xcomponent-guidelines.md 39.8 KB
Newer Older
E
ester.zhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
# XComponent Development

## When to Use

**NativeXComponent** provides an instance for the **\<XComponent>** at the native layer, which can be used as a bridge for binding with the **\<XComponent>** at the JS layer. The NDK APIs provided by the **\<XComponent>** depend on this instance. The provided APIs include those for obtaining a native window, obtaining the layout or event information of the **\<XComponent>**, registering the lifecycle callbacks of the **\<XComponent>**, and registering the callbacks for the touch, mouse, and key events of the **\<XComponent>**. You can use the provided APIs in the following scenarios:

- Register the lifecycle and event callbacks of the **\<XComponent>**.
- In these callbacks, you can initialize the environment, obtain the current state, and respond to various events.
- Use the native window and EGL APIs to develop custom drawing content, and apply for and submit buffers to the graphics queue.

## Available APIs

| API| Description.|
| -------- | -------- |
|OH_NativeXComponent_GetXComponentId(OH_NativeXComponent* component, char* id, uint64_t* size)|Obtains the ID of the **\<XComponent>**.|
|OH_NativeXComponent_GetXComponentSize(OH_NativeXComponent* component, const void* window, uint64_t* width, uint64_t* height)|Obtains the size of the surface held by the **\<XComponent>**.|
|OH_NativeXComponent_GetXComponentOffset(OH_NativeXComponent* component, const void* window, double* x, double* y)|Obtains the offset of the surface held by the **\<XComponent>** relative to the upper left corner of the window.|
|OH_NativeXComponent_GetTouchEvent(OH_NativeXComponent* component, const void* window, OH_NativeXComponent_TouchEvent* touchEvent)|Obtains the touch event triggered by the **\<XComponent>**.|
|OH_NativeXComponent_GetTouchPointToolType(OH_NativeXComponent* component, uint32_t pointIndex, OH_NativeXComponent_TouchPointToolType* toolType)|Obtains the tool type of the **\<XComponent>** touch point.|
|OH_NativeXComponent_GetTouchPointTiltX(OH_NativeXComponent* component, uint32_t pointIndex, float* tiltX)|Obtains the tilt angle of the **\<XComponent>** touch point relative to the x-axis.|
|OH_NativeXComponent_GetTouchPointTiltY(OH_NativeXComponent* component, uint32_t pointIndex, float* tiltY)|Obtains the tilt angle of the **\<XComponent>** touch point relative to the y-axis.|
|OH_NativeXComponent_GetMouseEvent(OH_NativeXComponent* component, const void* window, OH_NativeXComponent_MouseEvent* mouseEvent)|Obtains the mouse event triggered by the **\<XComponent>**.|
|OH_NativeXComponent_RegisterCallback(OH_NativeXComponent* component, OH_NativeXComponent_Callback* callback)|Registers the lifecycle and touch event callback for this **OH_NativeXComponent** instance.|
|OH_NativeXComponent_RegisterMouseEventCallback(OH_NativeXComponent* component, OH_NativeXComponent_MouseEvent_Callback* callback)|Registers the mouse event callback for this **OH_NativeXComponent** instance.|
|OH_NativeXComponent_RegisterFocusEventCallback(OH_NativeXComponent* component, void (\*callback)(OH_NativeXComponent* component, void* window))|Registers the focus obtaining event callback function for this **OH_NativeXComponent** instance.|
|OH_NativeXComponent_RegisterKeyEventCallback(OH_NativeXComponent* component, void (\*callback)(OH_NativeXComponent* component, void* window))|Registers the key event callback for this **OH_NativeXComponent** instance.|
|OH_NativeXComponent_RegisterBlurEventCallback(OH_NativeXComponent* component, void (\*callback)(OH_NativeXComponent* component, void* window))|Registers the focus loss event callback for this **OH_NativeXComponent** instance.|
|OH_NativeXComponent_GetKeyEvent(OH_NativeXComponent* component, OH_NativeXComponent_KeyEvent\** keyEvent)|Obtains the key event triggered by the **\<XComponent>**.|
|OH_NativeXComponent_GetKeyEventAction(OH_NativeXComponent_KeyEvent* keyEvent, OH_NativeXComponent_KeyAction* action)|Obtains the action of a key event.|
|OH_NativeXComponent_GetKeyEventCode(OH_NativeXComponent_KeyEvent* keyEvent, OH_NativeXComponent_KeyCode* code)|Obtains the key code value of a key event.|
|OH_NativeXComponent_GetKeyEventSourceType(OH_NativeXComponent_KeyEvent* keyEvent, OH_NativeXComponent_EventSourceType* sourceType)|Obtains the input source type of a key event.|
|OH_NativeXComponent_GetKeyEventDeviceId(OH_NativeXComponent_KeyEvent* keyEvent, int64_t* deviceId)|Obtains the device ID of a key event.|
|OH_NativeXComponent_GetKeyEventTimestamp(OH_NativeXComponent_KeyEvent* keyEvent, int64_t* timestamp)|Obtains the timestamp of a key event.|

