1. 14 5月, 2014 2 次提交
    • T
      cgroup: implement cftype->write() · b4168640
      Tejun Heo 提交于
      During the recent conversion to kernfs, cftype's seq_file operations
      are updated so that they are directly mapped to kernfs operations and
      thus can fully access the associated kernfs and cgroup contexts;
      however, write path hasn't seen similar updates and none of the
      existing write operations has access to, for example, the associated
      kernfs_open_file.
      
      Let's introduce a new operation cftype->write() which maps directly to
      the kernfs write operation and has access to all the arguments and
      contexts.  This will replace ->write_string() and ->trigger() and ease
      manipulation of kernfs active protection from cgroup file operations.
      
      Two accessors - of_cft() and of_css() - are introduced to enable
      accessing the associated cgroup context from cftype->write() which
      only takes kernfs_open_file for the context information.  The
      accessors for seq_file operations - seq_cft() and seq_css() - are
      rewritten to wrap the of_ accessors.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      b4168640
    • T
      cgroup: rename css_tryget*() to css_tryget_online*() · ec903c0c
      Tejun Heo 提交于
      Unlike the more usual refcnting, what css_tryget() provides is the
      distinction between online and offline csses instead of protection
      against upping a refcnt which already reached zero.  cgroup is
      planning to provide actual tryget which fails if the refcnt already
      reached zero.  Let's rename the existing trygets so that they clearly
      indicate that they're onliness.
      
      I thought about keeping the existing names as-are and introducing new
      names for the planned actual tryget; however, given that each
      controller participates in the synchronization of the online state, it
      seems worthwhile to make it explicit that these functions are about
      on/offline state.
      
      Rename css_tryget() to css_tryget_online() and css_tryget_from_dir()
      to css_tryget_online_from_dir().  This is pure rename.
      
      v2: cgroup_freezer grew new usages of css_tryget().  Update
          accordingly.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Cc: Vivek Goyal <vgoyal@redhat.com>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      ec903c0c
  2. 13 5月, 2014 1 次提交
    • T
      cgroup: introduce task_css_is_root() · 5024ae29
      Tejun Heo 提交于
      Determining the css of a task usually requires RCU read lock as that's
      the only thing which keeps the returned css accessible till its
      reference is acquired; however, testing whether a task belongs to the
      root can be performed without dereferencing the returned css by
      comparing the returned pointer against the root one in init_css_set[]
      which never changes.
      
      Implement task_css_is_root() which can be invoked in any context.
      This will be used by the scheduled cgroup_freezer change.
      
      v2: cgroup no longer supports modular controllers.  No need to export
          init_css_set.  Pointed out by Li.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      5024ae29
  3. 10 5月, 2014 2 次提交
  4. 07 5月, 2014 1 次提交
  5. 05 5月, 2014 3 次提交
    • T
      cgroup, memcg: implement css->id and convert css_from_id() to use it · 15a4c835
      Tejun Heo 提交于
      Until now, cgroup->id has been used to identify all the associated
      csses and css_from_id() takes cgroup ID and returns the matching css
      by looking up the cgroup and then dereferencing the css associated
      with it; however, now that the lifetimes of cgroup and css are
      separate, this is incorrect and breaks on the unified hierarchy when a
      controller is disabled and enabled back again before the previous
      instance is released.
      
      This patch adds css->id which is a subsystem-unique ID and converts
      css_from_id() to look up by the new css->id instead.  memcg is the
      only user of css_from_id() and also converted to use css->id instead.
      
      For traditional hierarchies, this shouldn't make any functional
      difference.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Jianyu Zhan <nasa4836@gmail.com>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      15a4c835
    • T
      cgroup, memcg: allocate cgroup ID from 1 · 7d699ddb
      Tejun Heo 提交于
      Currently, cgroup->id is allocated from 0, which is always assigned to
      the root cgroup; unfortunately, memcg wants to use ID 0 to indicate
      invalid IDs and ends up incrementing all IDs by one.
      
