- 23 2月, 2018 1 次提交
-
-
由 Michael Ellerman 提交于
Some versions of firmware will have a setting that can be configured to disable the RFI flush, add support for it. Fixes: 6e032b35 ("powerpc/powernv: Check device-tree for RFI flush settings") Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 10 1月, 2018 1 次提交
-
-
由 Oliver O'Halloran 提交于
New device-tree properties are available which tell the hypervisor settings related to the RFI flush. Use them to determine the appropriate flush instruction to use, and whether the flush is required. Signed-off-by: NOliver O'Halloran <oohall@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 07 11月, 2017 1 次提交
-
-
由 Shriya 提交于
The call to /proc/cpuinfo in turn calls cpufreq_quick_get() which returns the last frequency requested by the kernel, but may not reflect the actual frequency the processor is running at. This patch makes a call to cpufreq_get() instead which returns the current frequency reported by the hardware. Fixes: fb5153d0 ("powerpc: powernv: Implement ppc_md.get_proc_freq()") Signed-off-by: NShriya <shriyak@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 21 10月, 2017 1 次提交
-
-
由 Michael Ellerman 提交于
Some Power9 revisions can run in a mode where TM operates without suspended state. If we find ourself on a CPU that might be in this mode, we query OPAL to check, and if so we reenable TM in CPU features, and enable a new user feature to signal to userspace that we are in this mode. We do not enable the "normal" user feature, PPC_FEATURE2_HTM, but we do enable PPC_FEATURE2_HTM_NOSC because that indicates to userspace that the kernel will abort transactions on syscall entry, which is true regardless of the suspend mode. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 06 10月, 2017 1 次提交
-
-
由 Anton Blanchard 提交于
Memory hot unplug on PowerNV radix hosts is broken. Our memory block size is 256MB but since we map the linear region with very large pages, each pte we tear down maps 1GB. A hot unplug of one 256MB memory block results in 768MB of memory getting unintentionally unmapped. At this point we are likely to oops. Fix this by increasing our memory block size to 1GB on PowerNV radix hosts. Fixes: 4b5d62ca ("powerpc/mm: add radix__remove_section_mapping()") Cc: stable@vger.kernel.org # v4.11+ Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 04 10月, 2017 1 次提交
-
-
由 Nicholas Piggin 提交于
This allows MSR[EE]=0 lockups to be detected on an OPAL (bare metal) system similarly to the hcall NMI IPI on pseries guests, when the platform/firmware supports it. This is an example of CPU10 spinning with interrupts hard disabled: Watchdog CPU:32 detected Hard LOCKUP other CPUS:10 Watchdog CPU:10 Hard LOCKUP CPU: 10 PID: 4410 Comm: bash Not tainted 4.13.0-rc7-00074-ge89ce1f8-dirty #34 task: c0000003a82b4400 task.stack: c0000003af55c000 NIP: c0000000000a7b38 LR: c000000000659044 CTR: c0000000000a7b00 REGS: c00000000fd23d80 TRAP: 0100 Not tainted (4.13.0-rc7-00074-ge89ce1f8-dirty) MSR: 90000000000c1033 <SF,HV,ME,IR,DR,RI,LE> CR: 28422222 XER: 20000000 CFAR: c0000000000a7b38 SOFTE: 0 GPR00: c000000000659044 c0000003af55fbb0 c000000001072a00 0000000000000078 GPR04: c0000003c81b5c80 c0000003c81cc7e8 9000000000009033 0000000000000000 GPR08: 0000000000000000 c0000000000a7b00 0000000000000001 9000000000001003 GPR12: c0000000000a7b00 c00000000fd83200 0000000010180df8 0000000010189e60 GPR16: 0000000010189ed8 0000000010151270 000000001018bd88 000000001018de78 GPR20: 00000000370a0668 0000000000000001 00000000101645e0 0000000010163c10 GPR24: 00007fffd14d6294 00007fffd14d6290 c000000000fba6f0 0000000000000004 GPR28: c000000000f351d8 0000000000000078 c000000000f4095c 0000000000000000 NIP [c0000000000a7b38] sysrq_handle_xmon+0x38/0x40 LR [c000000000659044] __handle_sysrq+0xe4/0x270 Call Trace: [c0000003af55fbd0] [c000000000659044] __handle_sysrq+0xe4/0x270 [c0000003af55fc70] [c000000000659810] write_sysrq_trigger+0x70/0xa0 [c0000003af55fca0] [c0000000003da650] proc_reg_write+0xb0/0x110 [c0000003af55fcf0] [c0000000003423bc] __vfs_write+0x6c/0x1b0 [c0000003af55fd90] [c000000000344398] vfs_write+0xd8/0x240 [c0000003af55fde0] [c00000000034632c] SyS_write+0x6c/0x110 [c0000003af55fe30] [c00000000000b220] system_call+0x58/0x6c Signed-off-by: NNicholas Piggin <npiggin@gmail.com> [mpe: Use kernel types for opal_signal_system_reset()] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 10 7月, 2017 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
