- 22 4月, 2014 19 次提交
-
-
由 Heiko Carstens 提交于
Check if siif is available before setting. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Heiko Carstens 提交于
The new guest memory access function write_guest() and read_guest() can be used to access guest memory in an architecture compliant way. These functions will look at the vcpu's PSW and select the correct address space for memory access and also perform correct address wrap around. In case DAT is turned on, page tables will be walked otherwise access will happen to real or absolute memory. Any access exception will be recognized and exception data will be stored in the vcpu's kvm_vcpu_arch.pgm member. Subsequently an exception can be injected if necessary. Missing are: - key protection checks - access register mode support - program event recording support This patch also adds write_guest_real(), read_guest_real(), write_guest_absolute() and read_guest_absolute() guest functions which can be used to access real and absolute storage. These functions currently do not perform any access checks, since there is no use case (yet?). Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Heiko Carstens 提交于
put_guest_lc, read_guest_lc and write_guest_lc are guest access functions which shall only be used to access the lowcore of a vcpu. These functions should be used for e.g. interrupt handlers where no guest memory access protection facilities, like key or low address protection, are applicable. At a later point guest vcpu lowcore access should happen via pinned prefix pages, so that these pages can be accessed directly via the kernel mapping. All of these *_lc functions can be removed then. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Heiko Carstens 提交于
Add a 'struct kvm_s390_pgm_info pgm' member to kvm_vcpu_arch. This structure will be used if during instruction emulation in the context of a vcpu exception data needs to be stored somewhere. Also add a helper function kvm_s390_inject_prog_cond() which can inject vcpu's last exception if needed. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Heiko Carstens 提交于
Add kvm_s390_logical_to_effective() helper which converts a guest vcpu's logical storage address to a guest vcpu effective address by applying the rules of the vcpu's addressing mode defined by PSW bits 31 and 32 (extendended and basic addressing mode). Depending on the vcpu's addressing mode the upper 40 bits (24 bit addressing mode), 33 bits (31 bit addressing mode) or no bits (64 bit addressing mode) will be zeroed and the remaining bits will be returned. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Heiko Carstens 提交于
Add 'union ctlreg0_bits' to easily allow setting and testing bits of control register 0 bits. This patch only adds the bits needed for the new guest access functions. Other bits and control registers can be added when needed. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Heiko Carstens 提交于
Introduce a 'struct psw' which makes it easier to decode and test if certain bits in a psw are set or are not set. In addition also add a 'psw_bits()' helper define which allows to directly modify and test a psw_t structure. E.g. psw_t psw; psw_bits(psw).t = 1; /* set dat bit */ Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: NThomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Heiko Carstens 提交于
Make test_vfacility() available for other files. This is needed for the new guest access functions, which test if certain facilities are available for a guest. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Jens Freimann 提交于
Add a new data structure and function that allows to inject all kinds of interrupt as defined in the PoP Signed-off-by: NJens Freimann <jfrei@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Dominik Dingel 提交于
To enable CMMA and to reset its state we use the vm kvm_device ioctls, encapsulating attributes within the KVM_S390_VM_MEM_CTRL group. Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Dominik Dingel 提交于
When userspace reset the guest without notifying kvm, the CMMA state of the pages might be unused, resulting in guest data corruption. To avoid this, CMMA must be enabled only if userspace understands the implications. CMMA must be enabled before vCPU creation. It can't be switched off once enabled. All subsequently created vCPUs will be enabled for CMMA according to the CMMA state of the VM. Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> [remove now unnecessary calls to page_table_reset_pgste]
-
由 Dominik Dingel 提交于
We sometimes need to get/set attributes specific to a virtual machine and so need something else than ONE_REG. Let's copy the KVM_DEVICE approach, and define the respective ioctls for the vm file descriptor. Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Acked-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Jason J. Herne 提交于
