提交 99ee9a9f 编写于 作者: M mahai 提交者: mahai

add dac files

Signed-off-by: Nmahai <mahai5@h-partners.com>
Signed-off-by: Nmahai <mahai5@huawei.com>
上级 1e5651cd
......@@ -9,6 +9,7 @@
- [HDF开发实例](driver-hdf-sample.md)
- [平台驱动开发](driver-develop.md)
- [ADC](driver-platform-adc-develop.md)
- [DAC](driver-platform-dac-develop.md)
- [GPIO](driver-platform-gpio-develop.md)
- [HDMI](driver-platform-hdmi-develop.md)
- [I2C](driver-platform-i2c-develop.md)
......@@ -26,6 +27,7 @@
- [WatchDog](driver-platform-watchdog-develop.md)
- [平台驱动使用](driver-platform.md)
- [ADC](driver-platform-adc-des.md)
- [DAC](driver-platform-dac-des.md)
- [GPIO](driver-platform-gpio-des.md)
- [HDMI](driver-platform-hdmi-des.md)
- [I2C](driver-platform-i2c-des.md)
......
......@@ -2,6 +2,8 @@
- **[ADC](driver-platform-adc-develop.md)**
- **[DAC](driver-platform-dac-develop.md)**
- **[GPIO](driver-platform-gpio-develop.md)**
- **[HDMI](driver-platform-hdmi-develop.md)**
......
# DAC<a name="1"></a>
- [概述](#section1)
- [功能简介](#section2)
- [基本概念](#section3)
- [运作机制](#section4)
- [约束与限制](#section5)
- [使用指导](#section6)
- [场景介绍](#section7)
- [接口说明](#section8)
- [开发步骤](#section9)
- [使用实例](#section10)
## 概述<a name="section1"></a>
### 功能简介<a name="section2"></a>
- DAC(Digital to Analog Converter)是一种通过电流、电压或电荷的形式将数字信号转换为模拟信号的设备 。
- DAC接口定义了完成DAC传输的通用方法集合,包括:
- DAC设备管理:打开或关闭DAC设备。
- DAC设置目标值:设置DAC设备需要将数字信号转成模拟信号的目标值。
### 基本概念<a name="section3"></a>
DAC模块支持数模转换的开发,它主要用于:
1. 作为过程控制计算机系统的输出通道,与执行器相连,实现对生产过程的自动控制。
2. 在利用反馈技术的模数转换器设计中,作为重要的功能模块呈现。
- 分辨率
分辨率指的是DAC模块能够转换的二进制位数,位数越多分辨率越高。
- 转换精度
精度是指输入端加有最大数值时,DAC的实际输出值和理论计算值之差,DAC转换器的转换精度与DAC转换器的集成芯片结构和接口电路配置有关。理想情况下,DAC的转换精度越小越好,因此为了获得更高精度的DAC转换结果,首先要保证选择的DAC转换器具备足够高的分辨率。其次,接口电路的器件或电源存在误差时,会造成DAC转换的误差,当这些误差超过一定程度时,会导致DAC转换错误。
- 转换速度
转换速度一般由建立时间决定。从输入由全0突变为全1时开始,到输出电压稳定在FSR±½LSB范围(或以FSR±x%FSR指明范围)内为止,这段时间称为建立时间,它是DAC的最大响应时间,所以用它衡量转换速度的快慢。
满量程范围FSR( Full Scale Range ),是指DAC输出信号幅度的最大范围,不同的DAC有不同的满量程范围, 该范围可以用正、负电流或者正、负电压来限制 。
最低有效位LSB(Least Significant Byte),指的是一个二进制数字中的第0位(即最低位)。
### 运作机制<a name="section4"></a>
在HDF框架中,同类型设备对象较多时(可能同时存在十几个同类型配置器),如果采用独立服务模式则需要配置更多的设备节点,且相关服务会占据更多的内存资源。相反,采用统一服务模式可以使用一个设备服务作为管理器,统一处理所有同类型对象的外部访问(这会在配置文件中有所体现),实现便捷管理和节约资源的目的。DAC模块接口适配模式采用统一服务模式([如图1](#fig14423182615525)所示)。
DAC模块各分层的作用为:接口层提供打开设备,写入数据,关闭设备的接口。核心层主要提供绑定设备、初始化设备以及释放设备的能力。适配层实现其他具体的功能。