That will allow OPAL to configure the CPU in an optimal way. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 10 4月, 2017 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
The XIVE interrupt controller is the new interrupt controller found in POWER9. It supports advanced virtualization capabilities among other things. Currently we use a set of firmware calls that simulate the old "XICS" interrupt controller but this is fairly inefficient. This adds the framework for using XIVE along with a native backend which OPAL for configuration. Later, a backend allowing the use in a KVM or PowerVM guest will also be provided. This disables some fast path for interrupts in KVM when XIVE is enabled as these rely on the firmware emulation code which is no longer available when the XIVE is used natively by Linux. A latter patch will make KVM also directly exploit the XIVE, thus recovering the lost performance (and more). Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> [mpe: Fixup pr_xxx("XIVE:"...), don't split pr_xxx() strings, tweak Kconfig so XIVE_NATIVE selects XIVE and depends on POWERNV, fix build errors when SMP=n, fold in fixes from Ben: Don't call cpu_online() on an invalid CPU number Fix irq target selection returning out of bounds cpu# Extra sanity checks on cpu numbers ] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 31 3月, 2017 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
With this we have on powernv and pseries /proc/cpuinfo reporting timebase : 512000000 platform : PowerNV model : 8247-22L machine : PowerNV 8247-22L firmware : OPAL MMU : Hash Reviewed-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 30 11月, 2016 1 次提交
-
-
由 Thiago Jung Bauermann 提交于
Commit 2965faa5 ("kexec: split kexec_load syscall from kexec core code") introduced CONFIG_KEXEC_CORE so that CONFIG_KEXEC means whether the kexec_load system call should be compiled-in and CONFIG_KEXEC_FILE means whether the kexec_file_load system call should be compiled-in. These options can be set independently from each other. Since until now powerpc only supported kexec_load, CONFIG_KEXEC and CONFIG_KEXEC_CORE were synonyms. That is not the case anymore, so we need to make a distinction. Almost all places where CONFIG_KEXEC was being used should be using CONFIG_KEXEC_CORE instead, since kexec_file_load also needs that code compiled in. Signed-off-by: NThiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 21 7月, 2016 3 次提交
-
-
由 Benjamin Herrenschmidt 提交于
It is now called right after platform probe, so the probe function can just do the job. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Benjamin Herrenschmidt 提交于
We no long need the machine type that early, so we can move probe_machine() to after the device-tree has been expanded. This will allow further consolidation. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Benjamin Herrenschmidt 提交于
We move it into early_mmu_init() based on firmware features. For PS3, we have to move the setting of these into early_init_devtree(). Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 23 6月, 2016 1 次提交
-
-
由 Shreyas B. Prabhu 提交于
pnv_init_idle_states() discovers supported idle states from the device tree and does the required initialization. Set power_save function pointer only after this initialization is done Otherwise on machines which don't support nap, eg. Power9, the kernel will crash when it tries to nap. Reviewed-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 01 5月, 2016 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
This adds routines for early setup for radix. We use device tree property "ibm,processor-radix-AP-encodings" to find supported page sizes. If we don't find the above we consider 64K and 4K as supported page sizes. We do map vmemap using 2M page size if we can. The linear mapping is done such that we use required page size for that range. For example memory of 3.5G is mapped such that we use 1G mapping till 3G range and use 2M mapping for the rest. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 17 12月, 2015 2 次提交
-
-
由 Stewart Smith 提交于
Long ago, only in the lab, there was OPALv1 and OPALv2. Now there is just OPALv3, with nobody ever expecting anything on pre-OPALv3 to be cared about or supported by mainline kernels. So, let's remove FW_FEATURE_OPALv3 and instead use FW_FEATURE_OPAL exclusively. Signed-off-by: NStewart Smith <stewart@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Stewart Smith 提交于