## Lifecycle Description

You can use the **\<XComponent>** to develop EGL/OpenGL ES rendering by using the following code on the ArkTS side:

```typescript
XComponent({ id: 'xcomponentId1', type: 'surface', libraryname: 'nativerender' })
  .onLoad((context) => {})
  .onDestroy(() => {})
```

### **onLoad** Event

Trigger time: when the surface of the **\<XComponent>** is ready.

**context** parameter: where the native API exposed on the module is mounted. Its usage is similar to the usage of a **context** instance obtained after the module is directly loaded using **import context from "libnativerender.so"**.

Time sequence: subject to the surface. The figure below shows the time sequence of the **onLoad** event and the **OnSurfaceCreated** event at the native layer.

![onLoad](./figures/onLoad.png)

### **onDestroy** Event

Trigger time: when the **\<XComponent>** is destroyed, in the same manner as that when an ArkUI component is destroyed. The figure below shows the time sequence of the **onDestroy** event and the **OnSurfaceDestroyed** event at the native layer.

![onDestroy](./figures/onDestroy.png)

## How to Develop
The following describes how to use the **\<XComponent>** to call the native APIs to create the EGL/GLES environment, draw graphics on the main page, and change graphics colors.

1. Define the **\<XComponent>** on the GUI.

    ```typescript
    // ...
    // Define XComponent in an .ets file.
    XComponent({
    id: 'xcomponentId',
    type: XComponentType.SURFACE,
    libraryname: 'nativerender'
    })
    .focusable(true) // Set the component to be able to respond to key events.
    .onLoad((xComponentContext) => {
        this.xComponentContext = xComponentContext;
    })
    .onDestroy(() => {
        console.log("onDestroy");
    })
    // ...
    ```

2. Register the N-API module. For details, see [Using Native APIs in Application Projects](https://gitee.com/openharmony/docs/blob/master/en/application-dev/napi/napi-guidelines.md).

    ```c++
    // In the napi_init.cpp file, use the Init method to register the target function to transfer the encapsulated C++ methods for the JS side to call.
    EXTERN_C_START
    static napi_value Init(napi_env env, napi_value exports)
    {
        // ...
        // Expose the getContext() API to the JS side.
        napi_property_descriptor desc[] = {
            { "getContext", nullptr, PluginManager::GetContext, nullptr, nullptr, nullptr, napi_default, nullptr }
        };
        if (napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc) != napi_ok) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Init", "napi_define_properties failed");
            return nullptr;
        }
        // Check whether the environment variables in the method contain the <XComponent> instance. If the instance exists, register the drawing-related API.
        PluginManager::GetInstance()->Export(env, exports);
        return exports;
    }
    EXTERN_C_END

    // Write the API description. You can modify the corresponding parameters as required.
    static napi_module nativerenderModule = {
        .nm_version = 1,
        .nflag_s = 0,
        .nm_filename = nullptr,
        // Entry function
        .nm_register_func = Init,
        // Module name
        .nm_modname = "nativerender",
        .nm_priv = ((void *)0),
        .reserved = { 0 }
    };

    // The method decorated by __attribute__((constructor)) is automatically called by the system. The N-API napi_module_register() is used to transfer the module description for module registration.
    extern "C" __attribute__((constructor)) void RegisterModule(void)
    {
        napi_module_register(&nativerenderModule);
    }

    // Use the napi_define_properties method in the N-APIs to expose the drawPattern() method to the JS side and call the drawPattern() method on the JS side to draw content.
    void PluginRender::Export(napi_env env, napi_value exports)
    {
        // ...
        // Register the function as the JS API drawPattern.
        napi_property_descriptor desc[] = {
            { "drawPattern", nullptr, PluginRender::NapiDrawPattern, nullptr, nullptr, nullptr, napi_default, nullptr }
        };
        if (napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc) != napi_ok) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "Export: napi_define_properties failed");
        }
    }
    ```

3. Register the **\<XComponent>** event callback and use the N-API to implement it.

   (1) Define the callbacks for the touch event of the **\<XComponent>** and for when a surface is successfully created, changed, or destroyed.