![](../public_sys-resources/icon-note.gif) 说明:核心层可以调用接口层的函数,核心层通过钩子函数调用适配层函数,从而适配层间接的可以调用接口层函数,但是不可逆转接口层调用适配层函数。
**图 1** DAC统一服务模式<a name="fig14423182615525"></a>
![](figures/DAC统一服务模式结构图.png "DAC统一服务模式")
### 约束与限制<a name="section5"></a>
DAC模块当前仅支持轻量和小型系统内核(LiteOS) 。
## 使用指导<a name="section6"></a>
### 场景介绍<a name="section7"></a>
DAC模块的主要工作是以电流、电压或电荷的形式将数字信号转换为模拟信号,主要应用于音频设备中。日常所见的音响、耳机等,均使用DAC模块作为数模转换的通道。
### 接口说明<a name="section8"></a>
DAC模块提供的主要接口如[表1](#table1)所示,更多关于接口的介绍请参考对应的API接口文档。
**表 1** DAC驱动API接口功能介绍
<a name="table1"></a>
| 接口名 | 描述 |
| ------------------------------------------------------------ | ------------ |
| DevHandle DacOpen(uint32_t number) | 打开DAC设备 |
| void DacClose(DevHandle handle) | 关闭DAC设备 |
| int32_t DacWrite(DevHandle handle, uint32_t channel, uint32_t val) | 设置DA目标值 |
### 开发步骤<a name="section9"></a>
使用DAC设备的一般流程如[图2](#fig2)所示。
**图 2** DAC使用流程图<a name="fig2"></a>
![](figures/DAC使用流程图.png "DAC使用流程图")
#### 打开DAC设备
在进行DA转换之前,首先要调用DacOpen打开DAC设备,打开函数如下所示:
```
DevHandle DacOpen(uint32_t number);
```
**表 2** DacOpen参数和返回值描述
<a name="table2"></a>
| 参数 | 参数描述 |
| ---------- | ----------------- |
| number | DAC设备号 |
| **返回值** | **返回值描述** |
| NULL | 打开DAC设备失败 |
| 设备句柄 | 打开的DAC设备句柄 |
假设系统中存在2个DAC设备,编号从0到1,现在打开1号设备。
```
DevHandle dacHandle = NULL; /* DAC设备句柄 /
/* 打开DAC设备 */
dacHandle = DacOpen(1);
if (dacHandle == NULL) {
HDF_LOGE("DacOpen: failed\n");
return;
}
```
#### 设置DA目标值
```
int32_t DacWrite(DevHandle handle, uint32_t channel, uint32_t val);
```
**表 3** DacWrite参数和返回值描述
<a name="table3"></a>
| 参数 | 参数描述 |
| ---------- | -------------- |
| handle | DAC设备句柄 |
| channel | DAC设备通道号 |
| val | 设置DA的值 |
| **返回值** | **返回值描述** |
| 0 | 写入成功 |
| 负数 | 写入失败 |
```
/* 通过DAC_CHANNEL_NUM设备通道写入目标val值 */
ret = DacWrite(dacHandle, DAC_CHANNEL_NUM, val);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: tp DAC write reg fail!:%d", __func__, ret);
DacClose(dacHandle);
return -1;
}
```
#### 关闭DAC设备
DAC通信完成之后,需要关闭DAC设备,关闭函数如下所示:
```
void DacClose(DevHandle handle);
```
**表 4** DacClose参数和返回值描述
<a name="table4"></a>
| 参数 | 参数描述 |
| ---------- | -------------- |
| handle | DAC设备句柄 |
| **返回值** | **返回值描述** |
| void | 无 |
关闭DAC设备示例:
```
DacClose(dacHandle); /* 关闭DAC设备 */
```
## 使用实例<a name="section10"></a>
DAC设备的具体使用方式可以参考如下示例代码,示例代码步骤主要如下:
1. 根据设备号DAC_DEVICE_NUM打开DAC设备得到设备句柄。
2. 通过DAC的设备号以及设备通道设置val的值,如果写入失败则关闭设备句柄。
3. 访问完毕DAC设备后,则关闭该设备句柄。
运行结果:根据输入的val通过打印日志得到输出的结果。
```