Replace the kvm_s390_sync_dirty_log() stub with code to construct the KVM dirty_bitmap from S390 memory change bits. Also add code to properly clear the dirty_bitmap size when clearing the bitmap. Signed-off-by: NJason J. Herne <jjherne@us.ibm.com> CC: Dominik Dingel <dingel@linux.vnet.ibm.com> [Dominik Dingel: use gmap_test_and_clear_dirty, locking fixes] Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Dominik Dingel 提交于
For live migration kvm needs to test and clear the dirty bit of guest pages. That for is ptep_test_and_clear_user_dirty, to be sure we are not racing with other code, we protect the pte. This needs to be done within the architecture memory management code. Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Martin Schwidefsky 提交于
Switch the user dirty bit detection used for migration from the hardware provided host change-bit in the pgste to a fault based detection method. This reduced the dependency of the host from the storage key to a point where it becomes possible to enable the RCP bypass for KVM guests. The fault based dirty detection will only indicate changes caused by accesses via the guest address space. The hardware based method can detect all changes, even those caused by I/O or accesses via the kernel page table. The KVM/qemu code needs to take this into account. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Dominik Dingel 提交于
The first invocation of storage key operations on a given cpu will be intercepted. On these intercepts we will enable storage keys for the guest and remove the previously added intercepts. Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Dominik Dingel 提交于
Introduce a new function s390_enable_skey(), which enables storage key handling via setting the use_skey flag in the mmu context. This function is only useful within the context of kvm. Note that enabling storage keys will cause a one-time hickup when walking the page table; however, it saves us special effort for cases like clear reset while making it possible for us to be architecture conform. s390_enable_skey() takes the page table lock to prevent reseting storage keys triggered from multiple vcpus. Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Dominik Dingel 提交于
page_table_reset_pgste() already does a complete page table walk to reset the pgste. Enhance it to initialize the storage keys to PAGE_DEFAULT_KEY if requested by the caller. This will be used for lazy storage key handling. Also provide an empty stub for !CONFIG_PGSTE Lets adopt the current code (diag 308) to not clear the keys. Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Dominik Dingel 提交于
For lazy storage key handling, we need a mechanism to track if the process ever issued a storage key operation. This patch adds the basic infrastructure for making the storage key handling optional, but still leaves it enabled for now by default. Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 11 4月, 2014 5 次提交
-
-
由 Heiko Carstens 提交于
Reported-by: NMichael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Heiko Carstens 提交于
The whole point of the out-of-line strnlen_user_srst() function was to avoid corruption of register 0 due to register asm assignment. However 'somebody' :) forgot to remove the update_primary_asce() function call, which may clobber register 0 contents. So let's remove that call and also move the size check to the calling function. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Heiko Carstens 提交于
Actually this also enable sys_setattr and sys_getattr, since I forgot to increase NR_syscalls when adding those syscalls. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Heiko Carstens 提交于
It doesn't make sense to map user space addresses to kernel symbols when show_registers() prints a user space psw. So just skip the translation part if a user space psw is handled. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 09 4月, 2014 3 次提交
-
-
由 Heiko Carstens 提交于
Print extra debugging information to the console if the kernel or a user space process crashed (with user space debugging enabled): - contents of control register 7 and 13 - failing address and translation exception identification - page table walk for the failing address Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Heiko Carstens 提交于
smp_stop_cpu() should stop the current cpu even for !CONFIG_SMP. Otherwise machine_halt() will return and and the machine generates a panic instread of simply stopping the current cpu: Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000000 CPU: 0 PID: 1 Comm: systemd-shutdow Not tainted 3.14.0-01527-g2b6ef16a6bc5 #10 [...] Call Trace: ([<0000000000110db0>] show_trace+0xf8/0x158) [<0000000000110e7a>] show_stack+0x6a/0xe8 [<000000000074dba8>] panic+0xe4/0x268 [<0000000000140570>] do_exit+0xa88/0xb2c [<000000000016e12c>] SyS_reboot+0x1f0/0x234 [<000000000075da70>] sysc_nr_ok+0x22/0x28 [<000000007d5a09b4>] 0x7d5a09b4 Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Martin Schwidefsky 提交于
