# XComponent Development ## When to Use **NativeXComponent** provides an instance for the **\** at the native layer, which can be used as a bridge for binding with the **\** at the JS layer. The NDK APIs provided by the **\** depend on this instance. The provided APIs include those for obtaining a native window, obtaining the layout or event information of the **\**, registering the lifecycle callbacks of the **\**, and registering the callbacks for the touch, mouse, and key events of the **\**. You can use the provided APIs in the following scenarios: - Register the lifecycle and event callbacks of the **\**. - In these callbacks, you can initialize the environment, obtain the current state, and respond to various events. - Use the native window and EGL APIs to develop custom drawing content, and apply for and submit buffers to the graphics queue. ## Available APIs | API| Description.| | -------- | -------- | |OH_NativeXComponent_GetXComponentId(OH_NativeXComponent* component, char* id, uint64_t* size)|Obtains the ID of the **\**.| |OH_NativeXComponent_GetXComponentSize(OH_NativeXComponent* component, const void* window, uint64_t* width, uint64_t* height)|Obtains the size of the surface held by the **\**.| |OH_NativeXComponent_GetXComponentOffset(OH_NativeXComponent* component, const void* window, double* x, double* y)|Obtains the offset of the surface held by the **\** relative to the upper left corner of the window.| |OH_NativeXComponent_GetTouchEvent(OH_NativeXComponent* component, const void* window, OH_NativeXComponent_TouchEvent* touchEvent)|Obtains the touch event triggered by the **\**.| |OH_NativeXComponent_GetTouchPointToolType(OH_NativeXComponent* component, uint32_t pointIndex, OH_NativeXComponent_TouchPointToolType* toolType)|Obtains the tool type of the **\** touch point.| |OH_NativeXComponent_GetTouchPointTiltX(OH_NativeXComponent* component, uint32_t pointIndex, float* tiltX)|Obtains the tilt angle of the **\** touch point relative to the x-axis.| |OH_NativeXComponent_GetTouchPointTiltY(OH_NativeXComponent* component, uint32_t pointIndex, float* tiltY)|Obtains the tilt angle of the **\** touch point relative to the y-axis.| |OH_NativeXComponent_GetMouseEvent(OH_NativeXComponent* component, const void* window, OH_NativeXComponent_MouseEvent* mouseEvent)|Obtains the mouse event triggered by the **\**.| |OH_NativeXComponent_RegisterCallback(OH_NativeXComponent* component, OH_NativeXComponent_Callback* callback)|Registers the lifecycle and touch event callback for this **OH_NativeXComponent** instance.| |OH_NativeXComponent_RegisterMouseEventCallback(OH_NativeXComponent* component, OH_NativeXComponent_MouseEvent_Callback* callback)|Registers the mouse event callback for this **OH_NativeXComponent** instance.| |OH_NativeXComponent_RegisterFocusEventCallback(OH_NativeXComponent* component, void (\*callback)(OH_NativeXComponent* component, void* window))|Registers the focus obtaining event callback function for this **OH_NativeXComponent** instance.| |OH_NativeXComponent_RegisterKeyEventCallback(OH_NativeXComponent* component, void (\*callback)(OH_NativeXComponent* component, void* window))|Registers the key event callback for this **OH_NativeXComponent** instance.| |OH_NativeXComponent_RegisterBlurEventCallback(OH_NativeXComponent* component, void (\*callback)(OH_NativeXComponent* component, void* window))|Registers the focus loss event callback for this **OH_NativeXComponent** instance.| |OH_NativeXComponent_GetKeyEvent(OH_NativeXComponent* component, OH_NativeXComponent_KeyEvent\** keyEvent)|Obtains the key event triggered by the **\**.| |OH_NativeXComponent_GetKeyEventAction(OH_NativeXComponent_KeyEvent* keyEvent, OH_NativeXComponent_KeyAction* action)|Obtains the action of a key event.| |OH_NativeXComponent_GetKeyEventCode(OH_NativeXComponent_KeyEvent* keyEvent, OH_NativeXComponent_KeyCode* code)|Obtains the key code value of a key event.| |OH_NativeXComponent_GetKeyEventSourceType(OH_NativeXComponent_KeyEvent* keyEvent, OH_NativeXComponent_EventSourceType* sourceType)|Obtains the input source type of a key event.