1. 20 6月, 2011 1 次提交
  2. 27 5月, 2011 4 次提交
    • C
      arch/tile: more /proc and /sys file support · f133ecca
      Chris Metcalf 提交于
      This change introduces a few of the less controversial /proc and
      /proc/sys interfaces for tile, along with sysfs attributes for
      various things that were originally proposed as /proc/tile files.
      It also adjusts the "hardwall" proc API.
      
      Arnd Bergmann reviewed the initial arch/tile submission, which
      included a complete set of all the /proc/tile and /proc/sys/tile
      knobs that we had added in a somewhat ad hoc way during initial
      development, and provided feedback on where most of them should go.
      
      One knob turned out to be similar enough to the existing
      /proc/sys/debug/exception-trace that it was re-implemented to use
      that model instead.
      
      Another knob was /proc/tile/grid, which reported the "grid" dimensions
      of a tile chip (e.g. 8x8 processors = 64-core chip).  Arnd suggested
      looking at sysfs for that, so this change moves that information
      to a pair of sysfs attributes (chip_width and chip_height) in the
      /sys/devices/system/cpu directory.  We also put the "chip_serial"
      and "chip_revision" information from our old /proc/tile/board file
      as attributes in /sys/devices/system/cpu.
      
      Other information collected via hypervisor APIs is now placed in
      /sys/hypervisor.  We create a /sys/hypervisor/type file (holding the
      constant string "tilera") to be parallel with the Xen use of
      /sys/hypervisor/type holding "xen".  We create three top-level files,
      "version" (the hypervisor's own version), "config_version" (the
      version of the configuration file), and "hvconfig" (the contents of
      the configuration file).  The remaining information from our old
      /proc/tile/board and /proc/tile/switch files becomes an attribute
      group appearing under /sys/hypervisor/board/.
      
      Finally, after some feedback from Arnd Bergmann for the previous
      version of this patch, the /proc/tile/hardwall file is split up into
      two conceptual parts.  First, a directory /proc/tile/hardwall/ which
      contains one file per active hardwall, each file named after the
      hardwall's ID and holding a cpulist that says which cpus are enclosed by
      the hardwall.  Second, a /proc/PID file "hardwall" that is either
      empty (for non-hardwall-using processes) or contains the hardwall ID.
      
      Finally, this change pushes the /proc/sys/tile/unaligned_fixup/
      directory, with knobs controlling the kernel code for handling the
      fixup of unaligned exceptions.
      Reviewed-by: NArnd Bergmann <arnd@arndb.de>
      Signed-off-by: NChris Metcalf <cmetcalf@tilera.com>
      f133ecca
    • K
      proc: put check_mem_permission after __get_free_page in mem_write · 30cd8903
      KOSAKI Motohiro 提交于
      It whould be better if put check_mem_permission after __get_free_page in
      mem_write, to be same as function mem_read.
      
      Hugh Dickins explained the reason.
      
          check_mem_permission gets a reference to the mm.  If we __get_free_page
          after check_mem_permission, imagine what happens if the system is out
          of memory, and the mm we're looking at is selected for killing by the
          OOM killer: while we wait in __get_free_page for more memory, no memory
          is freed from the selected mm because it cannot reach exit_mmap while
          we hold that reference.
      Reported-by: NJovi Zhang <bookjovi@gmail.com>
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Acked-by: NHugh Dickins <hughd@google.com>
      Reviewed-by: NStephen Wilson <wilsons@start.ca>
      Cc: Alexey Dobriyan <adobriyan@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      30cd8903
    • A
      fs/proc: convert to kstrtoX() · 0a8cb8e3
      Alexey Dobriyan 提交于
      Convert fs/proc/ from strict_strto*() to kstrto*() functions.
      Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0a8cb8e3
    • J
      mm: extract exe_file handling from procfs · 38646013
      Jiri Slaby 提交于
      Setup and cleanup of mm_struct->exe_file is currently done in fs/proc/.
      This was because exe_file was needed only for /proc/<pid>/exe.  Since we
      will need the exe_file functionality also for core dumps (so core name can
      contain full binary path), built this functionality always into the
      kernel.
      