The git commit c63badeb "s390: optimize control register update" broke the update for control register 0. After the update do the lctlg from the correct value. Cc: <stable@vger.kernel.org> # 3.14 Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 08 4月, 2014 2 次提交
-
-
由 Uwe Kleine-König 提交于
If the renamed symbol is defined lib/iomap.c implements ioport_map and ioport_unmap and currently (nearly) all platforms define the port accessor functions outb/inb and friend unconditionally. So HAS_IOPORT_MAP is the better name for this. Consequently NO_IOPORT is renamed to NO_IOPORT_MAP. The motivation for this change is to reintroduce a symbol HAS_IOPORT that signals if outb/int et al are available. I will address that at least one merge window later though to keep surprises to a minimum and catch new introductions of (HAS|NO)_IOPORT. The changes in this commit were done using: $ git grep -l -E '(NO|HAS)_IOPORT' | xargs perl -p -i -e 's/\b((?:CONFIG_)?(?:NO|HAS)_IOPORT)\b/$1_MAP/' Signed-off-by: NUwe Kleine-König <u.kleine-koenig@pengutronix.de> Acked-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alex Thorlton 提交于
The main motivation behind this patch is to provide a way to disable THP for jobs where the code cannot be modified, and using a malloc hook with madvise is not an option (i.e. statically allocated data). This patch allows us to do just that, without affecting other jobs running on the system. We need to do this sort of thing for jobs where THP hurts performance, due to the possibility of increased remote memory accesses that can be created by situations such as the following: When you touch 1 byte of an untouched, contiguous 2MB chunk, a THP will be handed out, and the THP will be stuck on whatever node the chunk was originally referenced from. If many remote nodes need to do work on that same chunk, they'll be making remote accesses. With THP disabled, 4K pages can be handed out to separate nodes as they're needed, greatly reducing the amount of remote accesses to memory. This patch is based on some of my work combined with some suggestions/patches given by Oleg Nesterov. The main goal here is to add a prctl switch to allow us to disable to THP on a per mm_struct basis. Here's a bit of test data with the new patch in place... First with the flag unset: # perf stat -a ./prctl_wrapper_mmv3 0 ./thp_pthread -C 0 -m 0 -c 512 -b 256g Setting thp_disabled for this task... thp_disable: 0 Set thp_disabled state to 0 Process pid = 18027 PF/ MAX MIN TOTCPU/ TOT_PF/ TOT_PF/ WSEC/ TYPE: CPUS WALL WALL SYS USER TOTCPU CPU WALL_SEC SYS_SEC CPU NODES 512 1.120 0.060 0.000 0.110 0.110 0.000 28571428864 -9223372036854775808 55803572 23 Performance counter stats for './prctl_wrapper_mmv3_hack 0 ./thp_pthread -C 0 -m 0 -c 512 -b 256g': 273719072.841402 task-clock # 641.026 CPUs utilized [100.00%] 1,008,986 context-switches # 0.000 M/sec [100.00%] 7,717 CPU-migrations # 0.000 M/sec [100.00%] 1,698,932 page-faults # 0.000 M/sec 355,222,544,890,379 cycles # 1.298 GHz [100.00%] 536,445,412,234,588 stalled-cycles-frontend # 151.02% frontend cycles idle [100.00%] 409,110,531,310,223 stalled-cycles-backend # 115.17% backend cycles idle [100.00%] 148,286,797,266,411 instructions # 0.42 insns per cycle # 3.62 stalled cycles per insn [100.00%] 27,061,793,159,503 branches # 98.867 M/sec [100.00%] 1,188,655,196 branch-misses # 0.00% of all branches 427.001706337 seconds time elapsed Now with the flag set: # perf stat -a ./prctl_wrapper_mmv3 1 ./thp_pthread -C 0 -m 0 -c 512 -b 256g Setting thp_disabled for this task... thp_disable: 1 Set thp_disabled state to 1 Process pid = 144957 PF/ MAX MIN TOTCPU/ TOT_PF/ TOT_PF/ WSEC/ TYPE: CPUS WALL WALL SYS USER TOTCPU CPU WALL_SEC SYS_SEC CPU NODES 512 0.620 0.260 0.250 0.320 0.570 0.001 51612901376 128000000000 100806448 23 Performance counter stats for './prctl_wrapper_mmv3_hack 1 ./thp_pthread -C 0 -m 0 -c 512 -b 256g': 138789390.540183 task-clock # 641.959 CPUs utilized [100.00%] 534,205 context-switches # 0.000 M/sec [100.00%] 4,595 CPU-migrations # 0.000 M/sec [100.00%] 63,133,119 page-faults # 0.000 M/sec 147,977,747,269,768 cycles # 1.066 GHz [100.00%] 200,524,196,493,108 stalled-cycles-frontend # 135.51% frontend cycles idle [100.00%] 105,175,163,716,388 stalled-cycles-backend # 71.07% backend cycles idle [100.00%] 180,916,213,503,160 instructions # 1.22 insns per cycle # 1.11 stalled cycles per insn [100.00%] 26,999,511,005,868 branches # 194.536 M/sec [100.00%] 714,066,351 branch-misses # 0.00% of all branches 216.196778807 seconds time elapsed As with previous versions of the patch, We're getting about a 2x performance increase here. Here's a