- 20 5月, 2016 18 次提交
-
-
由 Andrew Morton 提交于
Lots of code does node = next_node(node, XXX); if (node == MAX_NUMNODES) node = first_node(XXX); so create next_node_in() to do this and use it in various places. [mhocko@suse.com: use next_node_in() helper] Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@kernel.org> Signed-off-by: NMichal Hocko <mhocko@suse.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Hui Zhu <zhuhui@xiaomi.com> Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
Many developers already know that field for reference count of the struct page is _count and atomic type. They would try to handle it directly and this could break the purpose of page reference count tracepoint. To prevent direct _count modification, this patch rename it to _refcount and add warning message on the code. After that, developer who need to handle reference count will find that field should not be accessed directly. [akpm@linux-foundation.org: fix comments, per Vlastimil] [akpm@linux-foundation.org: Documentation/vm/transhuge.txt too] [sfr@canb.auug.org.au: sync ethernet driver changes] Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Sunil Goutham <sgoutham@cavium.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Manish Chopra <manish.chopra@qlogic.com> Cc: Yuval Mintz <yuval.mintz@qlogic.com> Cc: Tariq Toukan <tariqt@mellanox.com> Cc: Saeed Mahameed <saeedm@mellanox.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
page_reference manipulation functions are introduced to track down reference count change of the page. Use it instead of direct modification of _count. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Sunil Goutham <sgoutham@cavium.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Li Peng 提交于
/sys/kernel/slab/xx/defrag_ratio should be remote_node_defrag_ratio. Link: http://lkml.kernel.org/r/1463449242-5366-1-git-send-email-lip@dtdream.comSigned-off-by: NLi Peng <lip@dtdream.com> Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
Now we have IS_ENABLED helper to check if a Kconfig option is enabled or not, so ZONE_DMA_FLAG sounds no longer useful. And, the use of ZONE_DMA_FLAG in slab looks pointless according to the comment [1] from Johannes Weiner, so remove them and ORing passed in flags with the cache gfp flags has been done in kmem_getpages(). [1] https://lkml.org/lkml/2014/9/25/553 Link: http://lkml.kernel.org/r/1462381297-11009-1-git-send-email-yang.shi@linaro.orgSigned-off-by: NYang Shi <yang.shi@linaro.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Thomas Garnier 提交于
Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize the SLAB freelist. The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. Each kmem_cache has its own randomized freelist. Before pre-computed lists are available freelists are generated dynamically. This security feature reduces the predictability of the kernel SLAB allocator against heap overflows rendering attacks much less stable. For example this attack against SLUB (also applicable against SLAB) would be affected: https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/ Also, since v4.6 the freelist was moved at the end of the SLAB. It means a controllable heap is opened to new attacks not yet publicly discussed. A kernel heap overflow can be transformed to multiple use-after-free. This feature makes this type of attack harder too. To generate entropy, we use get_random_bytes_arch because 0 bits of entropy is available in the boot stage. In the worse case this function will fallback to the get_random_bytes sub API. We also generate a shift random number to shift pre-computed freelist for each new set of pages. The config option name is not specific to the SLAB as this approach will be extended to other allocators like SLUB. Performance results highlighted no major changes: Hackbench (running 90 10 times): Before average: 0.0698 After average: 0.0663 (-5.01%) slab_test 1 run on boot. Difference only seen on the 2048 size test being the worse case scenario covered by freelist randomization. New slab pages are constantly being created on the 10000 allocations. Variance should be mainly due to getting new pages every few allocations. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 121 cycles 10000 times kmalloc(64)/kfree -> 121 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 121 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 123 cycles 10000 times kmalloc(64)/kfree -> 142 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 119 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles [akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()] Signed-off-by: NThomas Garnier <thgarnie@google.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Greg Thelen <gthelen@google.com> Cc: Laura Abbott <labbott@fedoraproject.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