      To achieve that move that out of proc FS to the kernel/ where in fact it
      should belong.  By doing that we can make dup_mm_exe_file static.  Also we
      can drop linux/proc_fs.h inclusion in fs/exec.c and kernel/fork.c.
      Signed-off-by: NJiri Slaby <jslaby@suse.cz>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      38646013
  3. 11 5月, 2011 1 次提交
    • E
      ns: proc files for namespace naming policy. · 6b4e306a
      Eric W. Biederman 提交于
      Create files under /proc/<pid>/ns/ to allow controlling the
      namespaces of a process.
      
      This addresses three specific problems that can make namespaces hard to
      work with.
      - Namespaces require a dedicated process to pin them in memory.
      - It is not possible to use a namespace unless you are the child
        of the original creator.
      - Namespaces don't have names that userspace can use to talk about
        them.
      
      The namespace files under /proc/<pid>/ns/ can be opened and the
      file descriptor can be used to talk about a specific namespace, and
      to keep the specified namespace alive.
      
      A namespace can be kept alive by either holding the file descriptor
      open or bind mounting the file someplace else.  aka:
      mount --bind /proc/self/ns/net /some/filesystem/path
      mount --bind /proc/self/fd/<N> /some/filesystem/path
      
      This allows namespaces to be named with userspace policy.
      
      It requires additional support to make use of these filedescriptors
      and that will be comming in the following patches.
      Acked-by: NDaniel Lezcano <daniel.lezcano@free.fr>
      Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
      6b4e306a
  4. 19 4月, 2011 1 次提交
  5. 31 3月, 2011 1 次提交
  6. 24 3月, 2011 12 次提交
  7. 10 3月, 2011 1 次提交
  8. 14 1月, 2011 4 次提交
  9. 07 1月, 2011 4 次提交
    • N
      fs: provide rcu-walk aware permission i_ops · b74c79e9
      Nick Piggin 提交于
      Signed-off-by: NNick Piggin <npiggin@kernel.dk>
      b74c79e9
    • N
      fs: rcu-walk aware d_revalidate method · 34286d66
      Nick Piggin 提交于
      Require filesystems be aware of .d_revalidate being called in rcu-walk
      mode (nd->flags & LOOKUP_RCU). For now do a simple push down, returning
      -ECHILD from all implementations.
      Signed-off-by: NNick Piggin <npiggin@kernel.dk>
      34286d66
    • N
      fs: dcache reduce branches in lookup path · fb045adb
      Nick Piggin 提交于
      Reduce some branches and memory accesses in dcache lookup by adding dentry
      flags to indicate common d_ops are set, rather than having to check them.
      This saves a pointer memory access (dentry->d_op) in common path lookup
      situations, and saves another pointer load and branch in cases where we
      have d_op but not the particular operation.
      
      Patched with:
      
      git grep -E '[.>]([[:space:]])*d_op([[:space:]])*=' | xargs sed -e 's/\([^\t ]*\)->d_op = \(.*\);/d_set_d_op(\1, \2);/' -e 's/\([^\t ]*\)\.d_op = \(.*\);/d_set_d_op(\&\1, \2);/' -i
      Signed-off-by: NNick Piggin <npiggin@kernel.dk>
      fb045adb
    • N
      fs: change d_delete semantics · fe15ce44
      Nick Piggin 提交于
      Change d_delete from a dentry deletion notification to a dentry caching
      advise, more like ->drop_inode. Require it to be constant and idempotent,
      and not take d_lock. This is how all existing filesystems use the callback
      anyway.
      
      This makes fine grained dentry locking of dput and dentry lru scanning
      much simpler.
      Signed-off-by: NNick Piggin <npiggin@kernel.dk>
      fe15ce44
  10. 06 12月, 2010 1 次提交
    • E
      Revert "vfs: show unreachable paths in getcwd and proc" · 7b2a69ba
      Eric W. Biederman 提交于
      Because it caused a chroot ttyname regression in 2.6.36.
      
      As of 2.6.36 ttyname does not work in a chroot.  It has already been
      reported that screen breaks, and for me this breaks an automated
      distribution testsuite, that I need to preserve the ability to run the
      existing binaries on for several more years.  glibc 2.11.3 which has a
      fix for this is not an option.
      
      The root cause of this breakage is:
      
          commit 8df9d1a4
          Author: Miklos Szeredi <mszeredi@suse.cz>
          Date:   Tue Aug 10 11:41:41 2010 +0200
      
          vfs: show unreachable paths in getcwd and proc
      
          Prepend "(unreachable)" to path strings if the path is not reachable
          from the current root.
      