      It's reasonable to reserve 0 for special purposes.  This patch updates
      cgroup core so that ID 0 is not used and the root cgroups get ID 1.
      The ID incrementing is removed form memcg.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      7d699ddb
    • T
      cgroup: make flags and subsys_masks unsigned int · 69dfa00c
      Tejun Heo 提交于
      There's no reason to use atomic bitops for cgroup_subsys_state->flags,
      cgroup_root->flags and various subsys_masks.  This patch updates those
      to use bitwise and/or operations instead and converts them form
      unsigned long to unsigned int.
      
      This makes the fields occupy (marginally) smaller space and makes it
      clear that they don't require atomicity.
      
      This patch doesn't cause any behavior difference.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      69dfa00c
  6. 26 4月, 2014 3 次提交
    • T
      cgroup: implement cgroup.populated for the default hierarchy · 842b597e
      Tejun Heo 提交于
      cgroup users often need a way to determine when a cgroup's
      subhierarchy becomes empty so that it can be cleaned up.  cgroup
      currently provides release_agent for it; unfortunately, this mechanism
      is riddled with issues.
      
      * It delivers events by forking and execing a userland binary
        specified as the release_agent.  This is a long deprecated method of
        notification delivery.  It's extremely heavy, slow and cumbersome to
        integrate with larger infrastructure.
      
      * There is single monitoring point at the root.  There's no way to
        delegate management of a subtree.
      
      * The event isn't recursive.  It triggers when a cgroup doesn't have
        any tasks or child cgroups.  Events for internal nodes trigger only
        after all children are removed.  This again makes it impossible to
        delegate management of a subtree.
      
      * Events are filtered from the kernel side.  "notify_on_release" file
        is used to subscribe to or suppress release event.  This is
        unnecessarily complicated and probably done this way because event
        delivery itself was expensive.
      
      This patch implements interface file "cgroup.populated" which can be
      used to monitor whether the cgroup's subhierarchy has tasks in it or
      not.  Its value is 0 if there is no task in the cgroup and its
      descendants; otherwise, 1, and kernfs_notify() notificaiton is
      triggers when the value changes, which can be monitored through poll
      and [di]notify.
      
      This is a lot ligther and simpler and trivially allows delegating
      management of subhierarchy - subhierarchy monitoring can block further
      propgation simply by putting itself or another process in the root of
      the subhierarchy and monitor events that it's interested in from there
      without interfering with monitoring higher in the tree.
      
      v2: Patch description updated as per Serge.
      
      v3: "cgroup.subtree_populated" renamed to "cgroup.populated".  The
          subtree_ prefix was a bit confusing because
          "cgroup.subtree_control" uses it to denote the tree rooted at the
          cgroup sans the cgroup itself while the populated state includes
          the cgroup itself.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NSerge Hallyn <serge.hallyn@ubuntu.com>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      Cc: Lennart Poettering <lennart@poettering.net>
      842b597e
    • M
      kobject: Make support for uevent_helper optional. · 86d56134
      Michael Marineau 提交于
      Support for uevent_helper, aka hotplug, is not required on many systems
      these days but it can still be enabled via sysfs or sysctl.
      Reported-by: NDarren Shepherd <darren.s.shepherd@gmail.com>
      Signed-off-by: NMichael Marineau <mike@marineau.org>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      86d56134
    • T
      kernfs: implement kernfs_root->supers list · 7d568a83
      Tejun Heo 提交于
      Currently, there's no way to find out which super_blocks are
      associated with a given kernfs_root.  Let's implement it - the planned
      inotify extension to kernfs_notify() needs it.
      
      Make kernfs_super_info point back to the super_block and chain it at
      kernfs_root->supers.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      7d568a83
  7. 23 4月, 2014 6 次提交
    • T
      cgroup: implement dynamic subtree controller enable/disable on the default hierarchy · f8f22e53
      Tejun Heo 提交于
      cgroup is switching away from multiple hierarchies and will use one
      unified default hierarchy where controllers can be dynamically enabled
      and disabled per subtree.  The default hierarchy will serve as the
      unified hierarchy to which all controllers are attached and a css on
      the default hierarchy would need to also serve the tasks of descendant
      cgroups which don't have the controller enabled - ie. the tree may be
      collapsed from leaf towards root when viewed from specific
      controllers.  This has been implemented through effective css in the
      previous patches.
      
