- 29 6月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
Commit dead9f29 ("perf: Fix race in BPF program unregister") moved destruction of BPF program from free_event_rcu() callback to __free_event(), which is problematic if used with tail calls: if prog A is attached as trace event directly, but at the same time present in a tail call map used by another trace event program elsewhere, then we need to delay destruction via RCU grace period since it can still be in use by the program doing the tail call (the prog first needs to be dropped from the tail call map, then trace event with prog A attached destroyed, so we get immediate destruction). Fixes: dead9f29 ("perf: Fix race in BPF program unregister") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Cc: Jann Horn <jann@thejh.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 6月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
The ctx structure passed into bpf programs is different depending on bpf program type. The verifier incorrectly marked ctx->data and ctx->data_end access based on ctx offset only. That caused loads in tracing programs int bpf_prog(struct pt_regs *ctx) { .. ctx->ax .. } to be incorrectly marked as PTR_TO_PACKET which later caused verifier to reject the program that was actually valid in tracing context. Fix this by doing program type specific matching of ctx offsets. Fixes: 969bf05e ("bpf: direct packet access") Reported-by: NSasha Goldshtein <goldshtn@gmail.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 4月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK, the malicious application may overflow 32-bit bpf program refcnt. It's also possible to overflow map refcnt on 1Tb system. Impose 32k hard limit which means that the same bpf program or map cannot be shared by more than 32k processes. Fixes: 1be7f75d ("bpf: enable non-root eBPF programs") Reported-by: NJann Horn <jannh@google.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 4月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
This patch adds a new helper for cls/act programs that can push events to user space applications. For networking, this can be f.e. for sampling, debugging, logging purposes or pushing of arbitrary wake-up events. The idea is similar to a43eec30 ("bpf: introduce bpf_perf_event_output() helper") and 39111695 ("samples: bpf: add bpf_perf_event_output example"). The eBPF program utilizes a perf event array map that user space populates with fds from perf_event_open(), the eBPF program calls into the helper f.e. as skb_event_output(skb, &my_map, BPF_F_CURRENT_CPU, raw, sizeof(raw)) so that the raw data is pushed into the fd f.e. at the map index of the current CPU. User space can poll/mmap/etc on this and has a data channel for receiving events that can be post-processed. The nice thing is that since the eBPF program and user space application making use of it are tightly coupled, they can define their own arbitrary raw data format and what/when they want to push. While f.e. packet headers could be one part of the meta data that is being pushed, this is not a substitute for things like packet sockets as whole packet is not being pushed and push is only done in a single direction. Intention is more of a generically usable, efficient event pipe to applications. Workflow is that tc can pin the map and applications can attach themselves e.g. after cls/act setup to one or multiple map slots, demuxing is done by the eBPF program. Adding this facility is with minimal effort, it reuses the helper introduced in a43eec30 ("bpf: introduce bpf_perf_event_output() helper") and we get its functionality for free by overloading its BPF_FUNC_ identifier for cls/act programs, ctx is currently unused, but will be made use of in future. Example will be added to iproute2's BPF example files. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 4月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 4月, 2016 2 次提交
-
-
由 Alexei Starovoitov 提交于
during bpf program loading remember the last byte of ctx access and at the time of attaching the program to tracepoint check that the program doesn't access bytes beyond defined in tracepoint fields This also disallows access to __dynamic_array fields, but can be relaxed in the future. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
needs two wrapper functions to fetch 'struct pt_regs *' to convert tracepoint bpf context into kprobe bpf context to reuse existing helper functions Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 3月, 2016 3 次提交
-
-
由 Alexei Starovoitov 提交于
It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f6 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