link to the test case I used, along with the little wrapper to activate the flag: http://oss.sgi.com/projects/memtests/thp_pthread_mmprctlv3.tar.gz This patch (of 3): Revert commit 8e72033f and add in code to fix up any issues caused by the revert. The revert is necessary because hugepage_madvise would return -EINVAL when VM_NOHUGEPAGE is set, which will break subsequent chunks of this patch set. Here's a snip of an e-mail from Gerald detailing the original purpose of this code, and providing justification for the revert: "The intent of commit 8e72033f was to guard against any future programming errors that may result in an madvice(MADV_HUGEPAGE) on guest mappings, which would crash the kernel. Martin suggested adding the bit to arch/s390/mm/pgtable.c, if 8e72033f was to be reverted, because that check will also prevent a kernel crash in the case described above, it will now send a SIGSEGV instead. This would now also allow to do the madvise on other parts, if needed, so it is a more flexible approach. One could also say that it would have been better to do it this way right from the beginning..." Signed-off-by: NAlex Thorlton <athorlton@sgi.com> Suggested-by: NOleg Nesterov <oleg@redhat.com> Tested-by: NChristian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 4月, 2014 5 次提交
-
-
由 Heiko Carstens 提交于
The current uaccess code uses a page table walk in some circumstances, e.g. in case of the in atomic futex operations or if running on old hardware which doesn't support the mvcos instruction. However it turned out that the page table walk code does not correctly lock page tables when accessing page table entries. In other words: a different cpu may invalidate a page table entry while the current cpu inspects the pte. This may lead to random data corruption. Adding correct locking however isn't trivial for all uaccess operations. Especially copy_in_user() is problematic since that requires to hold at least two locks, but must be protected against ABBA deadlock when a different cpu also performs a copy_in_user() operation. So the solution is a different approach where we change address spaces: User space runs in primary address mode, or access register mode within vdso code, like it currently already does. The kernel usually also runs in home space mode, however when accessing user space the kernel switches to primary or secondary address mode if the mvcos instruction is not available or if a compare-and-swap (futex) instruction on a user space address is performed. KVM however is special, since that requires the kernel to run in home address space while implicitly accessing user space with the sie instruction. So we end up with: User space: - runs in primary or access register mode - cr1 contains the user asce - cr7 contains the user asce - cr13 contains the kernel asce Kernel space: - runs in home space mode - cr1 contains the user or kernel asce -> the kernel asce is loaded when a uaccess requires primary or secondary address mode - cr7 contains the user or kernel asce, (changed with set_fs()) - cr13 contains the kernel asce In case of uaccess the kernel changes to: - primary space mode in case of a uaccess (copy_to_user) and uses e.g. the mvcp instruction to access user space. However the kernel will stay in home space mode if the mvcos instruction is available - secondary space mode in case of futex atomic operations, so that the instructions come from primary address space and data from secondary space In case of kvm the kernel runs in home space mode, but cr1 gets switched to contain the gmap asce before the sie instruction gets executed. When the sie instruction is finished cr1 will be switched back to contain the user asce. A context switch between two processes will always load the kernel asce for the next process in cr1. So the first exit to user space is a bit more expensive (one extra load control register instruction) than before, however keeps the code rather simple. In sum this means there is no need to perform any error prone page table walks anymore when accessing user space. The patch seems to be rather large, however it mainly removes the the page table walk code and restores the previously deleted "standard" uaccess code, with a couple of changes. The uaccess without mvcos mode can be enforced with the "uaccess_primary" kernel parameter. Reported-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Martin Schwidefsky 提交于