      This patch finally implements dynamic subtree controller
      enable/disable on the default hierarchy via a new knob -
      "cgroup.subtree_control" which controls which controllers are enabled
      on the child cgroups.  Let's assume a hierarchy like the following.
      
        root - A - B - C
                     \ D
      
      root's "cgroup.subtree_control" determines which controllers are
      enabled on A.  A's on B.  B's on C and D.  This coincides with the
      fact that controllers on the immediate sub-level are used to
      distribute the resources of the parent.  In fact, it's natural to
      assume that resource control knobs of a child belong to its parent.
      Enabling a controller in "cgroup.subtree_control" declares that
      distribution of the respective resources of the cgroup will be
      controlled.  Note that this means that controller enable states are
      shared among siblings.
      
      The default hierarchy has an extra restriction - only cgroups which
      don't contain any task may have controllers enabled in
      "cgroup.subtree_control".  Combined with the other properties of the
      default hierarchy, this guarantees that, from the view point of
      controllers, tasks are only on the leaf cgroups.  In other words, only
      leaf csses may contain tasks.  This rules out situations where child
      cgroups compete against internal tasks of the parent, which is a
      competition between two different types of entities without any clear
      way to determine resource distribution between the two.  Different
      controllers handle it differently and all the implemented behaviors
      are ambiguous, ad-hoc, cumbersome and/or just wrong.  Having this
      structural constraints imposed from cgroup core removes the burden
      from controller implementations and enables showing one consistent
      behavior across all controllers.
      
      When a controller is enabled or disabled, css associations for the
      controller in the subtrees of each child should be updated.  After
      enabling, the whole subtree of a child should point to the new css of
      the child.  After disabling, the whole subtree of a child should point
      to the cgroup's css.  This is implemented by first updating cgroup
      states such that cgroup_e_css() result points to the appropriate css
      and then invoking cgroup_update_dfl_csses() which migrates all tasks
      in the affected subtrees to the self cgroup on the default hierarchy.
      
      * When read, "cgroup.subtree_control" lists all the currently enabled
        controllers on the children of the cgroup.
      
      * White-space separated list of controller names prefixed with either
        '+' or '-' can be written to "cgroup.subtree_control".  The ones
        prefixed with '+' are enabled on the controller and '-' disabled.
      
      * A controller can be enabled iff the parent's
        "cgroup.subtree_control" enables it and disabled iff no child's
        "cgroup.subtree_control" has it enabled.
      
      * If a cgroup has tasks, no controller can be enabled via
        "cgroup.subtree_control".  Likewise, if "cgroup.subtree_control" has
        some controllers enabled, tasks can't be migrated into the cgroup.
      
      * All controllers which aren't bound on other hierarchies are
        automatically associated with the root cgroup of the default
        hierarchy.  All the controllers which are bound to the default
        hierarchy are listed in the read-only file "cgroup.controllers" in
        the root directory.
      
      * "cgroup.controllers" in all non-root cgroups is read-only file whose
        content is equal to that of "cgroup.subtree_control" of the parent.
        This indicates which controllers can be used in the cgroup's
        "cgroup.subtree_control".
      
      This is still experimental and there are some holes, one of which is
      that ->can_attach() failure during cgroup_update_dfl_csses() may leave
      the cgroups in an undefined state.  The issues will be addressed by
      future patches.
      
      v2: Non-root cgroups now also have "cgroup.controllers".
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      f8f22e53
    • T
      cgroup: add css_set->dfl_cgrp · 6803c006
      Tejun Heo 提交于
      To implement the unified hierarchy behavior, we'll need to be able to
      determine the associated cgroup on the default hierarchy from css_set.
      Let's add css_set->dfl_cgrp so that it can be accessed conveniently
      and efficiently.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      6803c006
    • T
      cgroup: teach css_task_iter about effective csses · 3ebb2b6e
      Tejun Heo 提交于
      Currently, css_task_iter iterates tasks associated with a css by
      visiting each css_set associated with the owning cgroup and walking
      tasks of each of them.  This works fine for !unified hierarchies as
      each cgroup has its own css for each associated subsystem on the
      hierarchy; however, on the planned unified hierarchy, a cgroup may not
      have csses associated and its tasks would be considered associated
      with the matching css of the nearest ancestor which has the subsystem
      enabled.
      