If kprobe is placed on spin_unlock then calling kmalloc/kfree from bpf programs is not safe, since the following dead lock is possible: kfree->spin_lock(kmem_cache_node->lock)...spin_unlock->kprobe-> bpf_prog->map_update->kmalloc->spin_lock(of the same kmem_cache_node->lock) and deadlocks. The following solutions were considered and some implemented, but eventually discarded - kmem_cache_create for every map - add recursion check to slow-path of slub - use reserved memory in bpf_map_update for in_irq or in preempt_disabled - kmalloc via irq_work At the end pre-allocation of all map elements turned out to be the simplest solution and since the user is charged upfront for all the memory, such pre-allocation doesn't affect the user space visible behavior. Since it's impossible to tell whether kprobe is triggered in a safe location from kmalloc point of view, use pre-allocation by default and introduce new BPF_F_NO_PREALLOC flag. While testing of per-cpu hash maps it was discovered that alloc_percpu(GFP_ATOMIC) has odd corner cases and often fails to allocate memory even when 90% of it is free. The pre-allocation of per-cpu hash elements solves this problem as well. Turned out that bpf_map_update() quickly followed by bpf_map_lookup()+bpf_map_delete() is very common pattern used in many of iovisor/bcc/tools, so there is additional benefit of pre-allocation, since such use cases are must faster. Since all hash map elements are now pre-allocated we can remove atomic increment of htab->count and save few more cycles. Also add bpf_map_precharge_memlock() to check rlimit_memlock early to avoid large malloc/free done by users who don't have sufficient limits. Pre-allocation is done with vmalloc and alloc/free is done via percpu_freelist. Here are performance numbers for different pre-allocation algorithms that were implemented, but discarded in favor of percpu_freelist: 1 cpu: pcpu_ida 2.1M pcpu_ida nolock 2.3M bt 2.4M kmalloc 1.8M hlist+spinlock 2.3M pcpu_freelist 2.6M 4 cpu: pcpu_ida 1.5M pcpu_ida nolock 1.8M bt w/smp_align 1.7M bt no/smp_align 1.1M kmalloc 0.7M hlist+spinlock 0.2M pcpu_freelist 2.0M 8 cpu: pcpu_ida 0.7M bt w/smp_align 0.8M kmalloc 0.4M pcpu_freelist 1.5M 32 cpu: kmalloc 0.13M pcpu_freelist 0.49M pcpu_ida nolock is a modified percpu_ida algorithm without percpu_ida_cpu locks and without cross-cpu tag stealing. It's faster than existing percpu_ida, but not as fast as pcpu_freelist. bt is a variant of block/blk-mq-tag.c simlified and customized for bpf use case. bt w/smp_align is using cache line for every 'long' (similar to blk-mq-tag). bt no/smp_align allocates 'long' bitmasks continuously to save memory. It's comparable to percpu_ida and in some cases faster, but slower than percpu_freelist hlist+spinlock is the simplest free list with single spinlock. As expeceted it has very bad scaling in SMP. kmalloc is existing implementation which is still available via BPF_F_NO_PREALLOC flag. It's significantly slower in single cpu and in 8 cpu setup it's 3 times slower than pre-allocation with pcpu_freelist, but saves memory, so in cases where map->max_entries can be large and number of map update/delete per second is low, it may make sense to use it. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
if kprobe is placed within update or delete hash map helpers that hold bucket spin lock and triggered bpf program is trying to grab the spinlock for the same bucket on the same cpu, it will deadlock. Fix it by extending existing recursion prevention mechanism. Note, map_lookup and other tracing helpers don't have this problem, since they don't hold any locks and don't modify global data. bpf_trace_printk has its own recursive check and ok as well. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 2月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
Currently, when we pass a buffer from the eBPF stack into a helper function, the function proto indicates argument types as ARG_PTR_TO_STACK and ARG_CONST_STACK_SIZE pair. If R<X> contains the former, then R<X+1> must be of the latter type. Then, verifier checks whether the buffer points into eBPF stack, is initialized, etc. The verifier also guarantees that the constant value passed in R<X+1> is greater than 0, so helper functions don't need to test for it and can always assume a non-NULL initialized buffer as well as non-0 buffer size. This patch adds a new argument types ARG_CONST_STACK_SIZE_OR_ZERO that allows to also pass NULL as R<X> and 0 as R<X+1> into the helper function. Such helper functions, of course, need to be able to handle these cases internally then. Verifier guarantees that either R<X> == NULL && R<X+1> == 0 or R<X> != NULL && R<X+1> != 0 (like the case of ARG_CONST_STACK_SIZE), any other combinations are not possible to load. I went through various options of extending the verifier, and introducing the type ARG_CONST_STACK_SIZE_OR_ZERO seems to have most minimal changes needed to the verifier. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 2月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
add new map type to store stack traces and corresponding helper bpf_get_stackid(ctx, map, flags) - walk user or kernel stack and return id @ctx: struct pt_regs* @map: pointer to stack_trace map @flags: bits 0-7 - numer of stack frames to skip bit 8 - collect user stack instead of kernel bit 9 - compare stacks by hash only bit 10 - if two different stacks hash into the same stackid discard old other bits - reserved Return: >= 0 stackid on success or negative error stackid is a 32-bit integer handle that can be further combined with other data (including other stackid) and used as a key into maps. Userspace will access stackmap using standard lookup/delete syscall commands to retrieve full stack trace for given stackid. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 2月, 2016 2 次提交