When we call __kmem_cache_shrink on memory cgroup removal, we need to synchronize kmem_cache->cpu_partial update with put_cpu_partial that might be running on other cpus. Currently, we achieve that by using kick_all_cpus_sync, which works as a system wide memory barrier. Though fast it is, this method has a flaw - it issues a lot of IPIs, which might hurt high performance or real-time workloads. To fix this, let's replace kick_all_cpus_sync with synchronize_sched. Although the latter one may take much longer to finish, it shouldn't be a problem in this particular case, because memory cgroups are destroyed asynchronously from a workqueue so that no user visible effects should be introduced. OTOH, it will save us from excessive IPIs when someone removes a cgroup. Anyway, even if using synchronize_sched turns out to take too long, we can always introduce a kind of __kmem_cache_shrink batching so that this method would only be called once per one cgroup destruction (not per each per memcg kmem cache as it is now). Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Reported-by: NPeter Zijlstra <peterz@infradead.org> Suggested-by: NPeter Zijlstra <peterz@infradead.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
To check whether free objects exist or not precisely, we need to grab a lock. But, accuracy isn't that important because race window would be even small and if there is too much free object, cache reaper would reap it. So, this patch makes the check for free object exisistence not to hold a lock. This will reduce lock contention in heavily allocation case. Note that until now, n->shared can be freed during the processing by writing slabinfo, but, with some trick in this patch, we can access it freely within interrupt disabled period. Below is the result of concurrent allocation/free in slab allocation benchmark made by Christoph a long time ago. I make the output simpler. The number shows cycle count during alloc/free respectively so less is better. * Before Kmalloc N*alloc N*free(32): Average=248/966 Kmalloc N*alloc N*free(64): Average=261/949 Kmalloc N*alloc N*free(128): Average=314/1016 Kmalloc N*alloc N*free(256): Average=741/1061 Kmalloc N*alloc N*free(512): Average=1246/1152 Kmalloc N*alloc N*free(1024): Average=2437/1259 Kmalloc N*alloc N*free(2048): Average=4980/1800 Kmalloc N*alloc N*free(4096): Average=9000/2078 * After Kmalloc N*alloc N*free(32): Average=344/792 Kmalloc N*alloc N*free(64): Average=347/882 Kmalloc N*alloc N*free(128): Average=390/959 Kmalloc N*alloc N*free(256): Average=393/1067 Kmalloc N*alloc N*free(512): Average=683/1229 Kmalloc N*alloc N*free(1024): Average=1295/1325 Kmalloc N*alloc N*free(2048): Average=2513/1664 Kmalloc N*alloc N*free(4096): Average=4742/2172 It shows that allocation performance decreases for the object size up to 128 and it may be due to extra checks in cache_alloc_refill(). But, with considering improvement of free performance, net result looks the same. Result for other size class looks very promising, roughly, 50% performance improvement. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
Until now, cache growing makes a free slab on node's slab list and then we can allocate free objects from it. This necessarily requires to hold a node lock which is very contended. If we refill cpu cache before attaching it to node's slab list, we can avoid holding a node lock as much as possible because this newly allocated slab is only visible to the current task. This will reduce lock contention. Below is the result of concurrent allocation/free in slab allocation benchmark made by Christoph a long time ago. I make the output simpler. The number shows cycle count during alloc/free respectively so less is better. * Before Kmalloc N*alloc N*free(32): Average=355/750 Kmalloc N*alloc N*free(64): Average=452/812 Kmalloc N*alloc N*free(128): Average=559/1070 Kmalloc N*alloc N*free(256): Average=1176/980 Kmalloc N*alloc N*free(512): Average=1939/1189 Kmalloc N*alloc N*free(1024): Average=3521/1278 Kmalloc N*alloc N*free(2048): Average=7152/1838 Kmalloc N*alloc N*free(4096): Average=13438/2013 * After Kmalloc N*alloc N*free(32): Average=248/966 Kmalloc N*alloc N*free(64): Average=261/949 Kmalloc N*alloc N*free(128): Average=314/1016 Kmalloc N*alloc N*free(256): Average=741/1061 Kmalloc N*alloc N*free(512): Average=1246/1152 Kmalloc N*alloc N*free(1024): Average=2437/1259 Kmalloc N*alloc N*free(2048): Average=4980/1800 Kmalloc N*alloc N*free(4096): Average=9000/2078 It shows that contention is reduced for all the object sizes and performance increases by 30 ~ 40%. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
This is a preparation step to implement lockless allocation path when there is no free objects in kmem_cache. What we'd like to do here is to refill cpu cache without holding a node lock. To accomplish this purpose, refill should be done after new slab allocation but before attaching the slab to the management list. So, this patch separates cache_grow() to two parts, allocation and attaching to the list in order to add some code inbetween them in the following patch. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
Currently, cache_grow() assumes that allocated page's nodeid would be same with parameter nodeid which is used for allocation request. If we discard this assumption, we can handle fallback_alloc() case gracefully. So, this patch makes cache_grow() handle the page allocated on arbitrary node and clean-up relevant code. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
Slab color isn't needed to be changed strictly. Because locking for changing slab color could cause more lock contention so this patch implements racy access/modify the slab color. This is a preparation step to implement lockless allocation path when there is no free objects in the kmem_cache. Below is the result of concurrent allocation/free in slab allocation benchmark made by Christoph a long time ago. I make the output simpler. The number shows cycle count during alloc/free respectively so less is better. * Before Kmalloc N*alloc N*free(32): Average=365/806 Kmalloc N*alloc N*free(64): Average=452/690 Kmalloc N*alloc N*free(128): Average=736/886 Kmalloc N*alloc N*free(256): Average=1167/985 Kmalloc N*alloc N*free(512): Average=2088/1125 Kmalloc N*alloc N*free(1024): Average=4115/1184 Kmalloc N*alloc N*free(2048): Average=8451/1748 Kmalloc N*alloc N*free(4096): Average=16024/2048 * After Kmalloc N*alloc N*free(32): Average=355/750 Kmalloc N*alloc N*free(64): Average=452/812 Kmalloc N*alloc N*free(128): Average=559/1070 Kmalloc N*alloc N*free(256): Average=1176/980 Kmalloc N*alloc N*free(512): Average=1939/1189 Kmalloc N*alloc N*free(1024): Average=3521/1278 Kmalloc N*alloc N*free(2048): Average=7152/1838 Kmalloc N*alloc N*free(4096): Average=13438/2013 It shows that contention is reduced for object size >= 1024 and performance increases by roughly 15%. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
Currently, determination to free a slab is done whenever each freed object is put into the slab. This has a following problem. Assume free_limit = 10 and nr_free = 9. Free happens as following sequence and nr_free changes as following. free(become a free slab) free(not become a free slab) nr_free: 9 -> 10 (at first free) -> 11 (at second free) If we try to check if we can free current slab or not on each object free, we can't free any slab in this situation because current slab isn't a free slab when nr_free exceed free_limit (at second free) even if there is a free slab. However, if we check it lastly, we can free 1 free slab. This problem would cause to keep too much memory in the slab subsystem. This patch try to fix it by checking number of free object after all free work is done. If there is free slab at that time, we can free slab as much as possible so we keep free slab as minimal. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
There are mostly same code for setting up kmem_cache_node either in cpuup_prepare() or alloc_kmem_cache_node(). Factor out and clean-up them. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: NNishanth Menon <nm@ti.com> Tested-by: NJon Hunter <jonathanh@nvidia.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
It can be reused on other place, so factor out it. Following patch will use it. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