      This means that on the default unified hierarchy, just walking all
      tasks associated with a cgroup isn't enough to walk all tasks which
      are associated with the specified css.  If any of its children doesn't
      have the matching css enabled, task iteration should also include all
      tasks from the subtree.  We already added cgroup->e_csets[] to list
      all css_sets effectively associated with a given css and walk css_sets
      on that list instead to achieve such iteration.
      
      This patch updates css_task_iter iteration such that it walks css_sets
      on cgroup->e_csets[] instead of cgroup->cset_links if iteration is
      requested on an non-dummy css.  Thanks to the previous iteration
      update, this change can be achieved with the addition of
      css_task_iter->ss and minimal updates to css_advance_task_iter() and
      css_task_iter_start().
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      3ebb2b6e
    • T
      cgroup: reorganize css_task_iter · 0f0a2b4f
      Tejun Heo 提交于
      This patch reorganizes css_task_iter so that adding effective css
      support is easier.
      
      * s/->cset_link/->cset_pos/ and s/->task/->task_pos/ for consistency
      
      * ->origin_css is used to determine whether the iteration reached the
        last css_set.  Replace it with explicit ->cset_head so that
        css_advance_task_iter() doesn't have to know the termination
        condition directly.
      
      * css_task_iter_next() currently assumes that it's walking list of
        cgrp_cset_link and reaches into the current cset through the current
        link to determine the termination conditions for task walking.  As
        this won't always be true for effective css walking, add
        ->tasks_head and ->mg_tasks_head and use them to control task
        walking so that css_task_iter_next() doesn't have to know how
        css_sets are being walked.
      
      This patch doesn't make any behavior changes.  The iteration logic
      stays unchanged after the patch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      0f0a2b4f
    • T
      cgroup: implement cgroup->e_csets[] · 2d8f243a
      Tejun Heo 提交于
      On the default unified hierarchy, a cgroup may be associated with
      csses of its ancestors, which means that a css of a given cgroup may
      be associated with css_sets of descendant cgroups.  This means that we
      can't walk all tasks associated with a css by iterating the css_sets
      associated with the cgroup as there are css_sets which are pointing to
      the css but linked on the descendants.
      
      This patch adds per-subsystem list heads cgroup->e_csets[].  Any
      css_set which is pointing to a css is linked to
      css->cgroup->e_csets[$SUBSYS_ID] through
      css_set->e_cset_node[$SUBSYS_ID].  The lists are protected by
      css_set_rwsem and will allow us to walk all css_sets associated with a
      given css so that we can find out all associated tasks.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      2d8f243a
    • T
      cgroup: update cgroup->subsys_mask to ->child_subsys_mask and restore cgroup_root->subsys_mask · f392e51c
      Tejun Heo 提交于
      94419627 ("cgroup: move ->subsys_mask from cgroupfs_root to
      cgroup") moved ->subsys_mask from cgroup_root to cgroup to prepare for
      the unified hierarhcy; however, it turns out that carrying the
      subsys_mask of the children in the parent, instead of itself, is a lot
      more natural.  This patch restores cgroup_root->subsys_mask and morphs
      cgroup->subsys_mask into cgroup->child_subsys_mask.
      
      * Uses of root->cgrp.subsys_mask are restored to root->subsys_mask.
      
      * Remove automatic setting and clearing of cgrp->subsys_mask and
        instead just inherit ->child_subsys_mask from the parent during
        cgroup creation.  Note that this doesn't affect any current
        behaviors.
      