OPALv2 only ever existed in the lab and didn't escape to the world. All OPAL systems in the wild are OPALv3. The probability of there being an OPALv2 system still powered on anywhere inside IBM is approximately zero, let alone anyone expecting to run mainline kernels. So, start to remove references to OPALv2. Signed-off-by: NStewart Smith <stewart@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 06 10月, 2015 1 次提交
-
-
由 Samuel Mendoza-Jonas 提交于
Always include a timeout when waiting for secondary cpus to enter OPAL in the kexec path, rather than only when crashing. Signed-off-by: NSamuel Mendoza-Jonas <sam.mj@au1.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 20 8月, 2015 1 次提交
-
-
由 Samuel Mendoza-Jonas 提交于
On powernv secondary cpus are returned to OPAL, and will then enter the target kernel in big-endian. However if it is set the HILE bit will persist, causing the first exception in the target kernel to be delivered in litte-endian regardless of the current endianness. If running on top of OPAL make sure the HILE bit is reset once we've finished waiting for all of the secondaries to be returned to OPAL. Signed-off-by: NSamuel Mendoza-Jonas <sam.mj@au1.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 18 8月, 2015 1 次提交
-
-
由 Andrew Donnellan 提交于
Simplify the dma_get_required_mask call chain by moving it from pnv_phb to pci_controller_ops, similar to commit 763d2d8d ("powerpc/powernv: Move dma_set_mask from pnv_phb to pci_controller_ops"). Previous call chain: 0) call dma_get_required_mask() (kernel/dma.c) 1) call ppc_md.dma_get_required_mask, if it exists. On powernv, that points to pnv_dma_get_required_mask() (platforms/powernv/setup.c) 2) device is PCI, therefore call pnv_pci_dma_get_required_mask() (platforms/powernv/pci.c) 3) call phb->dma_get_required_mask if it exists 4) it only exists in the ioda case, where it points to pnv_pci_ioda_dma_get_required_mask() (platforms/powernv/pci-ioda.c) New call chain: 0) call dma_get_required_mask() (kernel/dma.c) 1) device is PCI, therefore call pci_controller_ops.dma_get_required_mask if it exists 2) in the ioda case, that points to pnv_pci_ioda_dma_get_required_mask() (platforms/powernv/pci-ioda.c) In the p5ioc2 case, the call chain remains the same - dma_get_required_mask() does not find either a ppc_md call or pci_controller_ops call, so it calls __dma_get_required_mask(). Signed-off-by: NAndrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: NDaniel Axtens <dja@axtens.net> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 02 6月, 2015 1 次提交
-
-
由 Daniel Axtens 提交于
Previously, dma_set_mask() on powernv was convoluted: 0) Call dma_set_mask() (a/p/kernel/dma.c) 1) In dma_set_mask(), ppc_md.dma_set_mask() exists, so call it. 2) On powernv, that function pointer is pnv_dma_set_mask(). In pnv_dma_set_mask(), the device is pci, so call pnv_pci_dma_set_mask(). 3) In pnv_pci_dma_set_mask(), call pnv_phb->set_dma_mask() if it exists. 4) It only exists in the ioda case, where it points to pnv_pci_ioda_dma_set_mask(), which is the final function. So the call chain is: dma_set_mask() -> pnv_dma_set_mask() -> pnv_pci_dma_set_mask() -> pnv_pci_ioda_dma_set_mask() Both ppc_md and pnv_phb function pointers are used. Rip out the ppc_md call, pnv_dma_set_mask() and pnv_pci_dma_set_mask(). Instead: 0) Call dma_set_mask() (a/p/kernel/dma.c) 1) In dma_set_mask(), the device is pci, and pci_controller_ops.dma_set_mask() exists, so call pci_controller_ops.dma_set_mask() 2) In the ioda case, that points to pnv_pci_ioda_dma_set_mask(). The new call chain is dma_set_mask() -> pnv_pci_ioda_dma_set_mask() Now only the pci_controller_ops function pointer is used. The fallback paths for p5ioc2 are the same. Previously, pnv_pci_dma_set_mask() would find no pnv_phb->set_dma_mask() function, to it would call __set_dma_mask(). Now, dma_set_mask() finds no ppc_md call or pci_controller_ops call, so it calls __set_dma_mask(). Signed-off-by: NDaniel Axtens <dja@axtens.net> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 22 5月, 2015 2 次提交
-
-
由 Alistair Popple 提交于
All users of the old opal events notifier have been converted over to the irq domain so remove the event notifier functions. Signed-off-by: NAlistair Popple <alistair@popple.id.au> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Shreyas B. Prabhu 提交于