#include "dac_if.h" /* DAC标准接口头文件 */
#include "hdf_log.h" /* 标准日志打印头文件 */
/* 设备号0,通道号1 */
#define DAC_DEVICE_NUM 0
#define DAC_CHANNEL_NUM 1
/* DAC例程总入口 */
static int32_t TestCaseDac(void)
{
//设置要写入的val值
uint32_t val = 2;
int32_t ret;
DevHandle dacHandle;
/* 打开DAC设备 */
dacHandle = DacOpen(DAC_DEVICE_NUM);
if (dacHandle == NULL) {
HDF_LOGE("%s: Open DAC%u fail!", __func__, DAC_DEVICE_NUM);
return -1;
}
/* 写入数据 */
ret = DacWrite(dacHandle, DAC_CHANNEL_NUM, val);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: tp DAC write reg fail!:%d", __func__, ret);
DacClose(dacHandle);
return -1;
}
/* 访问完毕关闭DAC设备 */
DacClose(dacHandle);
return 0;
}
```
# DAC
- [概述](#1)
- [功能简介](#2)
- [基本概念](#3)
- [运作机制](#4)
- [约束与限制](#5)
- [开发指导](#6)
- [场景介绍](#7)
- [接口说明](#8)
- [开发步骤](#9)
## 概述<a name="1"></a>
### 功能简介<a name="2"></a>
DAC(Digital to Analog Converter)是一种通过电流、电压或电荷的形式将数字信号转换为模拟信号的设备 。
### 基本概念<a name="3"></a>
DAC模块支持数模转换的开发。它主要用于:
1. 作为过程控制计算机系统的输出通道,与执行器相连,实现对生产过程的自动控制。
2. 在利用反馈技术的魔术转换器设计中,作为重要的功能模块呈现。
- 分辨率
分辨率指的是D/A转换器能够转换的二进制位数,位数越多分辨率越高。
- 转换精度
精度是指输入端加有最大数值时,DAC的实际输出值和理论计算值之差,DAC转换器的转换精度与DAC转换器的集成芯片结构和接口电路配置有关。理想情况下,DAC的转换精度越小越好,因此为了获得更高精度的DAC转换结果,首先要保证选择的DAC转换器具备足够高的分辨率。其次,要保证接口电路的器件或电源误差最小或者不存在误差,否则会造成DAC转换的误差,当这些误差超过一定程度时,会导致DAC转换错误。
- 转换速度
转换速度一般由建立时间决定。从输入由全0突变为全1时开始,到输出电压稳定在FSR±½LSB范围(或以FSR±x%FSR指明范围)内为止,这段时间称为建立时间,它是DAC的最大响应时间,所以用它衡量转换速度的快慢。
满量程范围FSR( Full Scale Range ),是指DAC输出信号幅度的最大范围,不同的DAC有不同的满量程范围, 该范围可以用正、负电流或者正、负电压来限制 。
最低有效位LSB(Least Significant Byte),指的是一个二进制数字中的第0位(即最低位)。
### 运作机制<a name="4"></a>
在HDF框架中,同类型设备对象较多时(可能同时存在十几个同类型配置器),若采用独立服务模式则需要配置更多的设备节点,且相关服务会占据更多的内存资源。相反,采用统一服务模式可以使用一个设备服务作为管理器,统一处理所有同类型对象的外部访问(这会在配置文件中有所体现),实现便捷管理和节约资源的目的。DAC模块接口适配模式采用统一服务模式([如图1](#fig14423182615525)所示)。
DAC模块各分层的作用为:接口层提供打开设备,写入数据,关闭设备接口的能力。核心层主要提供绑定设备、初始化设备以及释放设备的能力。适配层实现其他具体的功能。
![](../public_sys-resources/icon-note.gif) 说明:核心层可以调用接口层的函数,也可以通过钩子函数调用适配层函数,从而使得适配层间接的可以调用接口层函数,但是不可逆转接口层调用适配层函数。
**图 1** 统一服务模式<a name="fig14423182615525"></a>
![](figures/统一服务模式结构图.png "DAC统一服务模式")
### 约束与限制<a name="5"></a>
DAC模块当前仅支持轻量和小型系统内核(LiteOS) 。
## 开发指导<a name="6"></a>
### 场景介绍<a name="7"></a>
DAC模块主要在设备中数模转换,音频输出,电机控制等设备使用,设置将DAC模块传入的数字信号转换为输出模拟信号时需要用到DAC数模转换驱动。
### 接口说明<a name="8"></a>
通过以下DacMethod中的函数调用DAC驱动对应的函数。
DacMethod定义:
```
struct DacMethod {
//写入数据的钩子函数
int32_t (*write)(struct DacDevice *device, uint32_t channel, uint32_t val);