| |OH_NativeXComponent_GetKeyEventDeviceId(OH_NativeXComponent_KeyEvent* keyEvent, int64_t* deviceId)|Obtains the device ID of a key event.| |OH_NativeXComponent_GetKeyEventTimestamp(OH_NativeXComponent_KeyEvent* keyEvent, int64_t* timestamp)|Obtains the timestamp of a key event.| ## Lifecycle Description You can use the **\** to develop EGL/OpenGL ES rendering by using the following code on the ArkTS side: ```typescript XComponent({ id: 'xcomponentId1', type: 'surface', libraryname: 'nativerender' }) .onLoad((context) => {}) .onDestroy(() => {}) ``` ### **onLoad** Event Trigger time: when the surface of the **\** is ready. **context** parameter: where the native API exposed on the module is mounted. Its usage is similar to the usage of a **context** instance obtained after the module is directly loaded using **import context from "libnativerender.so"**. Time sequence: subject to the surface. The figure below shows the time sequence of the **onLoad** event and the **OnSurfaceCreated** event at the native layer. ![onLoad](./figures/onLoad.png) ### **onDestroy** Event Trigger time: when the **\** is destroyed, in the same manner as that when an ArkUI component is destroyed. The figure below shows the time sequence of the **onDestroy** event and the **OnSurfaceDestroyed** event at the native layer. ![onDestroy](./figures/onDestroy.png) ## How to Develop The following describes how to use the **\** to call the native APIs to create the EGL/GLES environment, draw graphics on the main page, and change graphics colors. 1. Define the **\** on the GUI. ```typescript // ... // Define XComponent in an .ets file. XComponent({ id: 'xcomponentId', type: XComponentType.SURFACE, libraryname: 'nativerender' }) .focusable(true) // Set the component to be able to respond to key events. .onLoad((xComponentContext) => { this.xComponentContext = xComponentContext; }) .onDestroy(() => { console.log("onDestroy"); }) // ... ``` 2. Register the N-API module. For details, see [Using Native APIs in Application Projects](https://gitee.com/openharmony/docs/blob/master/en/application-dev/napi/napi-guidelines.md). ```c++ // In the napi_init.cpp file, use the Init method to register the target function to transfer the encapsulated C++ methods for the JS side to call. EXTERN_C_START static napi_value Init(napi_env env, napi_value exports) { // ... // Expose the getContext() API to the JS side. napi_property_descriptor desc[] = { { "getContext", nullptr, PluginManager::GetContext, nullptr, nullptr, nullptr, napi_default, nullptr } }; if (napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc) != napi_ok) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Init", "napi_define_properties failed"); return nullptr; } // Check whether the environment variables in the method contain the instance. If the instance exists, register the drawing-related API. PluginManager::GetInstance()->Export(env, exports); return exports; } EXTERN_C_END // Write the API description. You can modify the corresponding parameters as required. static napi_module nativerenderModule = { .nm_version = 1, .nflag_s = 0, .nm_filename = nullptr, // Entry function .nm_register_func = Init, // Module name .nm_modname = "nativerender", .nm_priv = ((void *)0), .reserved = { 0 } }; // The method decorated by __attribute__((constructor)) is automatically called by the system. The N-API napi_module_register() is used to transfer the module description for module registration. extern "C" __attribute__((constructor)) void RegisterModule(void) { napi_module_register(&nativerenderModule); } // Use the napi_define_properties method in the N-APIs to expose the drawPattern() method to the JS side and call the drawPattern() method on the JS side to draw content. void PluginRender::Export(napi_env env, napi_value exports) { // ... // Register the function as the JS API drawPattern. napi_property_descriptor desc[] = { { "drawPattern", nullptr, PluginRender::NapiDrawPattern, nullptr, nullptr, nullptr, napi_default, nullptr } }; if (napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc) != napi_ok) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "Export: napi_define_properties