This is a cleanup patch; doesn't change any functionality. Moves all cpuidle related code from setup.c to a new file. Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Reviewed-by: NPreeti U Murthy <preeti@linux.vnet.ibm.com> [mpe: Fix the SMP=n build by including asm/smp.h in idle.c] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 07 4月, 2015 1 次提交
-
-
由 Michael Ellerman 提交于
The powernv code has some conditional support for running on bare metal machines that have no OPAL firmware, but provide RTAS. No released machines ever supported that, and even in the lab it was just a transitional hack in the days when OPAL was still being developed. So remove the code. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: NStewart Smith <stewart@linux.vnet.ibm.com>
-
- 26 3月, 2015 1 次提交
-
-
由 Preeti U Murthy 提交于
We currently read the information about idle states from the device tree, so as to find out the CPU idle states supported by the platform. Use the of_property_read/count_xxx() APIs, which handle endian conversions for us, and mean we don't need any endian annotations in the code. Signed-off-by: NPreeti U Murthy <preeti@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 22 1月, 2015 1 次提交
-
-
由 Shreyas B. Prabhu 提交于
LPCR_PECE1 bit controls whether decrementer interrupts are allowed to cause exit from power-saving mode. While waking up from winkle, restoring LPCR with LPCR_PECE1 set (i.e Decrementer interrupts allowed) can cause issue in the following scenario: - All the threads in a core are offlined. The core enters deep winkle. - Spurious interrupt wakes up a thread in the core. Here LPCR is restored with LPCR_PECE1 bit set. - Since it was a spurious interrupt on a offline thread, the thread clears the interrupt and goes back to winkle. - Here before the thread executes winkle and puts the core into deep winkle, if a decrementer interrupt occurs on any of the sibling threads in the core that thread wakes up. - Since in offline loop we are flushing interrupt only in case of external interrupt, the decrementer interrupt does not get flushed. So at this stage the thread is stuck in this is loop of waking up at 0x100 due to decrementer interrupt, not flushing the interrupt as only external interrupts get flushed, entering winkle, waking up at 0x100 again. Fix this by programming PORE to restore LPCR with LPCR_PECE1 bit cleared when waking up from winkle. Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 15 12月, 2014 3 次提交
-
-
由 Shreyas B. Prabhu 提交于
Winkle is a deep idle state supported in power8 chips. A core enters winkle when all the threads of the core enter winkle. In this state power supply to the entire chiplet i.e core, private L2 and private L3 is turned off. As a result it gives higher powersavings compared to sleep. But entering winkle results in a total hypervisor state loss. Hence the hypervisor context has to be preserved before entering winkle and restored upon wake up. Power-on Reset Engine (PORE) is a dedicated engine which is responsible for powering on the chiplet during wake up. It can be programmed to restore the register contests of a few specific registers. This patch uses PORE to restore register state wherever possible and uses stack to save and restore rest of the necessary registers. With hypervisor state restore things fall under three categories- per-core state, per-subcore state and per-thread state. To manage this, extend the infrastructure introduced for sleep. Mainly we add a paca variable subcore_sibling_mask. Using this and the core_idle_state we can distingush first thread in core and subcore. Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Shreyas B. Prabhu 提交于
Deep idle states like sleep and winkle are per core idle states. A core enters these states only when all the threads enter either the particular idle state or a deeper one. There are tasks like fastsleep hardware bug workaround and hypervisor core state save which have to be done only by the last thread of the core entering deep idle state and similarly tasks like timebase resync, hypervisor core register restore that have to be done only by the first thread waking up from these state. The current idle state management does not have a way to distinguish the first/last thread of the core waking/entering idle states. Tasks like timebase resync are done for all the threads. This is not only is suboptimal, but can cause functionality issues when subcores and kvm is involved. This patch adds the necessary infrastructure to track idle states of threads in a per-core structure. It uses this info to perform tasks like fastsleep workaround and timebase resync only once per core. Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Originally-by: NPreeti U. Murthy <preeti@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: linux-pm@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Shreyas B. Prabhu 提交于