          Two places updated are
           - the return string from getcwd()
           - and symlinks under /proc/$PID.
      
          Other uses of d_path() are left unchanged (we know that some old
          software crashes if /proc/mounts is changed).
      Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      
      So remove the nice sounding, but ultimately ill advised change to how
      /proc/fd symlinks work.
      Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7b2a69ba
  11. 30 11月, 2010 1 次提交
    • M
      sched: Add 'autogroup' scheduling feature: automated per session task groups · 5091faa4
      Mike Galbraith 提交于
      A recurring complaint from CFS users is that parallel kbuild has
      a negative impact on desktop interactivity.  This patch
      implements an idea from Linus, to automatically create task
      groups.  Currently, only per session autogroups are implemented,
      but the patch leaves the way open for enhancement.
      
      Implementation: each task's signal struct contains an inherited
      pointer to a refcounted autogroup struct containing a task group
      pointer, the default for all tasks pointing to the
      init_task_group.  When a task calls setsid(), a new task group
      is created, the process is moved into the new task group, and a
      reference to the preveious task group is dropped.  Child
      processes inherit this task group thereafter, and increase it's
      refcount.  When the last thread of a process exits, the
      process's reference is dropped, such that when the last process
      referencing an autogroup exits, the autogroup is destroyed.
      
      At runqueue selection time, IFF a task has no cgroup assignment,
      its current autogroup is used.
      
      Autogroup bandwidth is controllable via setting it's nice level
      through the proc filesystem:
      
        cat /proc/<pid>/autogroup
      
      Displays the task's group and the group's nice level.
      
        echo <nice level> > /proc/<pid>/autogroup
      
      Sets the task group's shares to the weight of nice <level> task.
      Setting nice level is rate limited for !admin users due to the
      abuse risk of task group locking.
      
      The feature is enabled from boot by default if
      CONFIG_SCHED_AUTOGROUP=y is selected, but can be disabled via
      the boot option noautogroup, and can also be turned on/off on
      the fly via:
      
        echo [01] > /proc/sys/kernel/sched_autogroup_enabled
      
      ... which will automatically move tasks to/from the root task group.
      Signed-off-by: NMike Galbraith <efault@gmx.de>
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Markus Trippelsdorf <markus@trippelsdorf.de>
      Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Paul Turner <pjt@google.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      [ Removed the task_group_path() debug code, and fixed !EVENTFD build failure. ]
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      LKML-Reference: <1290281700.28711.9.camel@maggy.simson.net>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      5091faa4
  12. 28 10月, 2010 1 次提交
  13. 27 10月, 2010 3 次提交
  14. 26 10月, 2010 2 次提交
  15. 15 10月, 2010 1 次提交
    • A
      llseek: automatically add .llseek fop · 6038f373
      Arnd Bergmann 提交于
      All file_operations should get a .llseek operation so we can make
      nonseekable_open the default for future file operations without a
      .llseek pointer.
      
      The three cases that we can automatically detect are no_llseek, seq_lseek
      and default_llseek. For cases where we can we can automatically prove that
      the file offset is always ignored, we use noop_llseek, which maintains
      the current behavior of not returning an error from a seek.
      
      New drivers should normally not use noop_llseek but instead use no_llseek
      and call nonseekable_open at open time.  Existing drivers can be converted
      to do the same when the maintainer knows for certain that no user code
      relies on calling seek on the device file.
      
      The generated code is often incorrectly indented and right now contains
      comments that clarify for each added line why a specific variant was
      chosen. In the version that gets submitted upstream, the comments will
      be gone and I will manually fix the indentation, because there does not
      seem to be a way to do that using coccinelle.
      
      Some amount of new code is currently sitting in linux-next that should get
      the same modifications, which I will do at the end of the merge window.
      
      Many thanks to Julia Lawall for helping me learn to write a semantic
      patch that does all this.
      