   ```c++
   // Define the OnSurfaceCreatedCB() function to encapsulate the initialization environment and drawing background.
   void OnSurfaceCreatedCB(OH_NativeXComponent *component, void *window)
   {
   	// ...
   	// Obtain the ID of the <XComponent>, that is, the id parameter in the <XComponent> struct on the JS side.
   	char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
   	uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
   	if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   		OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback",
   			"OnSurfaceCreatedCB: Unable to get XComponent id");
   		return;
   	}
   
   	// Initialize the environment and draw the background.
   	std::string id(idStr);
   	auto render = PluginRender::GetInstance(id);
   	uint64_t width;
   	uint64_t height;
   	// Obtain the size of the surface held by the <XComponent>.
   	int32_t xSize = OH_NativeXComponent_GetXComponentSize(component, window, &width, &height);
   	if ((xSize == OH_NATIVEXCOMPONENT_RESULT_SUCCESS) && (render != nullptr)) {
   		if (render->eglCore_->EglContextInit(window, width, height)) {
   			render->eglCore_->Background();
   		}
   	}
   }
   
   // Define the OnSurfaceChangedCB() function.
   void OnSurfaceChangedCB(OH_NativeXComponent *component, void *window)
   {
   	// ...
   	// Obtain the ID of the <XComponent>.
   	char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
   	uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
   	if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   		OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback",
   			"OnSurfaceChangedCB: Unable to get XComponent id");
   		return;
   	}
   
   	std::string id(idStr);
   	auto render = PluginRender::GetInstance(id);
   	if (render != nullptr) {
   		// Encapsulate the OnSurfaceChanged method.
   		render->OnSurfaceChanged(component, window);
   	}
   }
   
   // Define the OnSurfaceDestroyedCB() function and encapsulate in it the Release() method in the PluginRender class for releasing resources.
   void OnSurfaceDestroyedCB(OH_NativeXComponent *component, void *window)
   {
   	// ...
   	// Obtain the ID of the <XComponent>.
   	char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
   	uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
   	if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   		OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback",
   			"OnSurfaceDestroyedCB: Unable to get XComponent id");
   		return;
   	}
   
   	std::string id(idStr);
   	// Release resources.
   	PluginRender::Release(id);
   }
   
   // Define the DispatchTouchEventCB() function, which is triggered when a touch event is responded to.
   void DispatchTouchEventCB(OH_NativeXComponent *component, void *window)
   {
   	// ...
   	// Obtain the ID of the <XComponent>.
   	char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
   	uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
   	if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   		OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback",
   			"DispatchTouchEventCB: Unable to get XComponent id");
   		return;
   	}
   
   	std::string id(idStr);
   	PluginRender *render = PluginRender::GetInstance(id);
   	if (render != nullptr) {
   		// Encapsulate the OnTouchEvent method.
   		render->OnTouchEvent(component, window);
   	}
   }
   
   // Define the DispatchMouseEventCB() function, which is triggered when a mouse event is responded to.
   void DispatchMouseEventCB(OH_NativeXComponent *component, void *window) {
   	OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "DispatchMouseEventCB");
   	int32_t ret;
   	char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
   	uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
   	ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
   	if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   		return;
   	}
   
   	std::string id(idStr);
   	auto render = PluginRender::GetInstance(id);
   	if (render) {
   		// Encapsulate the OnMouseEvent method.
   		render->OnMouseEvent(component, window);
   	}
   }
   
   // Define the DispatchHoverEventCB() function, which is triggered when the mouse pointer hover event is responded to.
   void DispatchHoverEventCB(OH_NativeXComponent *component, bool isHover) {
   	OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "DispatchHoverEventCB");
   	int32_t ret;
   	char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
   	uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
   	ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
   	if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   		return;
   	}
   
   	std::string id(idStr);
   	auto render = PluginRender::GetInstance(id);
   	if (render) {
   		// Encapsulate the OnHoverEvent method.
   		render->OnHoverEvent(component, isHover);
   	}
   }
   
   // Define the OnFocusEventCB() function, which is triggered when a focus obtaining event is responded to.
   void OnFocusEventCB(OH_NativeXComponent *component, void *window) {
   	OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "OnFocusEventCB");
   	int32_t ret;
   	char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
   	uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
   	ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
   	if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   		return;
   	}
   
   	std::string id(idStr);
   	auto render = PluginRender::GetInstance(id);
   	if (render) {
   		// Encapsulate the OnFocusEvent method.
   		render->OnFocusEvent(component, window);
   	}
   }
   
   // Define the OnBlurEventCB() function, which is triggered when the focus loss event is responded to.
   void OnBlurEventCB(OH_NativeXComponent *component, void *window) {
   	OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "OnBlurEventCB");