The secondary threads should enter deep idle states so as to gain maximum powersavings when the entire core is offline. To do so the offline path must be made aware of the available deepest idle state. Hence probe the device tree for the possible idle states in powernv core code and expose the deepest idle state through flags. Since the device tree is probed by the cpuidle driver as well, move the parameters required to discover the idle states into an appropriate common place to both the driver and the powernv core code. Another point is that fastsleep idle state may require workarounds in the kernel to function properly. This workaround is introduced in the subsequent patches. However neither the cpuidle driver or the hotplug path need be bothered about this workaround. They will be taken care of by the core powernv code. Originally-by: NSrivatsa S. Bhat <srivatsa@mit.edu> Signed-off-by: NPreeti U. Murthy <preeti@linux.vnet.ibm.com> Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Reviewed-by: NPaul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: linux-pm@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 17 11月, 2014 1 次提交
-
-
由 Neelesh Gupta 提交于
The patch implements the OPAL rtc driver that binds with the rtc driver subsystem. The driver uses the platform device infrastructure to probe the rtc device and register it to rtc class framework. The 'wakeup' is supported depending upon the property 'has-tpo' present in the OF node. It provides a way to load the generic rtc driver in in the absence of an OPAL driver. The patch also moves the existing OPAL rtc get/set time interfaces to the new driver and exposes the necessary OPAL calls using EXPORT_SYMBOL_GPL. Test results: ------------- Host: [root@tul169p1 ~]# ls -l /sys/class/rtc/ total 0 lrwxrwxrwx 1 root root 0 Oct 14 03:07 rtc0 -> ../../devices/opal-rtc/rtc/rtc0 [root@tul169p1 ~]# cat /sys/devices/opal-rtc/rtc/rtc0/time 08:10:07 [root@tul169p1 ~]# echo `date '+%s' -d '+ 2 minutes'` > /sys/class/rtc/rtc0/wakealarm [root@tul169p1 ~]# cat /sys/class/rtc/rtc0/wakealarm 1413274345 [root@tul169p1 ~]# FSP: $ smgr mfgState standby $ rtim timeofday System time is valid: 2014/10/14 08:12:04.225115 $ smgr mfgState ipling $ CC: devicetree@vger.kernel.org CC: tglx@linutronix.de CC: rtc-linux@googlegroups.com CC: a.zummo@towertech.it Signed-off-by: NNeelesh Gupta <neelegup@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 03 11月, 2014 1 次提交
-
-
由 Alexander Graf 提交于
The generic Linux framework to power off the machine is a function pointer called pm_power_off. The trick about this pointer is that device drivers can potentially implement it rather than board files. Today on powerpc we set pm_power_off to invoke our generic full machine power off logic which then calls ppc_md.power_off to invoke machine specific power off. However, when we want to add a power off GPIO via the "gpio-poweroff" driver, this card house falls apart. That driver only registers itself if pm_power_off is NULL to ensure it doesn't override board specific logic. However, since we always set pm_power_off to the generic power off logic (which will just not power off the machine if no ppc_md.power_off call is implemented), we can't implement power off via the generic GPIO power off driver. To fix this up, let's get rid of the ppc_md.power_off logic and just always use pm_power_off as was intended. Then individual drivers such as the GPIO power off driver can implement power off logic via that function pointer. With this patch set applied and a few patches on top of QEMU that implement a power off GPIO on the virt e500 machine, I can successfully turn off my virtual machine after halt. Signed-off-by: NAlexander Graf <agraf@suse.de> [mpe: Squash into one patch and update changelog based on cover letter] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 30 9月, 2014 1 次提交
-
-
由 Gavin Shan 提交于