      ===== begin semantic patch =====
      // This adds an llseek= method to all file operations,
      // as a preparation for making no_llseek the default.
      //
      // The rules are
      // - use no_llseek explicitly if we do nonseekable_open
      // - use seq_lseek for sequential files
      // - use default_llseek if we know we access f_pos
      // - use noop_llseek if we know we don't access f_pos,
      //   but we still want to allow users to call lseek
      //
      @ open1 exists @
      identifier nested_open;
      @@
      nested_open(...)
      {
      <+...
      nonseekable_open(...)
      ...+>
      }
      
      @ open exists@
      identifier open_f;
      identifier i, f;
      identifier open1.nested_open;
      @@
      int open_f(struct inode *i, struct file *f)
      {
      <+...
      (
      nonseekable_open(...)
      |
      nested_open(...)
      )
      ...+>
      }
      
      @ read disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      <+...
      (
         *off = E
      |
         *off += E
      |
         func(..., off, ...)
      |
         E = *off
      )
      ...+>
      }
      
      @ read_no_fpos disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ write @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      <+...
      (
        *off = E
      |
        *off += E
      |
        func(..., off, ...)
      |
        E = *off
      )
      ...+>
      }
      
      @ write_no_fpos @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ fops0 @
      identifier fops;
      @@
      struct file_operations fops = {
       ...
      };
      
      @ has_llseek depends on fops0 @
      identifier fops0.fops;
      identifier llseek_f;
      @@
      struct file_operations fops = {
      ...
       .llseek = llseek_f,
      ...
      };
      
      @ has_read depends on fops0 @
      identifier fops0.fops;
      identifier read_f;
      @@
      struct file_operations fops = {
      ...
       .read = read_f,
      ...
      };
      
      @ has_write depends on fops0 @
      identifier fops0.fops;
      identifier write_f;
      @@
      struct file_operations fops = {
      ...
       .write = write_f,
      ...
      };
      
      @ has_open depends on fops0 @
      identifier fops0.fops;
      identifier open_f;
      @@
      struct file_operations fops = {
      ...
       .open = open_f,
      ...
      };
      
      // use no_llseek if we call nonseekable_open
      ////////////////////////////////////////////
      @ nonseekable1 depends on !has_llseek && has_open @
      identifier fops0.fops;
      identifier nso ~= "nonseekable_open";
      @@
      struct file_operations fops = {
      ...  .open = nso, ...
      +.llseek = no_llseek, /* nonseekable */
      };
      
      @ nonseekable2 depends on !has_llseek @
      identifier fops0.fops;
      identifier open.open_f;
      @@
      struct file_operations fops = {
      ...  .open = open_f, ...
      +.llseek = no_llseek, /* open uses nonseekable */
      };
      
      // use seq_lseek for sequential files
      /////////////////////////////////////
      @ seq depends on !has_llseek @
      identifier fops0.fops;
      identifier sr ~= "seq_read";
      @@
      struct file_operations fops = {
      ...  .read = sr, ...
      +.llseek = seq_lseek, /* we have seq_read */
      };
      
      // use default_llseek if there is a readdir
      ///////////////////////////////////////////
      @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier readdir_e;
      @@
      // any other fop is used that changes pos
      struct file_operations fops = {
      ... .readdir = readdir_e, ...
      +.llseek = default_llseek, /* readdir is present */
      };
      
      // use default_llseek if at least one of read/write touches f_pos
      /////////////////////////////////////////////////////////////////
      @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read.read_f;
      @@
      // read fops use offset
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = default_llseek, /* read accesses f_pos */
      };
      
      @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ... .write = write_f, ...
      +	.llseek = default_llseek, /* write accesses f_pos */
      };
      
      // Use noop_llseek if neither read nor write accesses f_pos
      ///////////////////////////////////////////////////////////
      
      @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      identifier write_no_fpos.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ...
       .write = write_f,
       .read = read_f,
      ...
      +.llseek = noop_llseek, /* read and write both use no f_pos */
      };
      
      @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write_no_fpos.write_f;
      @@
      struct file_operations fops = {
      ... .write = write_f, ...
      +.llseek = noop_llseek, /* write uses no f_pos */
      };
      
      @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      @@
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = noop_llseek, /* read uses no f_pos */
      };
      
      @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      @@
      struct file_operations fops = {
      ...
      +.llseek = noop_llseek, /* no read or write fn */
      };
      ===== End semantic patch =====
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Cc: Julia Lawall <julia@diku.dk>
      Cc: Christoph Hellwig <hch@infradead.org>
      6038f373
  16. 02 10月, 2010 1 次提交
  17. 11 8月, 2010 1 次提交