-
-
由 Alexei Starovoitov 提交于
The functions bpf_map_lookup_elem(map, key, value) and bpf_map_update_elem(map, key, value, flags) need to get/set values from all-cpus for per-cpu hash and array maps, so that user space can aggregate/update them as necessary. Example of single counter aggregation in user space: unsigned int nr_cpus = sysconf(_SC_NPROCESSORS_CONF); long values[nr_cpus]; long value = 0; bpf_lookup_elem(fd, key, values); for (i = 0; i < nr_cpus; i++) value += values[i]; The user space must provide round_up(value_size, 8) * nr_cpus array to get/set values, since kernel will use 'long' copy of per-cpu values to try to copy good counters atomically. It's a best-effort, since bpf programs and user space are racing to access the same memory. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
Primary use case is a histogram array of latency where bpf program computes the latency of block requests or other events and stores histogram of latency into array of 64 elements. All cpus are constantly running, so normal increment is not accurate, bpf_xadd causes cache ping-pong and this per-cpu approach allows fastest collision-free counters. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 11月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
Currently, when having map file descriptors pointing to program arrays, there's still the issue that we unconditionally flush program array contents via bpf_fd_array_map_clear() in bpf_map_release(). This happens when such a file descriptor is released and is independent of the map's refcount. Having this flush independent of the refcount is for a reason: there can be arbitrary complex dependency chains among tail calls, also circular ones (direct or indirect, nesting limit determined during runtime), and we need to make sure that the map drops all references to eBPF programs it holds, so that the map's refcount can eventually drop to zero and initiate its freeing. Btw, a walk of the whole dependency graph would not be possible for various reasons, one being complexity and another one inconsistency, i.e. new programs can be added to parts of the graph at any time, so there's no guaranteed consistent state for the time of such a walk. Now, the program array pinning itself works, but the issue is that each derived file descriptor on close would nevertheless call unconditionally into bpf_fd_array_map_clear(). Instead, keep track of users and postpone this flush until the last reference to a user is dropped. As this only concerns a subset of references (f.e. a prog array could hold a program that itself has reference on the prog array holding it, etc), we need to track them separately. Short analysis on the refcounting: on map creation time usercnt will be one, so there's no change in behaviour for bpf_map_release(), if unpinned. If we already fail in map_create(), we are immediately freed, and no file descriptor has been made public yet. In bpf_obj_pin_user(), we need to probe for a possible map in bpf_fd_probe_obj() already with a usercnt reference, so before we drop the reference on the fd with fdput(). Therefore, if actual pinning fails, we need to drop that reference again in bpf_any_put(), otherwise we keep holding it. When last reference drops on the inode, the bpf_any_put() in bpf_evict_inode() will take care of dropping the usercnt again. In the bpf_obj_get_user() case, the bpf_any_get() will grab a reference on the usercnt, still at a time when we have the reference on the path. Should we later on fail to grab a new file descriptor, bpf_any_put() will drop it, otherwise we hold it until bpf_map_release() time. Joint work with Alexei. Fixes: b2197755 ("bpf: add support for persistent maps/progs") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 11月, 2015 2 次提交
-
-
由 Daniel Borkmann 提交于
This work adds support for "persistent" eBPF maps/programs. The term "persistent" is to be understood that maps/programs have a facility that lets them survive process termination. This is desired by various eBPF subsystem users. Just to name one example: tc classifier/action. Whenever tc parses the ELF object, extracts and loads maps/progs into the kernel, these file descriptors will be out of reach after the tc instance exits. So a subsequent tc invocation won't be able to access/relocate on this resource, and therefore maps cannot easily be shared, f.e. between the ingress and egress networking data path. The current workaround is that Unix domain sockets (UDS) need to be instrumented in order to pass the created eBPF map/program file descriptors to a third party management daemon through UDS' socket passing facility. This makes it a bit complicated to deploy shared eBPF maps or programs (programs f.e. for tail calls) among various processes. We've been brainstorming on how we