick_broadcast_device;
}

51
struct cpumask *tick_get_broadcast_mask(void)
52
{
53
	return to_cpumask(tick_broadcast_mask);
54 55
}

56 57 58 59 60
/*
 * Start the device in periodic mode
 */
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
T
Thomas Gleixner 已提交
61
	if (bc)
62 63 64 65 66 67 68 69
		tick_setup_periodic(bc, 1);
}

/*
 * Check, if the device can be utilized as broadcast device:
 */
int tick_check_broadcast_device(struct clock_event_device *dev)
{
70 71 72
	if ((tick_broadcast_device.evtdev &&
	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
73 74 75 76
		return 0;

	clockevents_exchange_device(NULL, dev);
	tick_broadcast_device.evtdev = dev;
77
	if (!cpumask_empty(tick_get_broadcast_mask()))
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
		tick_broadcast_start_periodic(dev);
	return 1;
}

/*
 * Check, if the device is the broadcast device
 */
int tick_is_broadcast_device(struct clock_event_device *dev)
{
	return (dev && tick_broadcast_device.evtdev == dev);
}

/*
 * Check, if the device is disfunctional and a place holder, which
 * needs to be handled by the broadcast device.
 */
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
	unsigned long flags;
	int ret = 0;

99
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
100 101 102 103 104 105 106 107 108

	/*
	 * Devices might be registered with both periodic and oneshot
	 * mode disabled. This signals, that the device needs to be
	 * operated from the broadcast device and is a placeholder for
	 * the cpu local device.
	 */
	if (!tick_device_is_functional(dev)) {
		dev->event_handler = tick_handle_periodic;
109
		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
110 111
		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
		ret = 1;
112 113 114 115 116 117 118 119
	} else {
		/*
		 * When the new device is not affected by the stop
		 * feature and the cpu is marked in the broadcast mask
		 * then clear the broadcast bit.
		 */
		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
			int cpu = smp_processor_id();
120

121
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
122 123 124
			tick_broadcast_clear_oneshot(cpu);
		}
	}
125
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
126 127 128 129
	return ret;
}

/*
130
 * Broadcast the event to the cpus, which are set in the mask (mangled).
131
 */
132
static void tick_do_broadcast(struct cpumask *mask)
133
{
134
	int cpu = smp_processor_id();
135 136 137 138 139
	struct tick_device *td;

	/*
	 * Check, if the current cpu is in the mask
	 */
140 141
	if (cpumask_test_cpu(cpu, mask)) {
		cpumask_clear_cpu(cpu, mask);
142 143 144 145
		td = &per_cpu(tick_cpu_device, cpu);
		td->evtdev->event_handler(td->evtdev);
	}

146
	if (!cpumask_empty(mask)) {
147 148 149 150 151 152
		/*
		 * It might be necessary to actually check whether the devices
		 * have different broadcast functions. For now, just use the
		 * one of the first device. This works as long as we have this
		 * misfeature only on x86 (lapic)
		 */
153 154
		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
		td->evtdev->broadcast(mask);
155 156 157 158 159 160 161 162 163
	}
}

/*
 * Periodic broadcast:
 * - invoke the broadcast handlers
 */
static void tick_do_periodic_broadcast(void)
{
164
	raw_spin_lock(&tick_broadcast_lock);
165

166 167 168
	cpumask_and(to_cpumask(tmpmask),
		    cpu_online_mask, tick_get_broadcast_mask());
	tick_do_broadcast(to_cpumask(tmpmask));
169

170
	raw_spin_unlock(&tick_broadcast_lock);
171 172 173 174 175 176 177
}

/*
 * Event handler for periodic broadcast ticks
 */
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
178 179
	ktime_t next;

180 181 182 183 184 185 186 187 188 189
	tick_do_periodic_broadcast();

	/*
	 * The device is in periodic mode. No reprogramming necessary:
	 */
	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
		return;

	/*
	 * Setup the next period for devices, which do not have
190 191 192 193
	 * periodic mode. We read dev->next_event first and add to it
	 * when the event alrady expired. clockevents_program_event()
	 * sets dev->next_event only when the event is really
	 * programmed to the device.
194
	 */
195 196
	for (next = dev->next_event; ;) {
		next = ktime_add(next, tick_period);
197 198 199 200 201 202 203 204 205 206 207

		if (!clockevents_program_event(dev, next, ktime_get()))
			return;
		tick_do_periodic_broadcast();
	}
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
208
static void tick_do_broadcast_on_off(unsigned long *reason)
209 210 211
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
212
	unsigned long flags;
213
	int cpu, bc_stopped;
214