   	int32_t ret;
   	char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
   	uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
   	ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
   	if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   		return;
   	}
   
   	std::string id(idStr);
   	auto render = PluginRender::GetInstance(id);
   	if (render) {
   		// Encapsulate the OnBlurEvent method.
   		render->OnBlurEvent(component, window);
   	}
   }
   
   // Define the OnKeyEventCB() function, which is triggered when a key event is responded to.
   void OnKeyEventCB(OH_NativeXComponent *component, void *window) {
   	OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "OnKeyEventCB");
   	int32_t ret;
   	char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
   	uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
   	ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
   	if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   		return;
   	}
   	std::string id(idStr);
   	auto render = PluginRender::GetInstance(id);
   	if (render) {
   		// Encapsulate the OnKeyEvent method.
   		render->OnKeyEvent(component, window);
   	}
   }
   
   // Define an OnSurfaceChanged() method.
   void PluginRender::OnSurfaceChanged(OH_NativeXComponent* component, void* window)
   {
   	// ...
       std::string id(idStr);
       PluginRender* render = PluginRender::GetInstance(id);
       double offsetX;
       double offsetY;
       // Obtain the offset of the surface held by the <XComponent> relative to the upper left corner of the window.
       OH_NativeXComponent_GetXComponentOffset(component, window, &offsetX, &offsetY);
       OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "OH_NativeXComponent_GetXComponentOffset",
           "offsetX = %{public}lf, offsetY = %{public}lf", offsetX, offsetY);
       uint64_t width;
       uint64_t height;
       OH_NativeXComponent_GetXComponentSize(component, window, &width, &height);
       if (render != nullptr) {
           render->eglCore_->UpdateSize(width, height);
       }
   }
   
   // Define an OnTouchEvent() method.
   void PluginRender::OnTouchEvent(OH_NativeXComponent* component, void* window)
   {
       // ...
       OH_NativeXComponent_TouchEvent touchEvent;
       // Obtain the touch event triggered by the <XComponent>.
       OH_NativeXComponent_GetTouchEvent(component, window, &touchEvent);
       std::string id(idStr);
       PluginRender* render = PluginRender::GetInstance(id);
       if (render != nullptr && touchEvent.type == OH_NativeXComponent_TouchEventType::OH_NATIVEXCOMPONENT_UP) {
           render->eglCore_->ChangeColor();
           hasChangeColor_ = 1;
       }
       float tiltX = 0.0f;
       float tiltY = 0.0f;
       OH_NativeXComponent_TouchPointToolType toolType =
           OH_NativeXComponent_TouchPointToolType::OH_NATIVEXCOMPONENT_TOOL_TYPE_UNKNOWN;
       // Obtain the tool type of the <XComponent> touch point.
       OH_NativeXComponent_GetTouchPointToolType(component, 0, &toolType);
       // Obtain the tilt angle of the <XComponent> touch point relative to the x-axis.
       OH_NativeXComponent_GetTouchPointTiltX(component, 0, &tiltX);
       // Obtain the tilt angle of the <XComponent> touch point relative to the y-axis.
       OH_NativeXComponent_GetTouchPointTiltY(component, 0, &tiltY);
       OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "OnTouchEvent",
           "touch info: toolType = %{public}d, tiltX = %{public}lf, tiltY = %{public}lf", toolType, tiltX, tiltY);
   }
   
   // Define an OnMouseEvent() method.
   void PluginRender::OnMouseEvent(OH_NativeXComponent *component, void *window) {
      OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "OnMouseEvent");
      OH_NativeXComponent_MouseEvent mouseEvent;
      // Obtain the mouse event triggered by the <XComponent>.
      int32_t ret = OH_NativeXComponent_GetMouseEvent(component, window, &mouseEvent);
      if (ret == OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
   	   OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "MouseEvent Info: x = %{public}f, y = %{public}f, action = %{public}d, button = %{public}d", mouseEvent.x, mouseEvent.y, mouseEvent.action, mouseEvent.button);
      } else {
   	   OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "GetMouseEvent error");
      }
   }
   
   // Define an OnMouseEvent() method.
   void PluginRender::OnKeyEvent(OH_NativeXComponent *component, void *window) {
      OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "OnKeyEvent");
   
      OH_NativeXComponent_KeyEvent *keyEvent = nullptr;
      // Obtain the key event triggered by the <XComponent>.
      if (OH_NativeXComponent_GetKeyEvent(component, &keyEvent) >= 0) {
   	   OH_NativeXComponent_KeyAction action;
          // Obtain the action of a key event.
   	   OH_NativeXComponent_GetKeyEventAction(keyEvent, &action);
   	   OH_NativeXComponent_KeyCode code;
          // Obtain the key code value of a key event.
   	   OH_NativeXComponent_GetKeyEventCode(keyEvent, &code);
   	   OH_NativeXComponent_EventSourceType sourceType;
          // Obtain the input source type of a key event.
   	   OH_NativeXComponent_GetKeyEventSourceType(keyEvent, &sourceType);
   	   int64_t deviceId;
          // Obtain the device ID of a key event.
   	   OH_NativeXComponent_GetKeyEventDeviceId(keyEvent, &deviceId);
   	   int64_t timeStamp;
          // Obtain the timestamp of a key event.
   	   OH_NativeXComponent_GetKeyEventTimestamp(keyEvent, &timeStamp);
   	   OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "KeyEvent Info: action=%{public}d, code=%{public}d, sourceType=%{public}d, deviceId=%{public}ld, timeStamp=%{public}ld", action, code, sourceType, deviceId, timeStamp);
      } else {
   	   OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "GetKeyEvent error");
      }
   }
   ```