//启动DAC设备的钩子函数
int32_t (*start)(struct DacDevice *device);
//停止DAC设备的钩子函数
int32_t (*stop)(struct DacDevice *device);
};
```
**表 1** DacMethod结构体成员的回调函数功能说明
<a name="table27410339187"></a>
| 函数成员 | 入参 | 出参 | 返回值 | 功能 |
| -------- | ------------------------------------------------------------ | ---- | ------------------ | -------------- |
| write | device:结构体指针,核心层DAC控制器;<br>channel:uint32_t,传入的通道号;<br>val:uint32_t,要传入的数据; | 无 | HDF_STATUS相关状态 | 写入DA的目标值 |
| start | device:结构体指针,核心层DAC控制器; | 无 | HDF_STATUS相关状态 | 开启DAC设备 |
| stop | device:结构体指针,核心层DAC控制器; | 无 | HDF_STATUS相关状态 | 关闭DAC设备 |
### 开发步骤<a name="9"></a>
DAC模块适配包含以下四个步骤:
- 实例化驱动入口。
- 配置属性文件。
- 实例化核心层接口函数。
- 驱动调试。
1. **实例化驱动入口:**
驱动开发首先需要实例化驱动入口,驱动入口必须为HdfDriverEntry(在 hdf_device_desc.h 中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。 HDF框架会汇总所有加载的驱动的HdfDriverEntry对象入口 ,形成一个类似数组的段地址空间,方便上层调用。
一般在加载驱动时HDF会先调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。
```
static struct HdfDriverEntry g_dacDriverEntry = {
.moduleVersion = 1,
.Init = VirtualDacInit,
.Release = VirtualDacRelease,
.moduleName = "virtual_dac_driver", //【必要且与 HCS 里面的名字匹配】
};
HDF_INIT(g_dacDriverEntry); //调用HDF_INIT将驱动入口注册到HDF框架中
```
2. **配置属性文件:**
- 在vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode描述。
器件属性值对于厂商驱动的实现以及核心层DacDevice相关成员的默认值或限制范围有密切关系,比如设备通道的个数以及传输速率的最大值,会影响DacDevice相关成员的默认值。
由于采用了统一服务模式,device_info.hcs文件中第一个设备节点必须为DAC管理器,其各项参数必须如下设置:
| 成员名 | 值 |
| --------------- | ------------------------------------------------------------ |
| policy | 具体配置为0,不发布服务|
| priority | 驱动启动优先级(0-200),值越大优先级越低,,优先级相同则不保证device的加载顺序。|
| permission | 驱动权限|
| moduleName | 固定为 HDF_PLATFORM_DAC_MANAGER|
| serviceName | 固定为HDF_PLATFORM_DAC_MANAGER|
| deviceMatchAttr | 没有使用,可忽略|
从第二个节点开始配置具体DAC控制器信息,此节点并不表示某一路DAC控制器,而是代表一个资源性质设备,用于描述一类DAC控制器的信息。本例只有一个DAC设备,如有多个设备,则需要在device_info文件增加deviceNode信息,以及在dac_config文件中增加对应的器件属性。
device_info.hcs 配置参考。
```
root {
device_dac :: device {
//device0是DAC管理器
device0 :: deviceNode {
policy = 0;
priority = 52;
permission = 0644;
serviceName = "HDF_PLATFORM_DAC_MANAGER";
moduleName = "HDF_PLATFORM_DAC_MANAGER";
}
}
//dac_virtual是DAC控制器
dac_virtual :: deviceNode {
policy = 0;
priority = 56;
permission = 0644;
moduleName = "virtual_dac_driver"; //【必要】用于指定驱动名称,需要与期望的驱动Entry中的moduleName一致
serviceName = "VIRTUAL_DAC_DRIVER"; //【必要】驱动对外发布服务的名称,必须唯一