failed"); } } ``` 3. Register the **\** event callback and use the N-API to implement it. (1) Define the callbacks for the touch event of the **\** and for when a surface is successfully created, changed, or destroyed. ```c++ // Define the OnSurfaceCreatedCB() function to encapsulate the initialization environment and drawing background. void OnSurfaceCreatedCB(OH_NativeXComponent *component, void *window) { // ... // Obtain the ID of the , that is, the id parameter in the struct on the JS side. char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' }; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback", "OnSurfaceCreatedCB: Unable to get XComponent id"); return; } // Initialize the environment and draw the background. std::string id(idStr); auto render = PluginRender::GetInstance(id); uint64_t width; uint64_t height; // Obtain the size of the surface held by the . int32_t xSize = OH_NativeXComponent_GetXComponentSize(component, window, &width, &height); if ((xSize == OH_NATIVEXCOMPONENT_RESULT_SUCCESS) && (render != nullptr)) { if (render->eglCore_->EglContextInit(window, width, height)) { render->eglCore_->Background(); } } } // Define the OnSurfaceChangedCB() function. void OnSurfaceChangedCB(OH_NativeXComponent *component, void *window) { // ... // Obtain the ID of the . char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' }; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback", "OnSurfaceChangedCB: Unable to get XComponent id"); return; } std::string id(idStr); auto render = PluginRender::GetInstance(id); if (render != nullptr) { // Encapsulate the OnSurfaceChanged method. render->OnSurfaceChanged(component, window); } } // Define the OnSurfaceDestroyedCB() function and encapsulate in it the Release() method in the PluginRender class for releasing resources. void OnSurfaceDestroyedCB(OH_NativeXComponent *component, void *window) { // ... // Obtain the ID of the . char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' }; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback", "OnSurfaceDestroyedCB: Unable to get XComponent id"); return; } std::string id(idStr); // Release resources. PluginRender::Release(id); } // Define the DispatchTouchEventCB() function, which is triggered when a touch event is responded to. void DispatchTouchEventCB(OH_NativeXComponent *component, void *window) { // ... // Obtain the ID of the . char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' }; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback", "DispatchTouchEventCB: Unable to get XComponent id"); return; } std::string id(idStr); PluginRender *render = PluginRender::GetInstance(id); if (render != nullptr) { // Encapsulate the OnTouchEvent method. render->OnTouchEvent(component, window); } } // Define the DispatchMouseEventCB() function, which is triggered when a mouse event is responded to. void DispatchMouseEventCB(OH_NativeXComponent *component, void *window) { OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "DispatchMouseEventCB"); int32_t ret; char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {}; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize); if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { return; } std::string id(idStr); auto render = PluginRender::GetInstance(id); if (render) { // Encapsulate the OnMouseEvent method. render->OnMouseEvent(component, window); } } // Define the DispatchHoverEventCB() function, which is triggered when the mouse pointer hover event is responded to. void DispatchHoverEventCB(OH_NativeXComponent *component, bool isHover) { OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "DispatchHoverEventCB"); int32_t ret; char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {}; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize); if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { return; } std::string id(idStr); auto render = PluginRender::GetInstance(id); if (render) { // Encapsulate the OnHoverEvent method. render->OnHoverEvent(component, isHover); } } // Define the OnFocusEventCB() function, which is triggered when a focus obtaining event is responded to. void