- 24 10月, 2014 1 次提交
-
-
由 Miklos Szeredi 提交于
It's already duplicated in btrfs and about to be used in overlayfs too. Move the sticky bit check to an inline helper and call the out-of-line helper only in the unlikly case of the sticky bit being set. Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz>
-
- 17 10月, 2014 1 次提交
-
-
由 Chris Mason 提交于
This reverts commit 9c3b306e. Switching only one commit root during a transaction is wrong because it leads the fs into an inconsistent state. All commit roots should be switched at once, at transaction commit time, otherwise backref walking can often miss important references that were only accessible through the old commit root. Plus, the root item for the snapshot's root wasn't getting updated and preventing the next transaction commit to do it. This made several users get into random corruption issues after creation of readonly snapshots. A regression test for xfstests will follow soon. Cc: stable@vger.kernel.org # 3.17 Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 09 10月, 2014 1 次提交
-
-
由 Eric W. Biederman 提交于
Now that d_invalidate can no longer fail, stop returning a useless return code. For the few callers that checked the return code update remove the handling of d_invalidate failure. Reviewed-by: NMiklos Szeredi <miklos@szeredi.hu> Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 02 10月, 2014 3 次提交
-
-
由 David Sterba 提交于
Rename to btrfs_alloc_tree_block as it fits to the alloc/find/free + _tree_block family. The parameter blocksize was set to the metadata block size, directly or indirectly. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
There are the branch hints that obviously depend on the data being processed, the CPU predictor will do better job according to the actual load. It also does not make sense to use the hints in slow paths that do a lot of other operations like locking, waiting or IO. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
Signed type mismatches the ioctl structure, all extent calculations are done on unsigned types. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
- 18 9月, 2014 10 次提交
-
-
由 Miao Xie 提交于
->total_bytes,->disk_total_bytes,->bytes_used is protected by chunk lock when we change them, but sometimes we read them without any lock, and we might get unexpected value. We fix this problem like inode's i_size. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
The behaviour of a 'chattr -c' consists of getting the current flags, clearing the FS_COMPR_FL bit and then sending the result to the set flags ioctl - this means the bit FS_NOCOMP_FL isn't set in the flags passed to the ioctl. This results in the compression property not being cleared from the inode - it was cleared only if the bit FS_NOCOMP_FL was set in the received flags. Reproducer: $ mkfs.btrfs -f /dev/sdd $ mount /dev/sdd /mnt && cd /mnt $ mkdir a $ chattr +c a $ touch a/file $ lsattr a/file --------c------- a/file $ chattr -c a $ touch a/file2 $ lsattr a/file2 --------c------- a/file2 $ lsattr -d a ---------------- a Reported-by: NAndreas Schneider <asn@cryptomilk.org> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
None of the uses of btrfs_search_forward() need to have the path nodes (level >= 1) read locked, only the leaf needs to be locked while the caller processes it. Therefore make it return a path with all nodes unlocked, except for the leaf. This change is motivated by the observation that during a file fsync we repeatdly call btrfs_search_forward() and process the returned leaf while upper nodes of the returned path (level >= 1) are read locked, which unnecessarily blocks other tasks that want to write to the same fs/subvol btree. Therefore instead of modifying the fsync code to unlock all nodes with level >= 1 immediately after calling btrfs_search_forward(), change btrfs_search_forward() to do it, so that it benefits all callers. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
The transaction thread may want to do more work, namely it pokes the cleaner ktread that will start processing uncleaned subvols. This can be triggered by user via the 'btrfs fi sync' command, otherwise there was a delay up to 30 seconds before the cleaner started to clean old snapshots. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Anand Jain 提交于