deviceMatchAttr = "virtual_dac"; //【必要】用于配置控制器私有数据,要与dac_config.hcs中对应控制器保持一致
}
}
```
- 添加dac_test_config.hcs器件属性文件
在vendor/vendor_hisilicon/hispark_taurus/hdf_config/hdf_test/xxx_test_config.hcs目录下新增文件用于驱动配置参数,(例如:vendor/vendor_hisilicon/hispark_taurus/hdf_config/hdf_test/dac_test_config.hcs)其中配置参数如下
```
root {
platform {
dac_config {
match_attr = "virtual_dac"; //【必要】需要和device_info.hcs中的deviceMatchAttr值一致
template dac_device {
deviceNum = 0; //设备号
validChannel = 0x1; //有效通道1
rate = 20000; //速率
}
device_0 :: dac_device {
deviceNum = 0; //设备号
validChannel = 0x2; //有效通道2
}
}
}
}
```
3. **实例化核心层接口函数:**
- 初始化DacDevice成员。
在VirtualDacParseAndInit函数中对DacDevice成员进行初始化操作。
```
//虚拟驱动自定义结构体
struct VirtualDacDevice {
//DAC设备结构体
struct DacDevice device;
//DAC设备号
uint32_t deviceNum;
//有效通道
uint32_t validChannel;
//DAC速率
uint32_t rate;
};
//解析并且初始化核心层DacDevice对象
static int32_t VirtualDacParseAndInit(struct HdfDeviceObject *device, const struct DeviceResourceNode *node)
{
//定义返回值
int32_t ret;
//DAC设备虚拟指针
struct VirtualDacDevice *virtual = NULL;
(void)device;
//给virtual指针开辟空间
virtual = (struct VirtualDacDevice *)OsalMemCalloc(sizeof(*virtual));
if (virtual == NULL) {
//为空则返回错误参数
HDF_LOGE("%s: Malloc virtual fail!", __func__);
return HDF_ERR_MALLOC_FAIL;
}
//读取属性文件配置参数
ret = VirtualDacReadDrs(virtual, node);
if (ret != HDF_SUCCESS) {
//读取失败
HDF_LOGE("%s: Read drs fail! ret:%d", __func__, ret);
//释放virtual空间
OsalMemFree(virtual);
//指针置为0
virtual = NULL;
return ret;
}
//初始化虚拟指针
VirtualDacDeviceInit(virtual);
//对DacDevice中priv对象初始化
virtual->device.priv = (void *)node;
//对DacDevice中devNum对象初始化
virtual->device.devNum = virtual->deviceNum;
//对DacDevice中ops对象初始化
virtual->device.ops = &g_method;
//添加DAC设备
ret = DacDeviceAdd(&virtual->device);
if (ret != HDF_SUCCESS) {
//添加设备失败
HDF_LOGE("%s: add Dac controller failed! ret = %d", __func__, ret);
//释放virtual空间
OsalMemFree(virtual);
//虚拟指针置空
virtual = NULL;
return ret;
}
return HDF_SUCCESS;
}
```
- 自定义结构体参考。
通过自定义结构体定义DAC数模转换必要的参数,在定义结构体时需要根据设备的功能参数来实现自定义结构体,从驱动的角度看,自定义结构体是参数和数据的载体,dac_config.hcs文件中传递的参数和数据会被HDF驱动模块的DacTestReadConfig函数读入,通过DeviceResourceIface来初始化结构体成员,其中一些重要数值也会传递给核心层DacDevice对象,例如设备号、总线号等。
```
struct VirtualDacDevice {
struct DacDevice device; //【必要】是核心层控制对象,具体描述见下面
uint32_t deviceNum; //【必要】设备号
uint32_t validChannel; //【必要】有效通道
uint32_t rate; //【必要】采样率
};
//DacDevice是核心层控制器结构体,其中的成员在Init函数中会被赋值
struct DacDevice {