OnFocusEventCB(OH_NativeXComponent *component, void *window) { OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "OnFocusEventCB"); int32_t ret; char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {}; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize); if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { return; } std::string id(idStr); auto render = PluginRender::GetInstance(id); if (render) { // Encapsulate the OnFocusEvent method. render->OnFocusEvent(component, window); } } // Define the OnBlurEventCB() function, which is triggered when the focus loss event is responded to. void OnBlurEventCB(OH_NativeXComponent *component, void *window) { OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "OnBlurEventCB"); int32_t ret; char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {}; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize); if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { return; } std::string id(idStr); auto render = PluginRender::GetInstance(id); if (render) { // Encapsulate the OnBlurEvent method. render->OnBlurEvent(component, window); } } // Define the OnKeyEventCB() function, which is triggered when a key event is responded to. void OnKeyEventCB(OH_NativeXComponent *component, void *window) { OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "OnKeyEventCB"); int32_t ret; char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {}; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize); if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { return; } std::string id(idStr); auto render = PluginRender::GetInstance(id); if (render) { // Encapsulate the OnKeyEvent method. render->OnKeyEvent(component, window); } } // Define an OnSurfaceChanged() method. void PluginRender::OnSurfaceChanged(OH_NativeXComponent* component, void* window) { // ... std::string id(idStr); PluginRender* render = PluginRender::GetInstance(id); double offsetX; double offsetY; // Obtain the offset of the surface held by the relative to the upper left corner of the window. OH_NativeXComponent_GetXComponentOffset(component, window, &offsetX, &offsetY); OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "OH_NativeXComponent_GetXComponentOffset", "offsetX = %{public}lf, offsetY = %{public}lf", offsetX, offsetY); uint64_t width; uint64_t height; OH_NativeXComponent_GetXComponentSize(component, window, &width, &height); if (render != nullptr) { render->eglCore_->UpdateSize(width, height); } } // Define an OnTouchEvent() method. void PluginRender::OnTouchEvent(OH_NativeXComponent* component, void* window) { // ... OH_NativeXComponent_TouchEvent touchEvent; // Obtain the touch event triggered by the . OH_NativeXComponent_GetTouchEvent(component, window, &touchEvent); std::string id(idStr); PluginRender* render = PluginRender::GetInstance(id); if (render != nullptr && touchEvent.type == OH_NativeXComponent_TouchEventType::OH_NATIVEXCOMPONENT_UP) { render->eglCore_->ChangeColor(); hasChangeColor_ = 1; } float tiltX = 0.0f; float tiltY = 0.0f; OH_NativeXComponent_TouchPointToolType toolType = OH_NativeXComponent_TouchPointToolType::OH_NATIVEXCOMPONENT_TOOL_TYPE_UNKNOWN; // Obtain the tool type of the touch point. OH_NativeXComponent_GetTouchPointToolType(component, 0, &toolType); // Obtain the tilt angle of the touch point relative to the x-axis. OH_NativeXComponent_GetTouchPointTiltX(component, 0, &tiltX); // Obtain the tilt angle of the touch point relative to the y-axis. OH_NativeXComponent_GetTouchPointTiltY(component, 0, &tiltY); OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "OnTouchEvent", "touch info: toolType = %{public}d, tiltX = %{public}lf, tiltY = %{public}lf", toolType, tiltX, tiltY); } // Define an OnMouseEvent() method. void PluginRender::OnMouseEvent(OH_NativeXComponent *component, void *window) { OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "OnMouseEvent"); OH_NativeXComponent_MouseEvent mouseEvent; // Obtain the mouse event triggered by the . int32_t ret = OH_NativeXComponent_GetMouseEvent(component, window, &mouseEvent); if (ret == OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "MouseEvent Info: x = %{public}f, y = %{public}f, action = %{public}d, button = %{public}d", mouseEvent.x, mouseEvent.y, mouseEvent.action, mouseEvent.button); } else { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "GetMouseEvent error"); } } // Define an OnMouseEvent() method. void PluginRender::OnKeyEvent(OH_NativeXComponent *component, void *window) { OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "OnKeyEvent"); OH_NativeXComponent_KeyEvent *keyEvent = nullptr; // Obtain the key event triggered by the . if (OH_NativeXComponent_GetKeyEvent(component, &keyEvent) >= 0) { OH_NativeXComponent_KeyAction action; // Obtain the action of a key event. OH_NativeXComponent_GetKeyEventAction(keyEvent, &action); OH_NativeXComponent_KeyCode code; // Obtain the key code value of a key event. OH_NativeXComponent_GetKeyEventCode(keyEvent, &code); OH_NativeXComponent_EventSourceType sourceType; // Obtain the input source type of a key event. OH_NativeXComponent_GetKeyEventSourceType(keyEvent, &sourceType); int64_t deviceId; // Obtain the device ID of a key event. OH_NativeXComponent_GetKeyEventDeviceId(keyEvent, &deviceId); int64_t timeStamp; // Obtain the timestamp of a key event. OH_NativeXComponent_GetKeyEventTimestamp(keyEvent, &timeStamp); OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "KeyEvent Info: action=%{public}d, code=%{public}d, sourceType=%{public}d, deviceId=%{public}ld, timeStamp=%{public}ld", action, code, sourceType, deviceId, timeStamp); } else { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "GetKeyEvent error"); } } ``` (2) Register the **\** event callback and call the method defined in step 3.1 when the **\** event is triggered. ```c++ void PluginRender::RegisterCallback(OH_NativeXComponent *nativeXComponent) { // Set the callback of the component creation event. When the component is created, related operations are triggered to initialize the environment and draw the background. renderCallback_.OnSurfaceCreated = OnSurfaceCreatedCB; // Set the callback of the component change event. When the component changes, related operations are triggered. renderCallback_.OnSurfaceChanged = OnSurfaceChangedCB; // Set the callback of the component destruction event. When the component is destroyed, related operations are triggered to release the requested resources. renderCallback_.OnSurfaceDestroyed = OnSurfaceDestroyedCB; // Set the callback of the touch event. When the touch event is triggered, the N-API is called to call the original C++ method. renderCallback_.DispatchTouchEvent = DispatchTouchEventCB; // Register OH_NativeXComponent_Callback with NativeXComponent. OH_NativeXComponent_RegisterCallback(nativeXComponent, &renderCallback_); // Set the callback of the mouse event. When the event is triggered, the N-API is called to call the original C++ method. mouseCallback_.DispatchMouseEvent = DispatchMouseEventCB; // Set the callback of the mouse event. When the event is triggered, the N-API is called to call the original C++ method. mouseCallback_.DispatchHoverEvent = DispatchHoverEventCB; // Register OH_NativeXComponent_MouseEvent_Callback with NativeXComponent. OH_NativeXComponent_RegisterMouseEventCallback(nativeXComponent, &mouseCallback_); // Register the OnFocusEventCB method with NativeXComponent. OH_NativeXComponent_RegisterFocusEventCallback(nativeXComponent, OnFocusEventCB); // Register the OnKeyEventCB method with NativeXComponent. OH_NativeXComponent_RegisterKeyEventCallback(nativeXComponent, OnKeyEventCB); // Register the OnBlurEventCB method with NativeXComponent. OH_NativeXComponent_RegisterBlurEventCallback(nativeXComponent, OnBlurEventCB); } ``` (3) Define the **NapiDrawPattern** method, which will be called by the **drawPattern()** method exposed to the JS side. ```c++ napi_value PluginRender::NapiDrawPattern(napi_env env, napi_callback_info info) { // ... // Obtain environment variables. napi_value thisArg; if (napi_get_cb_info(env, info, nullptr, nullptr, &thisArg, nullptr) != napi_ok) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "NapiDrawPattern: napi_get_cb_info fail"); return nullptr; } // Obtain the XComponent instance from the environment