   (2) Register the **\<XComponent>** event callback and call the method defined in step 3.1 when the **\<XComponent>** event is triggered.

    ```c++
    void PluginRender::RegisterCallback(OH_NativeXComponent *nativeXComponent) {
        // Set the callback of the component creation event. When the component is created, related operations are triggered to initialize the environment and draw the background.
        renderCallback_.OnSurfaceCreated = OnSurfaceCreatedCB;
        // Set the callback of the component change event. When the component changes, related operations are triggered.
        renderCallback_.OnSurfaceChanged = OnSurfaceChangedCB;
        // Set the callback of the component destruction event. When the component is destroyed, related operations are triggered to release the requested resources.
        renderCallback_.OnSurfaceDestroyed = OnSurfaceDestroyedCB;
        // Set the callback of the touch event. When the touch event is triggered, the N-API is called to call the original C++ method.
        renderCallback_.DispatchTouchEvent = DispatchTouchEventCB;
        // Register OH_NativeXComponent_Callback with NativeXComponent.
        OH_NativeXComponent_RegisterCallback(nativeXComponent, &renderCallback_);
        
        // Set the callback of the mouse event. When the event is triggered, the N-API is called to call the original C++ method.
        mouseCallback_.DispatchMouseEvent = DispatchMouseEventCB;
        // Set the callback of the mouse event. When the event is triggered, the N-API is called to call the original C++ method.
        mouseCallback_.DispatchHoverEvent = DispatchHoverEventCB;
        // Register OH_NativeXComponent_MouseEvent_Callback with NativeXComponent.
        OH_NativeXComponent_RegisterMouseEventCallback(nativeXComponent, &mouseCallback_);
        
        // Register the OnFocusEventCB method with NativeXComponent.
        OH_NativeXComponent_RegisterFocusEventCallback(nativeXComponent, OnFocusEventCB);
        // Register the OnKeyEventCB method with NativeXComponent.
        OH_NativeXComponent_RegisterKeyEventCallback(nativeXComponent, OnKeyEventCB);
        // Register the OnBlurEventCB method with NativeXComponent.
        OH_NativeXComponent_RegisterBlurEventCallback(nativeXComponent, OnBlurEventCB);
    }
    ```

   (3) Define the **NapiDrawPattern** method, which will be called by the **drawPattern()** method exposed to the JS side.

    ```c++
    napi_value PluginRender::NapiDrawPattern(napi_env env, napi_callback_info info)
    {
        // ...
        // Obtain environment variables.
        napi_value thisArg;
        if (napi_get_cb_info(env, info, nullptr, nullptr, &thisArg, nullptr) != napi_ok) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "NapiDrawPattern: napi_get_cb_info fail");
            return nullptr;
        }
       
        // Obtain the XComponent instance from the environment variables.
        napi_value exportInstance;
        if (napi_get_named_property(env, thisArg, OH_NATIVE_XCOMPONENT_OBJ, &exportInstance) != napi_ok) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender",
                "NapiDrawPattern: napi_get_named_property fail");
            return nullptr;
        }
       
        // Use napi_unwrap to obtain the pointer to the XComponent instance.
        OH_NativeXComponent *nativeXComponent = nullptr;
        if (napi_unwrap(env, exportInstance, reinterpret_cast<void **>(&nativeXComponent)) != napi_ok) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "NapiDrawPattern: napi_unwrap fail");
            return nullptr;
        }
       