slabs_tofree() implies freeing all free slab. We can do it with just providing INT_MAX. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
Initial attemp to remove BAD_ALIEN_MAGIC is once reverted by 'commit edcad250 ("Revert "slab: remove BAD_ALIEN_MAGIC"")' because it causes a problem on m68k which has many node but !CONFIG_NUMA. In this case, although alien cache isn't used at all but to cope with some initialization path, garbage value is used and that is BAD_ALIEN_MAGIC. Now, this patch set use_alien_caches to 0 when !CONFIG_NUMA, there is no initialization path problem so we don't need BAD_ALIEN_MAGIC at all. So remove it. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: NGeert Uytterhoeven <geert@linux-m68k.org> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
While processing concurrent allocation, SLAB could be contended a lot because it did a lots of work with holding a lock. This patchset try to reduce the number of critical section to reduce lock contention. Major changes are lockless decision to allocate more slab and lockless cpu cache refill from the newly allocated slab. Below is the result of concurrent allocation/free in slab allocation benchmark made by Christoph a long time ago. I make the output simpler. The number shows cycle count during alloc/free respectively so less is better. * Before Kmalloc N*alloc N*free(32): Average=365/806 Kmalloc N*alloc N*free(64): Average=452/690 Kmalloc N*alloc N*free(128): Average=736/886 Kmalloc N*alloc N*free(256): Average=1167/985 Kmalloc N*alloc N*free(512): Average=2088/1125 Kmalloc N*alloc N*free(1024): Average=4115/1184 Kmalloc N*alloc N*free(2048): Average=8451/1748 Kmalloc N*alloc N*free(4096): Average=16024/2048 * After Kmalloc N*alloc N*free(32): Average=344/792 Kmalloc N*alloc N*free(64): Average=347/882 Kmalloc N*alloc N*free(128): Average=390/959 Kmalloc N*alloc N*free(256): Average=393/1067 Kmalloc N*alloc N*free(512): Average=683/1229 Kmalloc N*alloc N*free(1024): Average=1295/1325 Kmalloc N*alloc N*free(2048): Average=2513/1664 Kmalloc N*alloc N*free(4096): Average=4742/2172 It shows that performance improves greatly (roughly more than 50%) for the object class whose size is more than 128 bytes. This patch (of 11): If we don't hold neither the slab_mutex nor the node lock, node's shared array cache could be freed and re-populated. If __kmem_cache_shrink() is called at the same time, it will call drain_array() with n->shared without holding node lock so problem can happen. This patch fix the situation by holding the node lock before trying to drain the shared array. In addition, add a debug check to confirm that n->shared access race doesn't exist. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 5月, 2016 2 次提交
-
-
由 Andrea Arcangeli 提交于
This will provide fully accuracy to the mapcount calculation in the write protect faults, so page pinning will not get broken by false positive copy-on-writes. total_mapcount() isn't the right calculation needed in reuse_swap_page(), so this introduces a page_trans_huge_mapcount() that is effectively the full accurate return value for page_mapcount() if dealing with Transparent Hugepages, however we only use the page_trans_huge_mapcount() during COW faults where it strictly needed, due to its higher runtime cost. This also provide at practical zero cost the total_mapcount information which is needed to know if we can still relocate the page anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we can reuse the page no matter if it's a pte or a pmd_trans_huge triggering the fault, but we can only relocate the page anon_vma to the local vma->anon_vma if we're sure it's only this "vma" mapping the whole THP physical range. Kirill A. Shutemov discovered the problem with moving the page anon_vma to the local vma->anon_vma in a previous version of this patch and another problem in the way page_move_anon_rmap() was called. Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a previous version, because reuse_swap_page must be a macro to call page_trans_huge_mapcount from swap.h, so this uses a macro again instead of an inline function. With this change at least it's a less dangerous usage than it was before, because "page" is used only once now, while with the previous code reuse_swap_page(page++) would have called page_mapcount on page+1 and it would have increased page twice instead of just once. Dean Luick noticed an uninitialized variable that could result in a rmap inefficiency for the non-THP case in a previous version. Mike Marciniszyn said: : Our RDMA tests are seeing an issue with memory locking that bisects to : commit 61f5d698 ("mm: re-enable THP") : : The test program registers two rather large MRs (512M) and RDMA : writes data to a passive peer using the first and RDMA reads it back : into the second MR and compares that data. The sizes are chosen randomly : between 0 and 1024 bytes. : : The test will get through a few (<= 4 iterations) and then gets a : compare error. : : Tracing indicates the kernel logical addresses associated with the individual : pages at registration ARE correct , the data in the "RDMA read response only" : packets ARE correct. : : The "corruption" occurs when the packet crosse two pages that are not physically : contiguous. The second page reads back as zero in the program. : : It looks like the user VA at the point of the compare error no longer points to : the same physical address as was registered. : : This patch totally resolves the issue! Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.comSigned-off-by: NAndrea Arcangeli <aarcange@redhat.com> Reviewed-by: N"Kirill A. Shutemov" <kirill@shutemov.name> Reviewed-by: NDean Luick <dean.luick@intel.com> Tested-by: NAlex Williamson <alex.williamson@redhat.com> Tested-by: NMike Marciniszyn <mike.marciniszyn@intel.com> Tested-by: NJosh Collier <josh.d.collier@intel.com> Cc: Marc Haber <mh+linux-kernel@zugschlus.de> Cc: <stable@vger.kernel.org> [4.5] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Zhou Chengming 提交于
A concurrency issue about KSM in the function scan_get_next_rmap_item. task A (ksmd): |task B (the mm's task): | mm = slot->mm; | down_read(&mm->mmap_sem); | | ... | | spin_lock(&ksm_mmlist_lock); | | ksm_scan.mm_slot go to the next slot; | | spin_unlock(&ksm_mmlist_lock); | |mmput() -> | ksm_exit(): | |spin_lock(&ksm_mmlist_lock); |if (mm_slot && ksm_scan.mm_slot != mm_slot) { | if (!mm_slot->rmap_list) { | easy_to_free = 1; | ... | |if (easy_to_free) { | mmdrop(mm); | ... | |So this mm_struct may be freed in the mmput(). | up_read(&mm->mmap_sem); | As we can see above, the ksmd thread may access a mm_struct that already been freed to the kmem_cache. Suppose a fork will get this mm_struct from the kmem_cache, the ksmd thread then call up_read(&mm->mmap_sem), will cause mmap_sem.count to become -1. As suggested by Andrea Arcangeli, unmerge_and_remove_all_rmap_items has the same SMP race condition, so fix it too. My prev fix in function scan_get_next_rmap_item will introduce a different SMP race condition, so just invert the up_read/spin_unlock order as Andrea Arcangeli said. Link: http://lkml.kernel.org/r/1462708815-31301-1-git-send-email-zhouchengming1@huawei.comSigned-off-by: NZhou Chengming <zhouchengming1@huawei.com> Suggested-by: NAndrea Arcangeli <aarcange@redhat.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Geliang Tang <geliangtang@163.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Ding Tianhong <dingtianhong@huawei.com> Cc: Li Bin <huawei.libin@huawei.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 5月, 2016 1 次提交
-
-
由 Sergey Senozhatsky 提交于
zs_can_compact() has two race conditions in its core calculation: unsigned long obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) - zs_stat_get(class, OBJ_USED); 1) classes are not locked, so the numbers of allocated and used objects can change by the concurrent ops happening on other CPUs 2) shrinker invokes it from preemptible context Depending on the circumstances, thus, OBJ_ALLOCATED can become less than OBJ_USED, which can result in either very high or negative `total_scan' value calculated later in do_shrink_slab(). do_shrink_slab() has some logic to prevent those cases: vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-64 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62 However, due to the way `total_scan' is calculated, not every shrinker->count_objects() overflow can be spotted and handled. To demonstrate the latter, I added some debugging code to do_shrink_slab() (x86_64) and the results were: vmscan: OVERFLOW: shrinker->count_objects() == -1 [18446744073709551615] vmscan: but total_scan > 0: 92679974445502 vmscan: resulting total_scan: 92679974445502 [..] vmscan: OVERFLOW: shrinker->count_objects() == -1 [18446744073709551615] vmscan: but total_scan > 0: 22634041808232578 vmscan: resulting total_scan: 22634041808232578 Even though shrinker->count_objects() has returned an overflowed value, the resulting `total_scan' is positive, and, what is more worrisome, it is insanely huge. This value is getting used later on in shrinker->scan_objects() loop: while (total_scan >= batch_size || total_scan >= freeable) { unsigned long ret; unsigned long nr_to_scan = min(batch_size, total_scan); shrinkctl->nr_to_scan = nr_to_scan; ret = shrinker->scan_objects(shrinker, shrinkctl); if (ret == SHRINK_STOP) break; freed += ret; count_vm_events(SLABS_SCANNED, nr_to_scan); total_scan -= nr_to_scan; cond_resched(); } `total_scan >= batch_size' is true for a very-very long time and 'total_scan >= freeable' is also true for quite some time, because `freeable < 0' and `total_scan' is large enough, for example, 22634041808232578. The only break condition, in the given scheme of things, is shrinker->scan_objects() == SHRINK_STOP test, which is a bit too weak to rely on, especially in heavy zsmalloc-usage scenarios. To fix the issue, take a pool stat snapshot and use it instead of racy zs_stat_get() calls. Link: http://lkml.kernel.org/r/20160509140052.3389-1-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> [4.3+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 5月, 2016 7 次提交
-
-
由 Vlastimil Babka 提交于
Assume memory47 is the last online block left in node1. This will hang: # echo offline > /sys/devices/system/node/node1/memory47/state After a couple of minutes, the following pops up in dmesg: INFO: task bash:957 blocked for more than 120 seconds. Not tainted 4.6.0-rc6+ #6 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. bash D ffff8800b7adbaf8 0 957 951 0x00000000 Call Trace: schedule+0x35/0x80 schedule_timeout+0x1ac/0x270 wait_for_completion+0xe1/0x120 kthread_stop+0x4f/0x110 kcompactd_stop+0x26/0x40 __offline_pages.constprop.28+0x7e6/0x840 offline_pages+0x11/0x20 memory_block_action+0x73/0x1d0 memory_subsys_offline+0x47/0x60 device_offline+0x86/0xb0 store_mem_state+0xda/0xf0 dev_attr_store+0x18/0x30 sysfs_kf_write+0x37/0x40 kernfs_fop_write+0x11d/0x170 __vfs_write+0x37/0x120 vfs_write+0xa9/0x1a0 SyS_write+0x55/0xc0 entry_SYSCALL_64_fastpath+0x1a/0xa4 kcompactd is waiting for kcompactd_max_order > 0 when it's woken up to actually exit. Check kthread_should_stop() to break out of the wait. Fixes: 698b1b30 ("mm, compaction: introduce kcompactd"). Reported-by: NReza Arbab <arbab@linux.vnet.ibm.com> Tested-by: NReza Arbab <arbab@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dan Streetman 提交于
Instead of using "zswap" as the name for all zpools created, add an atomic counter and use "zswap%x" with the counter number for each zpool created, to provide a unique name for each new zpool. As zsmalloc, one of the zpool implementations, requires/expects a unique name for each pool created, zswap should provide a unique name. The zsmalloc pool creation does not fail if a new pool with a conflicting name is created, unless CONFIG_ZSMALLOC_STAT is enabled; in that case, zsmalloc pool creation fails with -ENOMEM. Then zswap will be unable to change its compressor parameter if its zpool is zsmalloc; it also will be unable to change its zpool parameter back to zsmalloc, if it has any existing old zpool using zsmalloc with page(s) in it. Attempts to change the parameters will result in failure to create the zpool. This changes zswap to provide a unique name for each zpool creation. Fixes: f1c54846 ("zswap: dynamic pool creation") Signed-off-by: NDan Streetman <ddstreet@ieee.org> Reported-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Dan Streetman <dan.streetman@canonical.com> Cc: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
/proc/sys/vm/stat_refresh warns nr_isolated_anon and nr_isolated_file go increasingly negative under compaction: which would add delay when should be none, or no delay when should delay. The bug in compaction was due to a recent mmotm patch, but much older instance of the bug was also noticed in isolate_migratepages_range() which is used for CMA and gigantic hugepage allocations. The bug is caused by putback_movable_pages() in an error path decrementing the isolated counters without them being previously incremented by acct_isolated(). Fix isolate_migratepages_range() by removing the error-path putback, thus reaching acct_isolated() with migratepages still isolated, and leaving putback to caller like most other places do. Fixes: edc2ca61 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()") [vbabka@suse.cz: expanded the changelog] Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jason Baron 提交于