as in the disk add patch, disk detached from the volume must be recorded in the syslog as well for the same reason. Signed-off-by: NAnand Jain <Anand.Jain@oracle.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Anand Jain 提交于
when we add a new disk to the mounted btrfs we don't record it as of now, disk add is a critical change of btrfs configuration, it must be recorded in the syslog to help offline investigations of customer problems when reported. Signed-off-by: NAnand Jain <Anand.Jain@oracle.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
The form (value + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT is equivalent to (value + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE The rest is a simple subsitution, no difference in the generated assembly code. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
The nodesize and leafsize were never of different values. Unify the usage and make nodesize the one. Cleanup the redundant checks and helpers. Shaves a few bytes from .text: text data bss dec hex filename 852418 24560 23112 900090 dbbfa btrfs.ko.before 851074 24584 23112 898770 db6d2 btrfs.ko.after Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
btrfs_set_key_type and btrfs_key_type are used inconsistently along with open coded variants. Other members of btrfs_key are accessed directly without any helpers anyway. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
The naming is confusing, generic yet used for a specific cache. Add a prefix 'ino_' or rename appropriately. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
- 09 9月, 2014 1 次提交
-
-
由 Dan Carpenter 提交于
The "inherit" in btrfs_ioctl_snap_create_v2() and "vol_args" in btrfs_ioctl_rm_dev() are ERR_PTRs so we can't call kfree() on them. These kind of bugs are "One Err Bugs" where there is just one error label that does everything. I could set the "inherit = NULL" and keep the single out label but it ends up being more complicated that way. It makes the code simpler to re-order the unwind so it's in the mirror order of the allocation and introduce some new error labels. Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 27 8月, 2014 1 次提交
-
-
由 Chris Mason 提交于
The autodefrag code skips defrag when two extents are adjacent. But one big advantage for autodefrag is cutting down on the number of small extents, even when they are adjacent. This commit changes it to defrag all small extents. Signed-off-by: NChris Mason <clm@fb.com>
-
- 21 8月, 2014 2 次提交
-
-
由 Filipe Manana 提交于
When cloning a file that consists of an inline extent, we were creating an extent map that represents a non-existing trailing hole starting at a file offset that isn't a multiple of the sector size. This happened because when processing an inline extent we weren't aligning the extent's length to the sector size, and therefore incorrectly treating the range [inline_extent_length; sector_size[ as a hole. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NSatoru Takeuchi <takeuchi_satoru@jp.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
This is a better solution for the problem addressed in the following commit: Btrfs: update commit root on snapshot creation after orphan cleanup (3821f348) The previous solution wasn't the best because of 2 reasons: 1) It added another full transaction commit, which is more expensive than just swapping the commit root with the root; 2) If a reboot happened after the first transaction commit (the one that creates the snapshot) and before the second transaction commit, then we would end up with the same problem if a send using that snapshot was requested before the first transaction commit after the reboot. This change addresses those 2 issues. The second issue is addressed by switching the commit root in the dentry lookup VFS callback, which is also called by the snapshot/subvol creation ioctl and performs orphan cleanup if needed. Like the vfs, the ioctl locks the parent inode too, preventing race issues between a dentry lookup and snapshot creation. Cc: Alex Lyakas <alex.btrfs@zadarastorage.com> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 03 7月, 2014 2 次提交
-
-
由 Filipe Manana 提交于
The transaction handle was being used after being freed. Cc: Chris Mason <clm@fb.com> Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