        // Obtain the ID of the XComponent instance.
        char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
        uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
        if (OH_NativeXComponent_GetXComponentId(nativeXComponent, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender",
                "NapiDrawPattern: Unable to get XComponent id");
            return nullptr;
        }
       
        std::string id(idStr);
        PluginRender *render = PluginRender::GetInstance(id);
        if (render) {
            // Call the drawing method.
            render->eglCore_->Draw();
            OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "render->eglCore_->Draw() executed");
        }
        return nullptr;
    }
    ```

4. Initialize the environment, including initializing the available EGLDisplay, determining the available surface configuration, creating the rendering area surface, and creating and associating the context.

    ```c++
    void EGLCore::UpdateSize(int width, int height) 
    {
        width_ = width;
        height_ = height;
        if (width_ > 0) {
            // Calculate the width percentage of the drawn rectangle.
            width_Percent_ = FIFTY_PERCENT * height_ / width_;
        }
    }

    bool EGLCore::EglContextInit(void *window, int width, int height)
    {
        // ...
        UpdateSize(width, height);
        eglWindow_ = static_cast<EGLNativeWindowType>(window);

        // Initialize the display.
        eglDisplay_ = eglGetDisplay(EGL_DEFAULT_DISPLAY);
        if (eglDisplay_ == EGL_NO_DISPLAY) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglGetDisplay: unable to get EGL display");
            return false;
        }

        // Initialize the EGL.
        EGLint majorVersion;
        EGLint minorVersion;
        if (!eglInitialize(eglDisplay_, &majorVersion, &minorVersion)) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore",
                "eglInitialize: unable to get initialize EGL display");
            return false;
        }

        // Select the configuration.
        const EGLint maxConfigSize = 1;
        EGLint numConfigs;
        if (!eglChooseConfig(eglDisplay_, ATTRIB_LIST, &eglConfig_, maxConfigSize, &numConfigs)) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglChooseConfig: unable to choose configs");
            return false;
        }

        // Create an environment.
        return CreateEnvironment();
    }
    ```

    ```c++
    bool EGLCore::CreateEnvironment()
    {
        // ...
        // Create a surface.
        eglSurface_ = eglCreateWindowSurface(eglDisplay_, eglConfig_, eglWindow_, NULL);

        // ...
        // Create a context.
        eglContext_ = eglCreateContext(eglDisplay_, eglConfig_, EGL_NO_CONTEXT, CONTEXT_ATTRIBS);
        if (!eglMakeCurrent(eglDisplay_, eglSurface_, eglSurface_, eglContext_)) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglMakeCurrent failed");
            return false;
        }

        // Create a program.
        program_ = CreateProgram(VERTEX_SHADER, FRAGMENT_SHADER);
        if (program_ == PROGRAM_ERROR) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "CreateProgram: unable to create program");
            return false;
        }
        return true;
    }
    ```

5. Implement the rendering function.

   (1) Draw the background.

    ```c++
    // Draw the background color #f4f4f4.
    const GLfloat BACKGROUND_COLOR[] = { 244.0f / 255, 244.0f / 255, 244.0f / 255, 1.0f };

    // Draw the background vertex.
    const GLfloat BACKGROUND_RECTANGLE_VERTICES[] = {
        -1.0f, 1.0f,
        1.0f, 1.0f,
        1.0f, -1.0f,
        -1.0f, -1.0f
    };
    ```

    ```c++
    // Draw the background color.
    void EGLCore::Background()
    {
        GLint position = PrepareDraw();
        if (position == POSITION_ERROR) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Background get position failed");
            return;
        }

        if (!ExecuteDraw(position, BACKGROUND_COLOR, BACKGROUND_RECTANGLE_VERTICES,
            sizeof(BACKGROUND_RECTANGLE_VERTICES))) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Background execute draw failed");
            return;
        }

        if (!FinishDraw()) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Background FinishDraw failed");
            return;
        }
    }