variables. napi_value exportInstance; if (napi_get_named_property(env, thisArg, OH_NATIVE_XCOMPONENT_OBJ, &exportInstance) != napi_ok) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "NapiDrawPattern: napi_get_named_property fail"); return nullptr; } // Use napi_unwrap to obtain the pointer to the XComponent instance. OH_NativeXComponent *nativeXComponent = nullptr; if (napi_unwrap(env, exportInstance, reinterpret_cast(&nativeXComponent)) != napi_ok) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "NapiDrawPattern: napi_unwrap fail"); return nullptr; } // Obtain the ID of the XComponent instance. char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' }; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; if (OH_NativeXComponent_GetXComponentId(nativeXComponent, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "NapiDrawPattern: Unable to get XComponent id"); return nullptr; } std::string id(idStr); PluginRender *render = PluginRender::GetInstance(id); if (render) { // Call the drawing method. render->eglCore_->Draw(); OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "render->eglCore_->Draw() executed"); } return nullptr; } ``` 4. Initialize the environment, including initializing the available EGLDisplay, determining the available surface configuration, creating the rendering area surface, and creating and associating the context. ```c++ void EGLCore::UpdateSize(int width, int height) { width_ = width; height_ = height; if (width_ > 0) { // Calculate the width percentage of the drawn rectangle. width_Percent_ = FIFTY_PERCENT * height_ / width_; } } bool EGLCore::EglContextInit(void *window, int width, int height) { // ... UpdateSize(width, height); eglWindow_ = static_cast(window); // Initialize the display. eglDisplay_ = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (eglDisplay_ == EGL_NO_DISPLAY) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglGetDisplay: unable to get EGL display"); return false; } // Initialize the EGL. EGLint majorVersion; EGLint minorVersion; if (!eglInitialize(eglDisplay_, &majorVersion, &minorVersion)) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglInitialize: unable to get initialize EGL display"); return false; } // Select the configuration. const EGLint maxConfigSize = 1; EGLint numConfigs; if (!eglChooseConfig(eglDisplay_, ATTRIB_LIST, &eglConfig_, maxConfigSize, &numConfigs)) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglChooseConfig: unable to choose configs"); return false; } // Create an environment. return CreateEnvironment(); } ``` ```c++ bool EGLCore::CreateEnvironment() { // ... // Create a surface. eglSurface_ = eglCreateWindowSurface(eglDisplay_, eglConfig_, eglWindow_, NULL); // ... // Create a context. eglContext_ = eglCreateContext(eglDisplay_, eglConfig_, EGL_NO_CONTEXT, CONTEXT_ATTRIBS); if (!eglMakeCurrent(eglDisplay_, eglSurface_, eglSurface_, eglContext_)) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglMakeCurrent failed"); return false; } // Create a program. program_ = CreateProgram(VERTEX_SHADER, FRAGMENT_SHADER); if (program_ == PROGRAM_ERROR) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "CreateProgram: unable to create program"); return false; } return true; } ``` 5. Implement the rendering function. (1) Draw the background. ```c++ // Draw the background color #f4f4f4. const GLfloat BACKGROUND_COLOR[] = { 244.0f / 255, 244.0f / 255, 244.0f / 255, 1.0f }; // Draw the background vertex. const GLfloat BACKGROUND_RECTANGLE_VERTICES[] = { -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f }; ``` ```c++ // Draw the background color. void EGLCore::Background() { GLint position = PrepareDraw(); if (position == POSITION_ERROR) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Background get position failed"); return; } if (!ExecuteDraw(position, BACKGROUND_COLOR, BACKGROUND_RECTANGLE_VERTICES, sizeof(BACKGROUND_RECTANGLE_VERTICES))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Background execute draw failed"); return; } if (!FinishDraw()) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Background FinishDraw failed"); return; } } // Prepare for