This change is based on the corresponding recent change for ext4: ext4: atomically set inode->i_flags in ext4_set_inode_flags() That has the following commit message that applies to btrfs as well: "Use cmpxchg() to atomically set i_flags instead of clearing out the S_IMMUTABLE, S_APPEND, etc. flags and then setting them from the EXT4_IMMUTABLE_FL, EXT4_APPEND_FL flags, since this opens up a race where an immutable file has the immutable flag cleared for a brief window of time." Replacing EXT4_IMMUTABLE_FL and EXT4_APPEND_FL with BTRFS_INODE_IMMUTABLE and BTRFS_INODE_APPEND, respectively. Reviewed-by: NDavid Sterba <dsterba@suse.cz> Reviewed-by: NSatoru Takeuchi <takeuchi_satoru@jp.fujitsu.com> Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 14 6月, 2014 1 次提交
-
-
由 Gerhard Heift 提交于
This new ioctl call allows the user to supply a buffer of varying size in which a tree search can store its results. This is much more flexible if you want to receive items which are larger than the current fixed buffer of 3992 bytes or if you want to fetch more items at once. Items larger than this buffer are for example some of the type EXTENT_CSUM. Signed-off-by: NGerhard Heift <Gerhard@Heift.Name> Signed-off-by: NChris Mason <clm@fb.com> Acked-by: NDavid Sterba <dsterba@suse.cz>
-
- 13 6月, 2014 5 次提交
-
-
由 Gerhard Heift 提交于
By copying each found item seperatly to userspace, we do not need extra buffer in the kernel. Signed-off-by: NGerhard Heift <Gerhard@Heift.Name> Signed-off-by: NChris Mason <clm@fb.com> Acked-by: NDavid Sterba <dsterba@suse.cz>
-
由 Gerhard Heift 提交于
If an item in tree_search is too large to be stored in the given buffer, return the needed size (including the header). Signed-off-by: NGerhard Heift <Gerhard@Heift.Name> Signed-off-by: NChris Mason <clm@fb.com> Acked-by: NDavid Sterba <dsterba@suse.cz>
-
由 Gerhard Heift 提交于
In copy_to_sk, if an item is too large for the given buffer, it now returns -EOVERFLOW instead of copying a search_header with len = 0. For backward compatibility for the first item it still copies such a header to the buffer, but not any other following items, which could have fitted. tree_search changes -EOVERFLOW back to 0 to behave similiar to the way it behaved before this patch. Signed-off-by: NGerhard Heift <Gerhard@Heift.Name> Signed-off-by: NChris Mason <clm@fb.com> Acked-by: NDavid Sterba <dsterba@suse.cz>
-
由 Gerhard Heift 提交于
rewrite search_ioctl to accept a buffer with varying size Signed-off-by: NGerhard Heift <Gerhard@Heift.Name> Signed-off-by: NChris Mason <clm@fb.com> Acked-by: NDavid Sterba <dsterba@suse.cz>
-
由 Gerhard Heift 提交于
If the amount of items reached the given limit of nr_items, we can leave copy_to_sk without updating the key. Also by returning 1 we leave the loop in search_ioctl without rechecking if we reached the given limit. Signed-off-by: NGerhard Heift <Gerhard@Heift.Name> Signed-off-by: NChris Mason <clm@fb.com> Acked-by: NDavid Sterba <dsterba@suse.cz>
-
- 10 6月, 2014 12 次提交
-
-
由 Filipe Manana 提交于
When cloning into a file, we were correctly replacing the extent items in the target range and removing the extent maps. However we weren't replacing the extent maps with new ones that point to the new extents - as a consequence, an incremental fsync (when the inode doesn't have the full sync flag) was a NOOP, since it relies on the existence of extent maps in the modified list of the inode's extent map tree, which was empty. Therefore add new extent maps to reflect the target clone range. A test case for xfstests follows. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Antonio Ospite 提交于
Signed-off-by: NAntonio Ospite <ao2@ao2.it> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fb.com> Cc: linux-btrfs@vger.kernel.org Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
If the NO_HOLES feature is enabled holes don't have file extent items in the btree that represent them anymore. This made the clone operation ignore the gaps that exist between consecutive file extent items and therefore not create the holes at the destination. When not using the NO_HOLES feature, the holes were created at the destination. A test case for xfstests follows. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Gui Hecheng 提交于
To be accurate about the error case, if the new size is beyond ULLONG_MAX, return ERANGE instead of EINVAL. Signed-off-by: NGui Hecheng <guihc.fnst@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