could tackle this issue and various approches have been tried out so far, which can be read up further in the below reference. The architecture we eventually ended up with is a minimal file system that can hold map/prog objects. The file system is a per mount namespace singleton, and the default mount point is /sys/fs/bpf/. Any subsequent mounts within a given namespace will point to the same instance. The file system allows for creating a user-defined directory structure. The objects for maps/progs are created/fetched through bpf(2) with two new commands (BPF_OBJ_PIN/BPF_OBJ_GET). I.e. a bpf file descriptor along with a pathname is being passed to bpf(2) that in turn creates (we call it eBPF object pinning) the file system nodes. Only the pathname is being passed to bpf(2) for getting a new BPF file descriptor to an existing node. The user can use that to access maps and progs later on, through bpf(2). Removal of file system nodes is being managed through normal VFS functions such as unlink(2), etc. The file system code is kept to a very minimum and can be further extended later on. The next step I'm working on is to add dump eBPF map/prog commands to bpf(2), so that a specification from a given file descriptor can be retrieved. This can be used by things like CRIU but also applications can inspect the meta data after calling BPF_OBJ_GET. Big thanks also to Alexei and Hannes who significantly contributed in the design discussion that eventually let us end up with this architecture here. Reference: https://lkml.org/lkml/2015/10/15/925Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NHannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Add a bpf_map_get() function that we're going to use later on and align/clean the remaining helpers a bit so that we have them a bit more consistent: - __bpf_map_get() and __bpf_prog_get() that both work on the fd struct, check whether the descriptor is eBPF and return the pointer to the map/prog stored in the private data. Also, we can return f.file->private_data directly, the function signature is enough of a documentation already. - bpf_map_get() and bpf_prog_get() that both work on u32 user fd, call their respective __bpf_map_get()/__bpf_prog_get() variants, and take a reference. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 10月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
Fix safety checks for bpf_perf_event_read(): - only non-inherited events can be added to perf_event_array map (do this check statically at map insertion time) - dynamically check that event is local and !pmu->count Otherwise buggy bpf program can cause kernel splat. Also fix error path after perf_event_attrs() and remove redundant 'extern'. Fixes: 35578d79 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter") Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Tested-by: NWang Nan <wangnan0@huawei.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 10月, 2015 2 次提交
-
-
由 Alexei Starovoitov 提交于
since eBPF programs and maps use kernel memory consider it 'locked' memory from user accounting point of view and charge it against RLIMIT_MEMLOCK limit. This limit is typically set to 64Kbytes by distros, so almost all bpf+tracing programs would need to increase it, since they use maps, but kernel charges maximum map size upfront. For example the hash map of 1024 elements will be charged as 64Kbyte. It's inconvenient for current users and changes current behavior for root, but probably worth doing to be consistent root vs non-root. Similar accounting logic is done by mmap of perf_event. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Reviewed-by: NKees Cook <keescook@chromium.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 10月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
eBPF socket filter programs may see junk in 'u32 cb[5]' area, since it could have been used by protocol layers earlier. For socket filter programs used in af_packet we need to clean 20 bytes of skb->cb area if it could be used by the program. For programs attached to TCP/UDP sockets we need to save/restore these 20 bytes, since it's used by protocol layers. Remove SK_RUN_FILTER macro, since it's no longer used. Long term we may move this bpf cb area to per-cpu scratch, but that requires addition of new 'per-cpu load/store' instructions, so not suitable as a short term fix. Fixes: d691f9e8 ("bpf: allow programs to write to certain skb fields") Reported-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 10月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