215
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
216 217 218 219 220 221 222

	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;
	bc = tick_broadcast_device.evtdev;

	/*
223
	 * Is the device not affected by the powerstate ?
224
	 */
225
	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226 227
		goto out;

228 229
	if (!tick_device_is_functional(dev))
		goto out;
230

231
	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
232

233 234 235
	switch (*reason) {
	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236 237
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
238 239
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
240
				clockevents_shutdown(dev);
241
		}
242
		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
243
			tick_broadcast_force = 1;
244 245
		break;
	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
246
		if (!tick_broadcast_force &&
247 248
		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
249 250
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
251 252
				tick_setup_periodic(dev, 0);
		}
253
		break;
254 255
	}

256
	if (cpumask_empty(tick_get_broadcast_mask())) {
257
		if (!bc_stopped)
258
			clockevents_shutdown(bc);
259
	} else if (bc_stopped) {
260 261
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
262 263
		else
			tick_broadcast_setup_oneshot(bc);
264 265
	}
out:
266
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
267 268 269 270 271 272 273 274
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop.
 */
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
{
275
	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
276
		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
277
		       "offline CPU #%d\n", *oncpu);
278
	else
279
		tick_do_broadcast_on_off(&reason);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
}

/*
 * Set the periodic handler depending on broadcast on/off
 */
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
	if (!broadcast)
		dev->event_handler = tick_handle_periodic;
	else
		dev->event_handler = tick_handle_periodic_broadcast;
}

/*
 * Remove a CPU from broadcasting
 */
void tick_shutdown_broadcast(unsigned int *cpup)
{
	struct clock_event_device *bc;
	unsigned long flags;
	unsigned int cpu = *cpup;

302
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
303 304

	bc = tick_broadcast_device.evtdev;
305
	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
306 307

	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
308
		if (bc && cpumask_empty(tick_get_broadcast_mask()))
309
			clockevents_shutdown(bc);
310 311
	}

312
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
313
}
314

315 316 317 318 319
void tick_suspend_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

320
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
321 322

	bc = tick_broadcast_device.evtdev;
T
Thomas Gleixner 已提交
323
	if (bc)
324
		clockevents_shutdown(bc);
325

326
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
327 328 329 330 331 332 333 334
}

int tick_resume_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;
	int broadcast = 0;

335
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
336 337 338

	bc = tick_broadcast_device.evtdev;

339
	if (bc) {
T
Thomas Gleixner 已提交
340 341
		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);

342 343
		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_PERIODIC:
344
			if (!cpumask_empty(tick_get_broadcast_mask()))
345
				tick_broadcast_start_periodic(bc);
346 347
			broadcast = cpumask_test_cpu(smp_processor_id(),
						     tick_get_broadcast_mask());
348 349 350 351 352
			break;
		case TICKDEV_MODE_ONESHOT:
			broadcast = tick_resume_broadcast_oneshot(bc);
			break;
		}
353
	}
354
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
355 356 357 358 359

	return broadcast;
}


360 361
#ifdef CONFIG_TICK_ONESHOT

362 363
/* FIXME: use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
364

365
/*
366
 * Exposed for debugging: see timer_list.c
367
 */
368
struct cpumask *tick_get_broadcast_oneshot_mask(void)
369
{
370
	return to_cpumask(tick_broadcast_oneshot_mask);
371 372
}

373 374 375
static int tick_broadcast_set_event(ktime_t expires, int force)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;
376 377

	return tick_dev_program_event(bc, expires, force);
378 379
}

380 381 382
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
{
	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
383
	return 0;
384 385
}

386 387 388 389 390 391
/*
 * Called from irq_enter() when idle was interrupted to reenable the
 * per cpu device.
 */
void tick_check_oneshot_broadcast(int cpu)
{
392
	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
393 394 395 396 397 398
		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);

		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
	}
}

399 400 401 402 403 404
/*
 * Handle oneshot mode broadcasting
 */
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
	struct tick_device *td;
405
	ktime_t now, next_event;
406 407
	int cpu;

408
	raw_spin_lock(&tick_broadcast_lock);
409 410
again:
	dev->next_event.tv64 = KTIME_MAX;
411
	next_event.tv64 = KTIME_MAX;
412
	cpumask_clear(to_cpumask(tmpmask));
413 414
	now = ktime_get();
	/* Find all expired events */
415
	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
416 417
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev->next_event.tv64 <= now.tv64)
418
			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
419 420
		else if (td->evtdev->next_event.tv64 < next_event.tv64)
			next_event.tv64 = td->evtdev->next_event.tv64;
421 422 423
	}