const struct DacMethod *ops;
OsalSpinlock spin; //自旋锁
uint32_t devNum; //设备号
uint32_t chanNum; //设备通道号
const struct DacLockMethod *lockOps;
void *priv;
};
```
- 实例化DacDevice成员DacMethod。
VirtualDacWrite、VirtualDacStop、VirtualDacStart函数会在dac_virtual.c文件中进行模块功能的实例化。
```
static const struct DacMethod g_method = {
.write = VirtualDacWrite, //DAC设备写入值
.stop = VirtualDacStop, //停止DAC设备
.start = VirtualDacStart, //开始启动DAC设备
};
```
![](../public_sys-resources/icon-note.gif) **说明:**
DacDevice成员DacMethod的定义和成员说明见[接口说明](#section752964871810)。
- Init函数参考
入参:
HdfDeviceObject这个是整个驱动对外暴露的接口参数,具备HCS配置文件的信息。
返回值:
HDF_STATUS相关状态 (下表为部分展示,如需使用其他状态,可见//drivers/framework/include/utils/hdf_base.h中HDF_STATUS 定义)。
| 状态(值) | 问题描述 |
| ---------------------- | -------------- |
| HDF_ERR_INVALID_OBJECT | 控制器对象非法 |
| HDF_ERR_INVALID_PARAM | 参数非法 |
| HDF_ERR_MALLOC_FAIL | 内存分配失败 |
| HDF_ERR_IO | I/O 错误 |
| HDF_SUCCESS | 传输成功 |
| HDF_FAILURE | 传输失败 |
函数说明:
初始化自定义结构体对象,初始化DacDevice成员,并调用核心层DacDeviceAdd函数。
```
static int32_t VirtualDacParseAndInit(struct HdfDeviceObject *device, const struct DeviceResourceNode *node)
{
// 定义返回值参数
int32_t ret;
// DAC设备的结构体指针
struct VirtualDacDevice *virtual = NULL;
(void)device;
// 分配指定大小的内存
virtual = (struct VirtualDacDevice *)OsalMemCalloc(sizeof(*virtual));
if (virtual == NULL) {
// 分配内存失败
HDF_LOGE("%s: Malloc virtual fail!", __func__);
return HDF_ERR_MALLOC_FAIL;
}
// 读取hcs中的node节点参数
ret = VirtualDacReadDrs(virtual, node);
if (ret != HDF_SUCCESS) {
// 读取节点失败
HDF_LOGE("%s: Read drs fail! ret:%d", __func__, ret);
goto __ERR__;
}
// 初始化DAC设备指针
VirtualDacDeviceInit(virtual);
// 节点数据传入私有数据
virtual->device.priv = (void *)node;
// 传入设备号
virtual->device.devNum = virtual->deviceNum;
// 传入方法
virtual->device.ops = &g_method;
// 添加DAC设备
ret = DacDeviceAdd(&virtual->device);
if (ret != HDF_SUCCESS) {
// 添加DAC设备失败
HDF_LOGE("%s: add Dac controller failed! ret = %d", __func__, ret);
goto __ERR__;
}
// 成功添加DAC设备
return HDF_SUCCESS;
__ERR__:
// 如果指针为空
if (virtual != NULL) {
// 释放内存
OsalMemFree(virtual);
// 指针置空
virtual = NULL;
}
return ret;
}
static int32_t VirtualDacInit(struct HdfDeviceObject *device)
{
// 定义返回值参数
int32_t ret;
// 设备结构体子节点
const struct DeviceResourceNode *childNode = NULL;
// 入参指针进行判断
if (device == NULL || device->property == NULL) {
// 入参指针为空
HDF_LOGE("%s: device or property is NULL", __func__);
return HDF_ERR_INVALID_OBJECT;