      * Undo __kill_css() separation.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NLi Zefan <lizefan@huawei.com>
      f392e51c
  8. 19 4月, 2014 2 次提交
  9. 18 4月, 2014 3 次提交
    • A
      of: add empty of_find_node_by_path() for !OF · 20cd477c
      Alexander Shiyan 提交于
      Add an empty version of of_find_node_by_path().
      This fixes following build error for asoc tree:
      sound/soc/fsl/fsl_ssi.c: In function 'fsl_ssi_probe':
      sound/soc/fsl/fsl_ssi.c:1471:2: error: implicit declaration of function 'of_find_node_by_path' [-Werror=implicit-function-declaration]
        sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
      Reported-by: NStephen Rothwell <sfr@canb.auug.org.au>
      Signed-off-by: NAlexander Shiyan <shc_work@mail.ru>
      Signed-off-by: NRob Herring <robh@kernel.org>
      20cd477c
    • C
      ipmi: boolify some things · 7aefac26
      Corey Minyard 提交于
      Convert some ints to bools.
      Signed-off-by: NCorey Minyard <cminyard@mvista.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7aefac26
    • C
      ipmi: Turn off all activity on an idle ipmi interface · 89986496
      Corey Minyard 提交于
      The IPMI driver would wake up periodically looking for events and
      watchdog pretimeouts.  If there is nothing waiting for these events,
      it's really kind of pointless to be checking for them.  So modify the
      driver so the message handler can pass down if it needs the lower layer
      to be waiting for these.  Modify the system interface lower layer to
      turn off all timer and thread activity if the upper layer doesn't need
      anything and it is not currently handling messages.  And modify the
      message handler to not restart the timer if its timer is not needed.
      
      The timers and kthread will still be enabled if:
       - the SI interface is handling a message.
       - a user has enabled watching for events.
       - the IPMI watchdog timer is in use (since it uses pretimeouts).
       - the message handler is waiting on a remote response.
       - a user has registered to receive commands.
      
      This mostly affects interfaces without interrupts.  Interfaces with
      interrupts already don't use CPU in the system interface when the
      interface is idle.
      Signed-off-by: NCorey Minyard <cminyard@mvista.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      89986496
  10. 17 4月, 2014 5 次提交
  11. 16 4月, 2014 2 次提交
    • I
      x86: Remove the PCI reboot method from the default chain · 5be44a6f
      Ingo Molnar 提交于
      Steve reported a reboot hang and bisected it back to this commit:
      
        a4f1987e x86, reboot: Add EFI and CF9 reboot methods into the default list
      
      He heroically tested all reboot methods and found the following:
      
        reboot=t       # triple fault                  ok
        reboot=k       # keyboard ctrl                 FAIL
        reboot=b       # BIOS                          ok
        reboot=a       # ACPI                          FAIL
        reboot=e       # EFI                           FAIL   [system has no EFI]
        reboot=p       # PCI 0xcf9                     FAIL
      
      And I think it's pretty obvious that we should only try PCI 0xcf9 as a
      last resort - if at all.
      
      The other observation is that (on this box) we should never try
      the PCI reboot method, but close with either the 'triple fault'
      or the 'BIOS' (terminal!) reboot methods.
      
      Thirdly, CF9_COND is a total misnomer - it should be something like
      CF9_SAFE or CF9_CAREFUL, and 'CF9' should be 'CF9_FORCE' ...
      
      So this patch fixes the worst problems:
      
       - it orders the actual reboot logic to follow the reboot ordering
         pattern - it was in a pretty random order before for no good
         reason.
      
       - it fixes the CF9 misnomers and uses BOOT_CF9_FORCE and
         BOOT_CF9_SAFE flags to make the code more obvious.
      
       - it tries the BIOS reboot method before the PCI reboot method.
         (Since 'BIOS' is a terminal reboot method resulting in a hang
          if it does not work, this is essentially equivalent to removing
          the PCI reboot method from the default reboot chain.)
      