    // Prepare for drawing and obtain the value of position. When the creation is successful, the value of position starts from 0.
    GLint EGLCore::PrepareDraw()
    {
        if ((eglDisplay_ == nullptr) || (eglSurface_ == nullptr) || (eglContext_ == nullptr) ||
            (!eglMakeCurrent(eglDisplay_, eglSurface_, eglSurface_, eglContext_))) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "PrepareDraw: param error");
            return POSITION_ERROR;
        }

        glViewport(DEFAULT_X_POSITION, DEFAULT_Y_POSITION, width_, height_);
        glClearColor(GL_RED_DEFAULT, GL_GREEN_DEFAULT, GL_BLUE_DEFAULT, GL_ALPHA_DEFAULT);
        glClear(GL_COLOR_BUFFER_BIT);
        glUseProgram(program_);

        return glGetAttribLocation(program_, POSITION_NAME);
    }

    // Draw a specified color in the specified area based on the input parameters.
    bool EGLCore::ExecuteDraw(GLint position, const GLfloat *color, const GLfloat shapeVertices[],
        unsigned long vertSize)
    {
        if ((position > 0) || (color == nullptr) || (vertSize / sizeof(shapeVertices[0]) != SHAPE_VERTICES_SIZE)) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ExecuteDraw: param error");
            return false;
        }

        glVertexAttribPointer(position, POINTER_SIZE, GL_FLOAT, GL_FALSE, 0, shapeVertices);
        glEnableVertexAttribArray(position);
        glVertexAttrib4fv(1, color);
        glDrawArrays(GL_TRIANGLE_FAN, 0, TRIANGLE_FAN_SIZE);
        glDisableVertexAttribArray(position);

        return true;
    }

    // End the drawing operation.
    bool EGLCore::FinishDraw()
    {
        // Forcibly refresh the buffer.
        glFlush();
        glFinish();
        return eglSwapBuffers(eglDisplay_, eglSurface_);
    }
    ```

   (2) Draw the shape.

    ```c++
    void EGLCore::Draw()
    {
        flag_ = false;
        OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "EGLCore", "Draw");
        GLint position = PrepareDraw();
        if (position == POSITION_ERROR) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw get position failed");
            return;
        }

        // Draw the background.
        if (!ExecuteDraw(position, BACKGROUND_COLOR, BACKGROUND_RECTANGLE_VERTICES,
            sizeof(BACKGROUND_RECTANGLE_VERTICES))) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw background failed");
            return;
        }
        
        // Divide the pentagon into five quadrilaterals and calculate the four vertices of one of the quadrilaterals.
        GLfloat rotateX = 0;
        GLfloat rotateY = FIFTY_PERCENT * height_;
        GLfloat centerX = 0;
        GLfloat centerY = -rotateY * (M_PI / 180 * 54) * (M_PI / 180 * 18);
        GLfloat leftX = -rotateY * (M_PI / 180 * 18);
        GLfloat leftY = 0;
        GLfloat rightX = rotateY * (M_PI / 180 * 18);
        GLfloat rightY = 0;

        // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area.
        const GLfloat shapeVertices[] = {
            centerX / width_, centerY / height_,
            leftX / width_, leftY / height_,
            rotateX / width_, rotateY / height_,
            rightX / width_, rightY / height_
        };
        
        if (!ExecuteDrawStar(position, DRAW_COLOR, shapeVertices, sizeof(shapeVertices))) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed");
            return;
        }
        
        GLfloat rad = M_PI / 180 * 72;
        for (int i = 0; i < 4; ++i) 
        {
            // Obtain the vertices of the other four quadrilaterals through rotation.
            rotate2d(centerX, centerY, &rotateX, &rotateY,rad);
            rotate2d(centerX, centerY, &leftX, &leftY,rad);
            rotate2d(centerX, centerY, &rightX, &rightY,rad);
            
            // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area.
            const GLfloat shapeVertices[] = {
                    centerX / width_, centerY / height_,
                    leftX / width_, leftY / height_,
                    rotateX / width_, rotateY / height_,
                    rightX / width_, rightY / height_
                };
            
            // Draw the shape.
            if (!ExecuteDrawStar(position, DRAW_COLOR, shapeVertices, sizeof(shapeVertices))) {
                OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed");
                return;
            }
        }

        // End drawing.
        if (!FinishDraw()) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw FinishDraw failed");
            return;
        }

        flag_ = true;
    }
    ```

   (3) Change the colors, by drawing a new shape with the same size but different colors and replacing the original shape with the new shape.