}
// 入参指针不为空
ret = HDF_SUCCESS;
DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) {
// 解析子节点
ret = VirtualDacParseAndInit(device, childNode);
if (ret != HDF_SUCCESS) {
// 解析失败
break;
}
}
// 解析成功
return ret;
}
```
- Release 函数参考
入参:
HdfDeviceObject是整个驱动对外暴露的接口参数,具备HCS配置文件的信息。
返回值:
无。
函数说明:
释放内存和删除控制器,该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源。所有强制转换获取相应对象的操作前提是在Init函数中具备对应赋值的操作。
```
static void VirtualDacRemoveByNode(const struct DeviceResourceNode *node)
{
// 定义返回值参数
int32_t ret;
// 定义DAC设备号
int16_t devNum;
// DAC设备结构体指针
struct DacDevice *device = NULL;
// DAC虚拟结构体指针
struct VirtualDacDevice *virtual = NULL;
// 设备资源接口结构体指针
struct DeviceResourceIface *drsOps = NULL;
// 通过实例入口获取设备资源
drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
// 入参指判空
if (drsOps == NULL || drsOps->GetUint32 == NULL) {
// 指针为空
HDF_LOGE("%s: invalid drs ops fail!", __func__);
return;
}
// 获取devNum节点的数据
ret = drsOps->GetUint16(node, "devNum", (uint16_t *)&devNum, 0);
if (ret != HDF_SUCCESS) {
//获取失败
HDF_LOGE("%s: read devNum fail!", __func__);
return;
}
// 获取DAC设备号
device = DacDeviceGet(devNum);
// 判断DAC设备号以及数据是否为空
if (device != NULL && device->priv == node) {
// 为空释放DAC设备号
DacDevicePut(device);
// 移除DAC设备号
DacDeviceRemove(device);
virtual = (struct VirtualDacDevice *)device;
// 释放虚拟指针
OsalMemFree(virtual);
}
return;
}
static void VirtualDacRelease(struct HdfDeviceObject *device)
{
// 定义设备资源子节点结构体指针
const struct DeviceResourceNode *childNode = NULL;
// 入参指针判空
if (device == NULL || device->property == NULL) {
// 入参指针为空
HDF_LOGE("%s: device or property is NULL", __func__);
return;
}
DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) {
// 通过节点移除DAC
VirtualDacRemoveByNode(childNode);
}
}
```
4. **驱动调试:**
【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的测试用例是否成功等。
......@@ -2,6 +2,8 @@
- **[ADC](driver-platform-adc-des.md)**
- **[DAC](driver-platform-dac-des.md)**
- **[GPIO](driver-platform-gpio-des.md)**
- **[HDMI](driver-platform-hdmi-des.md)**
......
zh-cn/device-dev/driver/figures/统一服务模式结构图.png

144.2 KB | W: | H:

zh-cn/device-dev/driver/figures/统一服务模式结构图.png

37.9 KB | W: | H:

zh-cn/device-dev/driver/figures/统一服务模式结构图.png
zh-cn/device-dev/driver/figures/统一服务模式结构图.png
zh-cn/device-dev/driver/figures/统一服务模式结构图.png
zh-cn/device-dev/driver/figures/统一服务模式结构图.png
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册