drawing and obtain the value of position. When the creation is successful, the value of position starts from 0. GLint EGLCore::PrepareDraw() { if ((eglDisplay_ == nullptr) || (eglSurface_ == nullptr) || (eglContext_ == nullptr) || (!eglMakeCurrent(eglDisplay_, eglSurface_, eglSurface_, eglContext_))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "PrepareDraw: param error"); return POSITION_ERROR; } glViewport(DEFAULT_X_POSITION, DEFAULT_Y_POSITION, width_, height_); glClearColor(GL_RED_DEFAULT, GL_GREEN_DEFAULT, GL_BLUE_DEFAULT, GL_ALPHA_DEFAULT); glClear(GL_COLOR_BUFFER_BIT); glUseProgram(program_); return glGetAttribLocation(program_, POSITION_NAME); } // Draw a specified color in the specified area based on the input parameters. bool EGLCore::ExecuteDraw(GLint position, const GLfloat *color, const GLfloat shapeVertices[], unsigned long vertSize) { if ((position > 0) || (color == nullptr) || (vertSize / sizeof(shapeVertices[0]) != SHAPE_VERTICES_SIZE)) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ExecuteDraw: param error"); return false; } glVertexAttribPointer(position, POINTER_SIZE, GL_FLOAT, GL_FALSE, 0, shapeVertices); glEnableVertexAttribArray(position); glVertexAttrib4fv(1, color); glDrawArrays(GL_TRIANGLE_FAN, 0, TRIANGLE_FAN_SIZE); glDisableVertexAttribArray(position); return true; } // End the drawing operation. bool EGLCore::FinishDraw() { // Forcibly refresh the buffer. glFlush(); glFinish(); return eglSwapBuffers(eglDisplay_, eglSurface_); } ``` (2) Draw the shape. ```c++ void EGLCore::Draw() { flag_ = false; OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "EGLCore", "Draw"); GLint position = PrepareDraw(); if (position == POSITION_ERROR) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw get position failed"); return; } // Draw the background. if (!ExecuteDraw(position, BACKGROUND_COLOR, BACKGROUND_RECTANGLE_VERTICES, sizeof(BACKGROUND_RECTANGLE_VERTICES))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw background failed"); return; } // Divide the pentagon into five quadrilaterals and calculate the four vertices of one of the quadrilaterals. GLfloat rotateX = 0; GLfloat rotateY = FIFTY_PERCENT * height_; GLfloat centerX = 0; GLfloat centerY = -rotateY * (M_PI / 180 * 54) * (M_PI / 180 * 18); GLfloat leftX = -rotateY * (M_PI / 180 * 18); GLfloat leftY = 0; GLfloat rightX = rotateY * (M_PI / 180 * 18); GLfloat rightY = 0; // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area. const GLfloat shapeVertices[] = { centerX / width_, centerY / height_, leftX / width_, leftY / height_, rotateX / width_, rotateY / height_, rightX / width_, rightY / height_ }; if (!ExecuteDrawStar(position, DRAW_COLOR, shapeVertices, sizeof(shapeVertices))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed"); return; } GLfloat rad = M_PI / 180 * 72; for (int i = 0; i < 4; ++i) { // Obtain the vertices of the other four quadrilaterals through rotation. rotate2d(centerX, centerY, &rotateX, &rotateY,rad); rotate2d(centerX, centerY, &leftX, &leftY,rad); rotate2d(centerX, centerY, &rightX, &rightY,rad); // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area. const GLfloat shapeVertices[] = { centerX / width_, centerY / height_, leftX / width_, leftY / height_, rotateX / width_, rotateY / height_, rightX / width_, rightY / height_ }; // Draw the shape. if (!ExecuteDrawStar(position, DRAW_COLOR, shapeVertices, sizeof(shapeVertices))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed"); return; } } // End drawing. if (!FinishDraw()) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw FinishDraw failed"); return; } flag_ = true; } ``` (3) Change the colors, by drawing a new shape with the same size but different colors and replacing the original shape with the new shape. ```c++ void EGLCore::ChangeColor() { if (!flag_) { return; } OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor"); GLint position = PrepareDraw(); if (position == POSITION_ERROR) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor get position failed"); return; } // Draw the background. if (!ExecuteDraw(position, BACKGROUND_COLOR, BACKGROUND_RECTANGLE_VERTICES, sizeof(BACKGROUND_RECTANGLE_VERTICES))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor execute draw background failed"); return; } // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area. GLfloat rotateX = 0; GLfloat rotateY = FIFTY_PERCENT * height_; GLfloat centerX = 0; GLfloat centerY = -rotateY * (M_PI / 180 * 54) * (M_PI / 180 * 18); GLfloat leftX = -rotateY * (M_PI / 180 * 18); GLfloat leftY = 0; GLfloat rightX = rotateY * (M_PI / 180 * 18); GLfloat rightY = 0; // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area. const GLfloat shapeVertices[] = { centerX / width_, centerY / height_, leftX / width_, leftY / height_, rotateX / width_, rotateY / height_, rightX / width_, rightY / height_ }; // Use the new colors for drawing. if (!ExecuteDrawStar2(position, CHANGE_COLOR, shapeVertices, sizeof(shapeVertices))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed"); return; } GLfloat rad = M_PI / 180 * 72; for (int i = 0; i < 4; ++i) { // Obtain the vertices of the other four quadrilaterals through rotation. rotate2d(centerX, centerY, &rotateX, &rotateY,rad); rotate2d(centerX, centerY, &leftX, &leftY,rad); rotate2d(centerX, centerY, &rightX, &rightY,rad); // Determine the vertices for drawing the quadrilateral, which are represented by the percentage of the drawing area. const GLfloat shapeVertices[] = { centerX / width_, centerY / height_, leftX / width_, leftY / height_, rotateX / width_, rotateY / height_, rightX / width_, rightY / height_ }; // Use the new colors for drawing. if (!ExecuteDrawStar2(position, CHANGE_COLOR, shapeVertices, sizeof(shapeVertices))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed"); return; } } // End drawing. if (!FinishDraw()) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor FinishDraw failed"); } } ``` 6. Release related resources. (1) Create the **Release()** method in the **EGLCore** class to release the resources requested during environment initialization, including the window display, rendering area surface, and environment context. ```c++ void EGLCore::Release() { // Release the surface. if ((eglDisplay_ == nullptr) || (eglSurface_ == nullptr) || (!eglDestroySurface(eglDisplay_, eglSurface_))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Release eglDestroySurface failed"); } // Release the context. if ((eglDisplay_ == nullptr) || (eglContext_ == nullptr) || (!eglDestroyContext(eglDisplay_, eglContext_))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Release eglDestroyContext failed"); } // Release the display. if ((eglDisplay_ == nullptr) || (!eglTerminate(eglDisplay_))) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Release eglTerminate failed"); } } ``` (2) Add the **Release()** method to the **PluginRender** class to release the **EGLCore** and **PluginRender** instances. ```c++ void PluginRender::Release(std::string &id) { PluginRender *render = PluginRender::GetInstance(id); if (render != nullptr) { render->eglCore_->Release(); delete render->eglCore_; render->eglCore_ = nullptr; delete render; render = nullptr; instance_.erase(instance_.find(id)); } } ``` 7. Use the CMake toolchain to compile the C++ source code into a dynamic link library (DLL) file. ```CMake # Set the minimum CMake version. cmake_minimum_required(VERSION 3.4.1) # Project name project(XComponent) set(NATIVERENDER_ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR}) add_definitions(-DOHOS_PLATFORM) # Set the header file search directory. include_directories( ${NATIVERENDER_ROOT_PATH} ${NATIVERENDER_ROOT_PATH}/include ) # Add the **nativerender** dynamic library, with the **libnativerender.so** library file. Add the .cpp file. add_library(nativerender SHARED render/egl_core.cpp render/plugin_render.cpp manager/plugin_manager.cpp napi_init.cpp ) find_library( EGL-lib EGL ) find_library( GLES-lib GLESv3 ) find_library( hilog-lib hilog_ndk.z ) find_library( libace-lib ace_ndk.z ) find_library( libnapi-lib ace_napi.z ) find_library( libuv-lib uv ) # Add the library to be linked. target_link_libraries(nativerender PUBLIC ${EGL-lib} ${GLES-lib} ${hilog-lib} ${libace-lib} ${libnapi-lib} ${libuv-lib}) ``` ## -