    ```c++
    void EGLCore::ChangeColor()
    {
        if (!flag_) {
            return;
        }
        OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor");
        GLint position = PrepareDraw();
        if (position == POSITION_ERROR) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor get position failed");
            return;
        }
    
        // Draw the background.
        if (!ExecuteDraw(position, BACKGROUND_COLOR, BACKGROUND_RECTANGLE_VERTICES,
            sizeof(BACKGROUND_RECTANGLE_VERTICES))) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor execute draw background failed");
            return;
        }
    
        // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area.
        GLfloat rotateX = 0;
        GLfloat rotateY = FIFTY_PERCENT * height_;
        GLfloat centerX = 0;
        GLfloat centerY = -rotateY * (M_PI / 180 * 54) * (M_PI / 180 * 18);
        GLfloat leftX = -rotateY * (M_PI / 180 * 18);
        GLfloat leftY = 0;
        GLfloat rightX = rotateY * (M_PI / 180 * 18);
        GLfloat rightY = 0;
    
        // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area.
        const GLfloat shapeVertices[] = {
            centerX / width_, centerY / height_,
            leftX / width_, leftY / height_,
            rotateX / width_, rotateY / height_,
            rightX / width_, rightY / height_
        };
        
        // Use the new colors for drawing.
        if (!ExecuteDrawStar2(position, CHANGE_COLOR, shapeVertices, sizeof(shapeVertices))) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed");
            return;
        }
    
        GLfloat rad = M_PI / 180 * 72;
        for (int i = 0; i < 4; ++i)
        {
            // Obtain the vertices of the other four quadrilaterals through rotation.
            rotate2d(centerX, centerY, &rotateX, &rotateY,rad);
            rotate2d(centerX, centerY, &leftX, &leftY,rad);
            rotate2d(centerX, centerY, &rightX, &rightY,rad);
            
            // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area.
            const GLfloat shapeVertices[] = {
                    centerX / width_, centerY / height_,
                    leftX / width_, leftY / height_,
                    rotateX / width_, rotateY / height_,
                    rightX / width_, rightY / height_
                };
    
            // Use the new colors for drawing.
            if (!ExecuteDrawStar2(position, CHANGE_COLOR, shapeVertices, sizeof(shapeVertices))) {
                OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed");
                return;
            }
        }
    
        // End drawing.
        if (!FinishDraw()) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor FinishDraw failed");
        }
    }
    ```

6. Release related resources.

   (1) Create the **Release()** method in the **EGLCore** class to release the resources requested during environment initialization, including the window display, rendering area surface, and environment context.

    ```c++
    void EGLCore::Release()
    {
        // Release the surface.
        if ((eglDisplay_ == nullptr) || (eglSurface_ == nullptr) || (!eglDestroySurface(eglDisplay_, eglSurface_))) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Release eglDestroySurface failed");
        }
        // Release the context.
        if ((eglDisplay_ == nullptr) || (eglContext_ == nullptr) || (!eglDestroyContext(eglDisplay_, eglContext_))) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Release eglDestroyContext failed");
        }
        // Release the display.
        if ((eglDisplay_ == nullptr) || (!eglTerminate(eglDisplay_))) {
            OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Release eglTerminate failed");
        }
    }
    ```

   (2) Add the **Release()** method to the **PluginRender** class to release the **EGLCore** and **PluginRender** instances.

    ```c++
    void PluginRender::Release(std::string &id)
    {
        PluginRender *render = PluginRender::GetInstance(id);
        if (render != nullptr) {
            render->eglCore_->Release();
            delete render->eglCore_;
            render->eglCore_ = nullptr;
            delete render;
            render = nullptr;
            instance_.erase(instance_.find(id));
        }
    }
    ```

7. Use the CMake toolchain to compile the C++ source code into a dynamic link library (DLL) file.

    ```CMake
    # Set the minimum CMake version.
    cmake_minimum_required(VERSION 3.4.1)
    # Project name
    project(XComponent)
    
    set(NATIVERENDER_ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR})
    add_definitions(-DOHOS_PLATFORM)
    # Set the header file search directory.
    include_directories(
        ${NATIVERENDER_ROOT_PATH}
        ${NATIVERENDER_ROOT_PATH}/include
    )
    # Add the **nativerender** dynamic library, with the **libnativerender.so** library file. Add the .cpp file.
    add_library(nativerender SHARED
        render/egl_core.cpp
        render/plugin_render.cpp
        manager/plugin_manager.cpp
        napi_init.cpp
    )
    
    find_library(
        EGL-lib
        EGL
    )
    
    find_library(
        GLES-lib
        GLESv3
    )
    
    find_library(
        hilog-lib
        hilog_ndk.z
    )
    
    find_library(
        libace-lib
        ace_ndk.z
    )
    
    find_library(
        libnapi-lib
        ace_napi.z
    )
    
    find_library(
        libuv-lib
        uv
    )
    # Add the library to be linked.
    target_link_libraries(nativerender PUBLIC
        ${EGL-lib} ${GLES-lib} ${hilog-lib} ${libace-lib} ${libnapi-lib} ${libuv-lib})
    ```

##   

 

-