	/*
424 425
	 * Wakeup the cpus which have an expired event.
	 */
426
	tick_do_broadcast(to_cpumask(tmpmask));
427 428 429 430 431 432 433 434 435 436

	/*
	 * Two reasons for reprogram:
	 *
	 * - The global event did not expire any CPU local
	 * events. This happens in dyntick mode, as the maximum PIT
	 * delta is quite small.
	 *
	 * - There are pending events on sleeping CPUs which were not
	 * in the event mask
437
	 */
438
	if (next_event.tv64 != KTIME_MAX) {
439
		/*
440 441
		 * Rearm the broadcast device. If event expired,
		 * repeat the above
442
		 */
443
		if (tick_broadcast_set_event(next_event, 0))
444 445
			goto again;
	}
446
	raw_spin_unlock(&tick_broadcast_lock);
447 448 449 450 451 452 453 454 455 456 457 458 459
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
void tick_broadcast_oneshot_control(unsigned long reason)
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
	unsigned long flags;
	int cpu;

460
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

	/*
	 * Periodic mode does not care about the enter/exit of power
	 * states
	 */
	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
		goto out;

	bc = tick_broadcast_device.evtdev;
	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;

	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
		goto out;

	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
478 479
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
480 481 482 483 484
			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
			if (dev->next_event.tv64 < bc->next_event.tv64)
				tick_broadcast_set_event(dev->next_event, 1);
		}
	} else {
485 486 487
		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_clear_cpu(cpu,
					  tick_get_broadcast_oneshot_mask());
488 489 490 491 492 493 494
			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
			if (dev->next_event.tv64 != KTIME_MAX)
				tick_program_event(dev->next_event, 1);
		}
	}

out:
495
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
496 497
}

498 499 500 501 502 503 504
/*
 * Reset the one shot broadcast for a cpu
 *
 * Called with tick_broadcast_lock held
 */
static void tick_broadcast_clear_oneshot(int cpu)
{
505
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
506 507
}

508 509
static void tick_broadcast_init_next_event(struct cpumask *mask,
					   ktime_t expires)
510 511 512 513
{
	struct tick_device *td;
	int cpu;

514
	for_each_cpu(cpu, mask) {
515 516 517 518 519 520
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev)
			td->evtdev->next_event = expires;
	}
}

521
/**
522
 * tick_broadcast_setup_oneshot - setup the broadcast device
523 524 525
 */
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
526 527
	/* Set it up only once ! */
	if (bc->event_handler != tick_handle_oneshot_broadcast) {
528 529 530
		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
		int cpu = smp_processor_id();

531 532
		bc->event_handler = tick_handle_oneshot_broadcast;
		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
533 534 535 536 537 538 539 540 541 542

		/* Take the do_timer update */
		tick_do_timer_cpu = cpu;

		/*
		 * We must be careful here. There might be other CPUs
		 * waiting for periodic broadcast. We need to set the
		 * oneshot_mask bits for those and program the
		 * broadcast device to fire.
		 */
543 544 545 546 547 548 549 550 551
		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
		cpumask_or(tick_get_broadcast_oneshot_mask(),
			   tick_get_broadcast_oneshot_mask(),
			   to_cpumask(tmpmask));

		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
			tick_broadcast_init_next_event(to_cpumask(tmpmask),
						       tick_next_period);
552 553 554
			tick_broadcast_set_event(tick_next_period, 1);
		} else
			bc->next_event.tv64 = KTIME_MAX;
555
	}
556 557 558 559 560 561 562 563 564 565
}

/*
 * Select oneshot operating mode for the broadcast device
 */
void tick_broadcast_switch_to_oneshot(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

566
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
567 568 569 570 571

	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
	bc = tick_broadcast_device.evtdev;
	if (bc)
		tick_broadcast_setup_oneshot(bc);
572
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
573 574 575 576 577 578 579 580 581 582 583
}


/*
 * Remove a dead CPU from broadcasting
 */
void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
{
	unsigned long flags;
	unsigned int cpu = *cpup;

584
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
585

586 587 588 589
	/*
	 * Clear the broadcast mask flag for the dead cpu, but do not
	 * stop the broadcast device!
	 */
590
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
591

592
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
593 594
}

595 596 597 598 599 600 601 602
/*
 * Check, whether the broadcast device is in one shot mode
 */
int tick_broadcast_oneshot_active(void)
{
	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}

603
#endif