While recently arguing on a seccomp discussion that raw prandom_u32() access shouldn't be exposed to unpriviledged user space, I forgot the fact that SKF_AD_RANDOM extension actually already does it for some time in cBPF via commit 4cd3675e ("filter: added BPF random opcode"). Since prandom_u32() is being used in a lot of critical networking code, lets be more conservative and split their states. Furthermore, consolidate eBPF and cBPF prandom handlers to use the new internal PRNG. For eBPF, bpf_get_prandom_u32() was only accessible for priviledged users, but should that change one day, we also don't want to leak raw sequences through things like eBPF maps. One thought was also to have own per bpf_prog states, but due to ABI reasons this is not easily possible, i.e. the program code currently cannot access bpf_prog itself, and copying the rnd_state to/from the stack scratch space whenever a program uses the prng seems not really worth the trouble and seems too hacky. If needed, taus113 could in such cases be implemented within eBPF using a map entry to keep the state space, or get_random_bytes() could become a second helper in cases where performance would not be critical. Both sides can trigger a one-time late init via prandom_init_once() on the shared state. Performance-wise, there should even be a tiny gain as bpf_user_rnd_u32() saves one function call. The PRNG needs to live inside the BPF core since kernels could have a NET-less config as well. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NHannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: NAlexei Starovoitov <ast@plumgrid.com> Cc: Chema Gonzalez <chema@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 10月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
Commit ea317b26 ("bpf: Add new bpf map type to store the pointer to struct perf_event") added perf_event.h to the main eBPF header, so it gets included for all users. perf_event.h is actually only needed from array map side, so lets sanitize this a bit. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Cc: Kaixu Xia <xiakaixu@huawei.com> Acked-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 8月, 2015 3 次提交
-
-
由 Kaixu Xia 提交于
According to the perf_event_map_fd and index, the function bpf_perf_event_read() can convert the corresponding map value to the pointer to struct perf_event and return the Hardware PMU counter value. Signed-off-by: NKaixu Xia <xiakaixu@huawei.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Kaixu Xia 提交于
Introduce a new bpf map type 'BPF_MAP_TYPE_PERF_EVENT_ARRAY'. This map only stores the pointer to struct perf_event. The user space event FDs from perf_event_open() syscall are converted to the pointer to struct perf_event and stored in map. Signed-off-by: NKaixu Xia <xiakaixu@huawei.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Wang Nan 提交于
All the map backends are of generic nature. In order to avoid adding much special code into the eBPF core, rewrite part of the bpf_prog_array map code and make it more generic. So the new perf_event_array map type can reuse most of code with bpf_prog_array map and add fewer lines of special code. Signed-off-by: NWang Nan <wangnan0@huawei.com> Signed-off-by: NKaixu Xia <xiakaixu@huawei.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 7月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
Allow eBPF programs attached to TC qdiscs call skb_vlan_push/pop via helper functions. These functions may change skb->data/hlen which are cached by some JITs to improve performance of ld_abs/ld_ind instructions. Therefore JITs need to recognize bpf_skb_vlan_push/pop() calls, re-compute header len and re-cache skb->data/hlen back into cpu registers. Note, skb->data/hlen are not directly accessible from the programs, so any changes to skb->data done either by these helpers or by other TC actions are safe. eBPF JIT supported by three architectures: - arm64 JIT is using bpf_load_pointer() without caching, so it's ok as-is. - x64 JIT re-caches skb->data/hlen unconditionally after vlan_push/pop calls (experiments showed that conditional re-caching is slower). - s390 JIT falls back to interpreter for now when bpf_skb_vlan_push() is present in the program (re-caching is tbd). These helpers allow more scalable handling of vlan from the programs. Instead of creating thousands of vlan netdevs on top of eth0 and attaching TC+ingress+bpf to all of them, the program can be attached to eth0 directly and manipulate vlans as necessary. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 6月, 2015 2 次提交
-
-
由 Alexei Starovoitov 提交于
bpf_trace_printk() is a helper function used to debug eBPF programs. Let socket and TC programs use it as well. Note, it's DEBUG ONLY helper. If it's used in the program, the kernel will print warning banner to make sure users don't use it in production. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
eBPF programs attached to kprobes need to filter based on current->pid, uid and other fields, so introduce helper functions: u64 bpf_get_current_pid_tgid(void) Return: current->tgid << 32 | current->pid u64 bpf_get_current_uid_gid(void) Return: current_gid << 32 | current_uid bpf_get_current_comm(char *buf, int size_of_buf) stores current->comm into buf They can be used from the programs attached to TC as well to classify packets based on current task fields. Update tracex2 example to print histogram of write syscalls for each process instead of aggregated for all. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 6月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