The zEC12 machines introduced the local-clearing control for the IDTE and IPTE instruction. If the control is set only the TLB of the local CPU is cleared of entries, either all entries of a single address space for IDTE, or the entry for a single page-table entry for IPTE. Without the local-clearing control the TLB flush is broadcasted to all CPUs in the configuration, which is expensive. The reset of the bit mask of the CPUs that need flushing after a non-local IDTE is tricky. As TLB entries for an address space remain in the TLB even if the address space is detached a new bit field is required to keep track of attached CPUs vs. CPUs in the need of a flush. After a non-local flush with IDTE the bit-field of attached CPUs is copied to the bit-field of CPUs in need of a flush. The ordering of operations on cpu_attach_mask, attach_count and mm_cpumask(mm) is such that an underindication in mm_cpumask(mm) is prevented but an overindication in mm_cpumask(mm) is possible. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Martin Schwidefsky 提交于
The principles of operations states that the CPU is allowed to create TLB entries for an address space anytime while an ASCE is loaded to the control register. This is true even if the CPU is running in the kernel and the user address space is not (actively) accessed. In theory this can affect two aspects of the TLB flush logic. For full-mm flushes the ASCE of the dying process is still attached. The approach to flush first with IDTE and then just free all page tables can in theory lead to stale TLB entries. Use the batched free of page tables for the full-mm flushes as well. For operations that can have a stale ASCE in the control register, e.g. a delayed update_user_asce in switch_mm, load the kernel ASCE to prevent invalid TLBs from being created. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Thomas Huth 提交于
Use the new defines for external interruption codes to get rid of "magic" numbers in the s390 source code. And while we're at it, also rename the (un-)register_external_interrupt function to something shorter so that this patch does not exceed the 80 columns all over the place. Signed-off-by: NThomas Huth <thuth@linux.vnet.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Thomas Huth 提交于
Introduce defines for external interruption codes so that we can get rid of some "magic" numbers in the s390 source code. Signed-off-by: NThomas Huth <thuth@linux.vnet.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 02 4月, 2014 1 次提交
-
-
由 Al Viro 提交于
it only makes control flow in __fput() and friends more convoluted. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 01 4月, 2014 2 次提交
-
-
由 Christian Borntraeger 提交于
We need to reset the usage state of the pages on kexec/kdump, which use subcode 0 and 1. We will only do the cmma reset in the kernel, everything else is done in userspace as before. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Heiko Carstens 提交于
When reworking the bitops and atomic ops I missed that those instructions that got atomic behaviour only perform a "specific-operand-serialization" instead of a full "serialization". The compare-and-swap instruction used before performs a full serialization before and after the instruction is executed, which means it has full memory barrier semantics. In order to give the new bitops and atomic ops functions also full memory barrier semantics add a "bcr 14,0" before and after each of those new instructions which performs full serialization as well. This restores memory barrier semantics for bitops and atomic ops functions which return values, like e.g. atomic_add_return(), but not for functions which do not return a value, like e.g. atomic_add(). This is consistent to other architectures and what common code requires. Cc: stable@vger.kernel.org # v3.13+ Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 31 3月, 2014 1 次提交
-
-
由 Daniel Borkmann 提交于
This patch adds a jited flag into sk_filter struct in order to indicate whether a filter is currently jited or not. The size of sk_filter is not being expanded as the 32 bit 'len' member allows upper bits to be reused since a filter can currently only grow as large as BPF_MAXINSNS. Therefore, there's enough room also for other in future needed flags to reuse 'len' field if necessary. The jited flag also allows for having alternative interpreter functions running as currently, we can only detect jit compiled filters by testing fp->bpf_func to not equal the address of sk_run_filter(). Joint work with Alexei Starovoitov. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDaniel Borkmann <dborkman@redhat.com> Cc: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 3月, 2014 1 次提交
-
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
- 27 3月, 2014 1 次提交
-
-
由 Tom Herbert 提交于
The packet hash can be considered a property of the packet, not just on RX path. This patch changes name of rxhash and l4_rxhash skbuff fields to be hash and l4_hash respectively. This includes changing uses of the field in the code which don't call the access functions. Signed-off-by: NTom Herbert <therbert@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Mahesh Bandewar <maheshb@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-