       - just for the miraculous possibility of terminal (resulting
         in hang) reboot methods of triple fault or BIOS returning
         without having done their job, there's an ordering between
         them as well.
      Reported-and-bisected-and-tested-by: NSteven Rostedt <rostedt@goodmis.org>
      Cc: Li Aubrey <aubrey.li@linux.intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Matthew Garrett <mjg59@srcf.ucam.org>
      Link: http://lkml.kernel.org/r/20140404064120.GB11877@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      5be44a6f
    • C
      percpu: Replace __get_cpu_var with this_cpu_ptr · fdb9c293
      Christoph Lameter 提交于
      __this_cpu_ptr is being phased out.  Use raw_cpu_ptr instead which was
      introduced in 3.15-rc1.  One case of using __get_cpu_var in the
      get_cpu_var macro for address calculation was remaining in
      include/linux/percpu.h.
      
      tj: Updated patch description.
      Signed-off-by: NChristoph Lameter <cl@linux.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      fdb9c293
  12. 15 4月, 2014 1 次提交
    • D
      net: filter: seccomp: fix wrong decoding of BPF_S_ANC_SECCOMP_LD_W · 8c482cdc
      Daniel Borkmann 提交于
      While reviewing seccomp code, we found that BPF_S_ANC_SECCOMP_LD_W has
      been wrongly decoded by commit a8fc9277 ("sk-filter: Add ability to
      get socket filter program (v2)") into the opcode BPF_LD|BPF_B|BPF_ABS
      although it should have been decoded as BPF_LD|BPF_W|BPF_ABS.
      
      In practice, this should not have much side-effect though, as such
      conversion is/was being done through prctl(2) PR_SET_SECCOMP. Reverse
      operation PR_GET_SECCOMP will only return the current seccomp mode, but
      not the filter itself. Since the transition to the new BPF infrastructure,
      it's also not used anymore, so we can simply remove this as it's
      unreachable.
      
      Fixes: a8fc9277 ("sk-filter: Add ability to get socket filter program (v2)")
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      8c482cdc
  13. 12 4月, 2014 1 次提交
    • D
      net: Fix use after free by removing length arg from sk_data_ready callbacks. · 676d2369
      David S. Miller 提交于
      Several spots in the kernel perform a sequence like:
      
      	skb_queue_tail(&sk->s_receive_queue, skb);
      	sk->sk_data_ready(sk, skb->len);
      
      But at the moment we place the SKB onto the socket receive queue it
      can be consumed and freed up.  So this skb->len access is potentially
      to freed up memory.
      
      Furthermore, the skb->len can be modified by the consumer so it is
      possible that the value isn't accurate.
      
      And finally, no actual implementation of this callback actually uses
      the length argument.  And since nobody actually cared about it's
      value, lots of call sites pass arbitrary values in such as '0' and
      even '1'.
      
      So just remove the length argument from the callback, that way there
      is no confusion whatsoever and all of these use-after-free cases get
      fixed as a side effect.
      
      Based upon a patch by Eric Dumazet and his suggestion to audit this
      issue tree-wide.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      676d2369
  14. 11 4月, 2014 7 次提交
  15. 10 4月, 2014 1 次提交
    • J
      block: fix regression with block enabled tagging · 360f92c2
      Jens Axboe 提交于
      Martin reported that his test system would not boot with
      current git, it oopsed with this:
      