On snapshot creation (either writable or read-only), we do orphan cleanup against the root of the snapshot. If the cleanup did remove any orphans, then the current root node will be different from the commit root node until the next transaction commit happens. A send operation always uses the commit root of a snapshot - this means it will see the orphans if it starts computing the send stream before the next transaction commit happens (triggered by a timer or sync() for .e.g), which is when the commit root gets assigned a reference to current root, where the orphans are not visible anymore. The consequence of send seeing the orphans is explained below. For example: mkfs.btrfs -f /dev/sdd mount -o commit=999 /dev/sdd /mnt # open a file with O_TMPFILE and leave it open # write some data to the file btrfs subvolume snapshot -r /mnt /mnt/snap1 btrfs send /mnt/snap1 -f /tmp/send.data The send operation will fail with the following error: ERROR: send ioctl failed with -116: Stale file handle What happens here is that our snapshot has an orphan inode still visible through the commit root, that corresponds to the tmpfile. However send will attempt to call inode.c:btrfs_iget(), with the goal of reading the file's data, which will return -ESTALE because it will use the current root (and not the commit root) of the snapshot. Of course, there are other cases where we can get orphans, but this example using a tmpfile makes it much easier to reproduce the issue. Therefore on snapshot creation, after calling btrfs_orphan_cleanup, if the commit root is different from the current root, just commit the transaction associated with the snapshot's root (if it exists), so that a send will not see any orphans that don't exist anymore. This also guarantees a send will always see the same content regardless of whether a transaction commit happened already before the send was requested and after the orphan cleanup (meaning the commit root and current roots are the same) or it hasn't happened yet (commit and current roots are different). Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
In ioctl.c:lock_extent_range(), after locking our target range, the ordered extent that btrfs_lookup_first_ordered_extent() returns us may not overlap our target range at all. In this case we would just unlock our target range, wait for any new ordered extents that overlap the range to complete, lock again the range and repeat all these steps until we don't get any ordered extent and the delalloc flag isn't set in the io tree for our target range. Therefore just stop if we get an ordered extent that doesn't overlap our target range and the dealalloc flag isn't set for the range in the inode's io tree. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
When cloning a range of a file, we were visiting all the extent items in the btree that belong to our source inode. We don't need to visit those extent items that don't overlap the range we are cloning, as doing so only makes us waste time and do unnecessary btree navigations (btrfs_next_leaf) for inodes that have a large number of file extent items in the btree. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
We were setting the BTRFS_ROOT_SUBVOL_DEAD flag on the root of the parent of our target snapshot, instead of setting it in the target snapshot's root. This is easy to observe by running the following scenario: mkfs.btrfs -f /dev/sdd mount /dev/sdd /mnt btrfs subvolume create /mnt/first_subvol btrfs subvolume snapshot -r /mnt /mnt/mysnap1 btrfs subvolume delete /mnt/first_subvol btrfs subvolume snapshot -r /mnt /mnt/mysnap2 btrfs send -p /mnt/mysnap1 /mnt/mysnap2 -f /tmp/send.data The send command failed because the send ioctl returned -EPERM. A test case for xfstests follows. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