allow programs read/write skb->mark, tc_index fields and ((struct qdisc_skb_cb *)cb)->data. mark and tc_index are generically useful in TC. cb[0]-cb[4] are primarily used to pass arguments from one program to another called via bpf_tail_call() which can be seen in sockex3_kern.c example. All fields of 'struct __sk_buff' are readable to socket and tc_cls_act progs. mark, tc_index are writeable from tc_cls_act only. cb[0]-cb[4] are writeable by both sockets and tc_cls_act. Add verifier tests and improve sample code. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 6月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
As this is already exported from tracing side via commit d9847d31 ("tracing: Allow BPF programs to call bpf_ktime_get_ns()"), we might as well want to move it to the core, so also networking users can make use of it, e.g. to measure diffs for certain flows from ingress/egress. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 31 5月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
Normally the program attachment place (like sockets, qdiscs) takes care of rcu protection and calls bpf_prog_put() after a grace period. The programs stored inside prog_array may not be attached anywhere, so prog_array needs to take care of preserving rcu protection. Otherwise bpf_tail_call() will race with bpf_prog_put(). To solve that introduce bpf_prog_put_rcu() helper function and use it in 3 places where unattached program can decrement refcnt: closing program fd, deleting/replacing program in prog_array. Fixes: 04fd61ab ("bpf: allow bpf programs to tail-call other bpf programs") Reported-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 5月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
introduce bpf_tail_call(ctx, &jmp_table, index) helper function which can be used from BPF programs like: int bpf_prog(struct pt_regs *ctx) { ... bpf_tail_call(ctx, &jmp_table, index); ... } that is roughly equivalent to: int bpf_prog(struct pt_regs *ctx) { ... if (jmp_table[index]) return (*jmp_table[index])(ctx); ... } The important detail that it's not a normal call, but a tail call. The kernel stack is precious, so this helper reuses the current stack frame and jumps into another BPF program without adding extra call frame. It's trivially done in interpreter and a bit trickier in JITs. In case of x64 JIT the bigger part of generated assembler prologue is common for all programs, so it is simply skipped while jumping. Other JITs can do similar prologue-skipping optimization or do stack unwind before jumping into the next program. bpf_tail_call() arguments: ctx - context pointer jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table index - index in the jump table Since all BPF programs are idenitified by file descriptor, user space need to populate the jmp_table with FDs of other BPF programs. If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere and program execution continues as normal. New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can populate this jmp_table array with FDs of other bpf programs. Programs can share the same jmp_table array or use multiple jmp_tables. The chain of tail calls can form unpredictable dynamic loops therefore tail_call_cnt is used to limit the number of calls and currently is set to 32. Use cases: Acked-by: NDaniel Borkmann <daniel@iogearbox.net> ========== - simplify complex programs by splitting them into a sequence of small programs - dispatch routine For tracing and future seccomp the program may be triggered on all system calls, but processing of syscall arguments will be different. It's more efficient to implement them as: int syscall_entry(struct seccomp_data *ctx) { bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */); ... default: process unknown syscall ... } int sys_write_event(struct seccomp_data *ctx) {...} int sys_read_event(struct seccomp_data *ctx) {...} syscall_jmp_table[__NR_write] = sys_write_event; syscall_jmp_table[__NR_read] = sys_read_event; For networking the program may call into different parsers depending on packet format, like: int packet_parser(struct __sk_buff *skb) { ... parse L2, L3 here ... __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol)); bpf_tail_call(skb, &ipproto_jmp_table, ipproto); ... default: process unknown protocol ... } int parse_tcp(struct __sk_buff *skb) {...} int parse_udp(struct __sk_buff *skb) {...} ipproto_jmp_table[IPPROTO_TCP] = parse_tcp; ipproto_jmp_table[IPPROTO_UDP] = parse_udp; - for TC use case, bpf_tail_call() allows to implement reclassify-like logic - bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table are atomic, so user space can build chains of BPF programs on the fly Implementation details: ======================= - high performance of bpf_tail_call() is the goal. It could have been implemented without JIT changes as a wrapper on top of BPF_PROG_RUN() macro, but with two downsides: . all programs would have to pay performance penalty for this feature and tail call itself would be slower, since mandatory stack unwind, return, stack allocate would be done for every tailcall. . tailcall would be limited to programs running preempt_disabled, since generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would need to be either global per_cpu variable accessed by helper and by wrapper or global variable protected by locks. In this implementation x64 JIT bypasses stack unwind and jumps into the callee program after prologue. - bpf_prog_array_compatible() ensures that prog_type of callee and caller are the same and JITed/non-JITed flag is the same, since calling JITed program from non-JITed is invalid, since stack frames are different. Similarly calling kprobe type program from socket type program is invalid. - jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map' abstraction, its user space API and all of verifier logic. It's in the existing arraymap.c file, since several functions are shared with regular array map. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 4月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
Socket filter code and other subsystems with upcoming eBPF support should not need to deal with the fact that we have CONFIG_BPF_SYSCALL defined or not. Having the bpf syscall as a config option is a nice thing and I'd expect it to stay that way for expert users (I presume one day the default setting of it might change, though), but code making use of it should not care if it's actually enabled or not. Instead, hide this via header files and let the rest deal with it. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Reviewed-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/1427312966-8434-2-git-send-email-ast@plumgrid.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 30 3月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
existing TC action 'pedit' can munge any bits of the packet. Generalize it for use in bpf programs attached as cls_bpf and act_bpf via bpf_skb_store_bytes() helper function. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Reviewed-by: NJiri Pirko <jiri@resnulli.us> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 3月, 2015 3 次提交
-
-
由 Alexei Starovoitov 提交于
introduce user accessible mirror of in-kernel 'struct sk_buff': struct __sk_buff { __u32 len; __u32 pkt_type; __u32 mark; __u32 queue_mapping; }; bpf programs can do: int bpf_prog(struct __sk_buff *skb) { __u32 var = skb->pkt_type; which will be compiled to bpf assembler as: dst_reg = *(u32 *)(src_reg + 4) // 4 == offsetof(struct __sk_buff, pkt_type) bpf verifier will check validity of access and will convert it to: dst_reg = *(u8 *)(src_reg + offsetof(struct sk_buff, __pkt_type_offset)) dst_reg &= 7 since skb->pkt_type is a bitfield. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
This patch adds the possibility to obtain raw_smp_processor_id() in eBPF. Currently, this is only possible in classic BPF where commit da2033c2 ("filter: add SKF_AD_RXHASH and SKF_AD_CPU") has added facilities for this. Perhaps most importantly, this would also allow us to track per CPU statistics with eBPF maps, or to implement a poor-man's per CPU data structure through eBPF maps. Example function proto-type looks like: u32 (*smp_processor_id)(void) = (void *)BPF_FUNC_get_smp_processor_id; Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
This work is similar to commit 4cd3675e ("filter: added BPF random opcode") and adds a possibility for packet sampling in eBPF. Currently, this is only possible in classic BPF and useful to combine sampling with f.e. packet sockets, possible also with tc. Example function proto-type looks like: u32 (*prandom_u32)(void) = (void *)BPF_FUNC_get_prandom_u32; Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 3月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
I noticed that a helper function with argument type ARG_ANYTHING does not need to have an initialized value (register). This can worst case lead to unintented stack memory leakage in future helper functions if they are not carefully designed, or unintended application behaviour in case the application developer was not careful enough to match a correct helper function signature in the API. The underlying issue is that ARG_ANYTHING should actually be split into two different semantics: 1) ARG_DONTCARE for function arguments that the helper function does not care about (in other words: the default for unused function arguments), and 2) ARG_ANYTHING that is an argument actually being used by a helper function and *guaranteed* to be an initialized register. The current risk is low: ARG_ANYTHING is only used for the 'flags' argument (r4) in bpf_map_update_elem() that internally does strict checking. Fixes: 17a52670 ("bpf: verifier (add verifier core)") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 3月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
Masami noted that it would be better to hide the remaining CONFIG_BPF_SYSCALL-only function declarations within the BPF header ifdef, w/o else path dummy alternatives since these functions are not supposed to have a user outside of CONFIG_BPF_SYSCALL. Suggested-by: NMasami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Reference: http://article.gmane.org/gmane.linux.kernel.api/8658Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-