      BUG: unable to handle kernel paging request at ffff88046c6c9e80
      IP: [<ffffffff812971e0>] blk_queue_start_tag+0x90/0x150
      PGD 1ddf067 PUD 1de2067 PMD 47fc7d067 PTE 800000046c6c9060
      Oops: 0002 [#1] SMP DEBUG_PAGEALLOC
      Modules linked in: sd_mod lpfc(+) scsi_transport_fc scsi_tgt oracleasm
      rpcsec_gss_krb5 ipv6 igb dca i2c_algo_bit i2c_core hwmon
      CPU: 3 PID: 87 Comm: kworker/u17:1 Not tainted 3.14.0+ #246
      Hardware name: Supermicro X9DRX+-F/X9DRX+-F, BIOS 3.00 07/09/2013
      Workqueue: events_unbound async_run_entry_fn
      task: ffff8802743c2150 ti: ffff880273d02000 task.ti: ffff880273d02000
      RIP: 0010:[<ffffffff812971e0>]  [<ffffffff812971e0>]
      blk_queue_start_tag+0x90/0x150
      RSP: 0018:ffff880273d03a58  EFLAGS: 00010092
      RAX: ffff88046c6c9e78 RBX: ffff880077208e78 RCX: 00000000fffc8da6
      RDX: 00000000fffc186d RSI: 0000000000000009 RDI: 00000000fffc8d9d
      RBP: ffff880273d03a88 R08: 0000000000000001 R09: ffff8800021c2410
      R10: 0000000000000005 R11: 0000000000015b30 R12: ffff88046c5bb8a0
      R13: ffff88046c5c0890 R14: 000000000000001e R15: 000000000000001e
      FS:  0000000000000000(0000) GS:ffff880277b00000(0000)
      knlGS:0000000000000000
      CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
      CR2: ffff88046c6c9e80 CR3: 00000000018f6000 CR4: 00000000000407e0
      Stack:
       ffff880273d03a98 ffff880474b18800 0000000000000000 ffff880474157000
       ffff88046c5c0890 ffff880077208e78 ffff880273d03ae8 ffffffff813b9e62
       ffff880200000010 ffff880474b18968 ffff880474b18848 ffff88046c5c0cd8
      Call Trace:
       [<ffffffff813b9e62>] scsi_request_fn+0xf2/0x510
       [<ffffffff81293167>] __blk_run_queue+0x37/0x50
       [<ffffffff8129ac43>] blk_execute_rq_nowait+0xb3/0x130
       [<ffffffff8129ad24>] blk_execute_rq+0x64/0xf0
       [<ffffffff8108d2b0>] ? bit_waitqueue+0xd0/0xd0
       [<ffffffff813bba35>] scsi_execute+0xe5/0x180
       [<ffffffff813bbe4a>] scsi_execute_req_flags+0x9a/0x110
       [<ffffffffa01b1304>] sd_spinup_disk+0x94/0x460 [sd_mod]
       [<ffffffff81160000>] ? __unmap_hugepage_range+0x200/0x2f0
       [<ffffffffa01b2b9a>] sd_revalidate_disk+0xaa/0x3f0 [sd_mod]
       [<ffffffffa01b2fb8>] sd_probe_async+0xd8/0x200 [sd_mod]
       [<ffffffff8107703f>] async_run_entry_fn+0x3f/0x140
       [<ffffffff8106a1c5>] process_one_work+0x175/0x410
       [<ffffffff8106b373>] worker_thread+0x123/0x400
       [<ffffffff8106b250>] ? manage_workers+0x160/0x160
       [<ffffffff8107104e>] kthread+0xce/0xf0
       [<ffffffff81070f80>] ? kthread_freezable_should_stop+0x70/0x70
       [<ffffffff815f0bac>] ret_from_fork+0x7c/0xb0
       [<ffffffff81070f80>] ? kthread_freezable_should_stop+0x70/0x70
      Code: 48 0f ab 11 72 db 48 81 4b 40 00 00 10 00 89 83 08 01 00 00 48 89
      df 49 8b 04 24 48 89 1c d0 e8 f7 a8 ff ff 49 8b 85 28 05 00 00 <48> 89
      58 08 48 89 03 49 8d 85 28 05 00 00 48 89 43 08 49 89 9d
      RIP  [<ffffffff812971e0>] blk_queue_start_tag+0x90/0x150
       RSP <ffff880273d03a58>
      CR2: ffff88046c6c9e80
      
      Martin bisected and found this to be the problem patch;
      
      	commit 6d113398
      	Author: Jan Kara <jack@suse.cz>
      	Date:   Mon Feb 24 16:39:54 2014 +0100
      
      	    block: Stop abusing rq->csd.list in blk-softirq
      
      and the problem was immediately apparent. The patch states that
      it is safe to reuse queuelist at completion time, since it is
      no longer used. However, that is not true if a device is using
      block enabled tagging. If that is the case, then the queuelist
      is reused to keep track of busy tags. If a device also ended
      up using softirq completions, we'd reuse ->queuelist for the
      IPI handling while block tagging was still using it. Boom.
      
      Fix this by adding a new ipi_list list head, and share the
      memory used with the request hash table. The hash table is
      never used after the request is moved to the dispatch list,
      which happens long before any potential completion of the
      request. Add a new request bit for this, so we don't have
      cases that check rq->hash while it could potentially have
      been reused for the IPI completion.
      Reported-by: NMartin K. Petersen <martin.petersen@oracle.com>
      Tested-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      360f92c2