We were cleaning the clone target file range from the page cache before we did replace the file extent items in the fs tree. This was racy, as right after cleaning the relevant range from the page cache and before replacing the file extent items, a read against that range could be performed by another task and populate again the page cache with stale data (stale after the cloning finishes). This would result in reads after the clone operation successfully finishes to get old data (and potentially for a very long time). Therefore evict the pages after replacing the file extent items, so that subsequent reads will always get the new data. Similarly, we were prone to races while cloning the file extent items because we weren't locking the target range and wait for any existing ordered extents against that range to complete. It was possible that after cloning the extent items, a write operation that was performed before the clone operation and overlaps the same range, would end up undoing all or part of the work the clone operation did (a worker task running inode.c:btrfs_finish_ordered_io). Therefore lock the target range in the io tree, wait for all pending ordered extents against that range to finish and then safely perform the cloning. The issue of reading stale data after the clone operation is easy to reproduce by running the following C program in a loop until it exits with return value 1. #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> #include <pthread.h> #include <fcntl.h> #include <assert.h> #include <asm/types.h> #include <linux/ioctl.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/ioctl.h> #define SRC_FILE "/mnt/sdd/foo" #define DST_FILE "/mnt/sdd/bar" #define FILE_SIZE (16 * 1024) #define PATTERN_SRC 'X' #define PATTERN_DST 'Y' struct btrfs_ioctl_clone_range_args { __s64 src_fd; __u64 src_offset, src_length; __u64 dest_offset; }; #define BTRFS_IOCTL_MAGIC 0x94 #define BTRFS_IOC_CLONE_RANGE _IOW(BTRFS_IOCTL_MAGIC, 13, \ struct btrfs_ioctl_clone_range_args) static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; static int clone_done = 0; static int reader_ready = 0; static int stale_data = 0; static void *reader_loop(void *arg) { char buf[4096], want_buf[4096]; memset(want_buf, PATTERN_SRC, 4096); pthread_mutex_lock(&mutex); reader_ready = 1; pthread_mutex_unlock(&mutex); while (1) { int done, fd, ret; fd = open(DST_FILE, O_RDONLY); assert(fd != -1); pthread_mutex_lock(&mutex); done = clone_done; pthread_mutex_unlock(&mutex); ret = read(fd, buf, 4096); assert(ret == 4096); close(fd); if (done) { ret = memcmp(buf, want_buf, 4096); if (ret == 0) { printf("Found new content\n"); } else { printf("Found old content\n"); pthread_mutex_lock(&mutex); stale_data = 1; pthread_mutex_unlock(&mutex); } break; } } return NULL; } int main(int argc, char *argv[]) { pthread_t reader; int ret, i, fd; struct btrfs_ioctl_clone_range_args clone_args; int fd1, fd2; ret = remove(SRC_FILE); if (ret == -1 && errno != ENOENT) { fprintf(stderr, "Error deleting src file: %s\n", strerror(errno)); return 1; } ret = remove(DST_FILE); if (ret == -1 && errno != ENOENT) { fprintf(stderr, "Error deleting dst file: %s\n", strerror(errno)); return 1; } fd = open(SRC_FILE, O_CREAT | O_WRONLY | O_TRUNC, S_IRWXU); assert(fd != -1); for (i = 0; i < FILE_SIZE; i++) { char c = PATTERN_SRC; ret = write(fd, &c, 1); assert(ret == 1); } close(fd); fd = open(DST_FILE, O_CREAT | O_WRONLY | O_TRUNC, S_IRWXU); assert(fd != -1); for (i = 0; i < FILE_SIZE; i++) { char c = PATTERN_DST; ret = write(fd, &c, 1); assert(ret == 1); } close(fd); sync(); ret = pthread_create(&reader, NULL, reader_loop, NULL); assert(ret == 0); while (1) { int r; pthread_mutex_lock(&mutex); r = reader_ready; pthread_mutex_unlock(&mutex); if (r) break; } fd1 = open(SRC_FILE, O_RDONLY); if (fd1 < 0) { fprintf(stderr, "Error open src file: %s\n", strerror(errno)); return 1; } fd2 = open(DST_FILE, O_RDWR); if (fd2 < 0) { fprintf(stderr, "Error open dst file: %s\n", strerror(errno)); return 1; } clone_args.src_fd = fd1; clone_args.src_offset = 0; clone_args.src_length = 4096; clone_args.dest_offset = 0; ret = ioctl(fd2, BTRFS_IOC_CLONE_RANGE, &clone_args); assert(ret == 0); close(fd1); close(fd2); pthread_mutex_lock(&mutex); clone_done = 1; pthread_mutex_unlock(&mutex); ret = pthread_join(reader, NULL); assert(ret == 0); pthread_mutex_lock(&mutex); ret = stale_data ? 1 : 0; pthread_mutex_unlock(&mutex); return ret; } Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 ZhangZhen 提交于
use the newer and more pleasant kstrtoull() to replace simple_strtoull(), because simple_strtoull() is marked for obsoletion. Signed-off-by: NZhang Zhen <zhenzhang.zhang@huawei.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-