The dma_get_required_mask() function is used by some drivers to query the platform about what DMA mask is needed to cover all of memory. This is a bit of a strange semantic when we have to choose between IOMMU translation or bypass, but essentially what it means is "what DMA mask will give best performances". Currently, our IOMMU backend always returns a 32-bit mask here, we don't do anything special to it when we have bypass available. This causes some drivers to choose a 32-bit mask, thus losing the ability to use the bypass window, thinking this is more efficient. The problem was reported from the driver of following device: 0004:03:00.0 0107: 1000:0087 (rev 05) 0004:03:00.0 Serial Attached SCSI controller: LSI Logic / Symbios \ Logic SAS2308 PCI-Express Fusion-MPT SAS-2 (rev 05) This patch adds an override of that function in order to, instead, return a 64-bit mask whenever a bypass window is available in order for drivers to prefer this configuration. Reported-by: NMurali N. Iyer <mniyer@us.ibm.com> Suggested-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NGavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 25 9月, 2014 1 次提交
-
-
由 Anton Blanchard 提交于
Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 05 8月, 2014 1 次提交
-
-
由 Mahesh Salgaonkar 提交于
Handle Hypervisor Maintenance Interrupt (HMI) in Linux. This patch implements basic infrastructure to handle HMI in Linux host. The design is to invoke opal handle hmi in real mode for recovery and set irq_pending when we hit HMI. During check_irq_replay pull opal hmi event and print hmi info on console. Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 11 6月, 2014 2 次提交
-
-
由 Anton Blanchard 提交于
We've already dropped the default pseries timeout to 10s, do the same for powernv. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Shreyas B. Prabhu 提交于
Build throws following errors when CONFIG_SMP=n arch/powerpc/platforms/powernv/setup.c: In function ‘pnv_kexec_wait_secondaries_down’: arch/powerpc/platforms/powernv/setup.c:179:4: error: implicit declaration of function ‘get_hard_smp_processor_id’ rc = opal_query_cpu_status(get_hard_smp_processor_id(i), The usage of get_hard_smp_processor_id() needs the declaration from <asm/smp.h>. The file setup.c includes <linux/sched.h>, which in-turn includes <linux/smp.h>. However, <linux/smp.h> includes <asm/smp.h> only on SMP configs and hence UP builds fail. Fix this by directly including <asm/smp.h> in setup.c unconditionally. Reported-by: NGeert Uytterhoeven <geert@linux-m68k.org> Reviewed-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 05 6月, 2014 1 次提交
-
-
由 Anton Blanchard 提交于
powerpc sets a low SECTION_SIZE_BITS to accomodate small pseries boxes. We default to 16MB memory blocks, and boxes with a lot of memory end up with enormous numbers of sysfs memory nodes. Set a more reasonable default for powernv of 256MB. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 28 4月, 2014 3 次提交
-
-
由 Gautham R. Shenoy 提交于
Implement a method named pnv_get_proc_freq(unsigned int cpu) which returns the current clock rate on the 'cpu' in Hz to be reported in /proc/cpuinfo. This method uses the value reported by cpufreq when such a value is sane. Otherwise it falls back to old way of reporting the clockrate, i.e. ppc_proc_freq. Set the ppc_md.get_proc_freq() hook to pnv_get_proc_freq() on the PowerNV platform. Signed-off-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Vasant Hegde 提交于
Firmware update on PowerNV platform takes several minutes. During this time one CPU is stuck in FW and the kernel complains about "soft lockups". This patch returns all secondary CPUs to firmware before starting firmware update process. [ Reworked a bit and cleaned up -- BenH ] Signed-off-by: NVasant Hegde <hegdevasant@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Benjamin Herrenschmidt 提交于
We have a subtle race when sending CPUs back to OPAL on kexec. We mark them as "in real mode" right before we send them down. Once we've booted the new kernel, it might try to call opal_reinit_cpus() to change endianness, and that requires all CPUs to be spinning inside OPAL. However there is no synchronization here and we've observed cases where the returning CPUs hadn't established their new state inside OPAL before opal_reinit_cpus() is called, causing it to fail. The proper fix is to actually wait for them to go down all the way from the kexec'ing kernel. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-