Khugepaged attempts to raise min_free_kbytes if its set too low. However, on boot khugepaged sets min_free_kbytes first from subsys_initcall(), and then the mm 'core' over-rides min_free_kbytes after from init_per_zone_wmark_min(), via a module_init() call. Khugepaged used to use a late_initcall() to set min_free_kbytes (such that it occurred after the core initialization), however this was removed when the initialization of min_free_kbytes was integrated into the starting of the khugepaged thread. The fix here is simply to invoke the core initialization using a core_initcall() instead of module_init(), such that the previous initialization ordering is restored. I didn't restore the late_initcall() since start_stop_khugepaged() already sets min_free_kbytes via set_recommended_min_free_kbytes(). This was noticed when we had a number of page allocation failures when moving a workload to a kernel with this new initialization ordering. On an 8GB system this restores min_free_kbytes back to 67584 from 11365 when CONFIG_TRANSPARENT_HUGEPAGE=y is set and either CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS=y or CONFIG_TRANSPARENT_HUGEPAGE_MADVISE=y. Fixes: 79553da2 ("thp: cleanup khugepaged startup") Signed-off-by: NJason Baron <jbaron@akamai.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
zap_pmd_range()'s CONFIG_DEBUG_VM !rwsem_is_locked(&mmap_sem) BUG() will be invalid with huge pagecache, in whatever way it is implemented: truncation of a hugely-mapped file to an unhugely-aligned size would easily hit it. (Although anon THP could in principle apply khugepaged to private file mappings, which are not excluded by the MADV_HUGEPAGE restrictions, in practice there's a vm_ops check which excludes them, so it never hits this BUG() - there's no interface to "truncate" an anonymous mapping.) We could complicate the test, to check i_mmap_rwsem also when there's a vm_file; but my inclination was to make zap_pmd_range() more readable by simply deleting this check. A search has shown no report of the issue in the years since commit e0897d75 ("mm, thp: print useful information when mmap_sem is unlocked in zap_pmd_range") expanded it from VM_BUG_ON() - though I cannot point to what commit I would say then fixed the issue. But there are a couple of other patches now floating around, neither yet in the tree: let's agree to retain the check as a VM_BUG_ON_VMA(), as Matthew Wilcox has done; but subject to a vma_is_anonymous() check, as Kirill Shutemov has done. And let's get this in, without waiting for any particular huge pagecache implementation to reach the tree. Matthew said "We can reproduce this BUG() in the current Linus tree with DAX PMDs". Signed-off-by: NHugh Dickins <hughd@google.com> Tested-by: NMatthew Wilcox <willy@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Yang Shi <yang.shi@linaro.org> Cc: Ning Qu <quning@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
split_huge_pages doesn't support get method at all, so the read permission sounds confusing, change the permission to write only. And, add "\n" to the output of set method to make it more readable. Signed-off-by: NYang Shi <yang.shi@linaro.org> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Howard Cochran 提交于
Commit 947e9762 ("writeback: update wb_over_bg_thresh() to use wb_domain aware operations") unintentionally changed this function's meaning from "are there more dirty pages than the background writeback threshold" to "are there more dirty pages than the writeback threshold". The background writeback threshold is typically half of the writeback threshold, so this had the effect of raising the number of dirty pages required to cause a writeback worker to perform background writeout. This can cause a very severe performance regression when a BDI uses BDI_CAP_STRICTLIMIT because balance_dirty_pages() and the writeback worker can now disagree on whether writeback should be initiated. For example, in a system having 1GB of RAM, a single spinning disk, and a "pass-through" FUSE filesystem mounted over the disk, application code mmapped a 128MB file on the disk and was randomly dirtying pages in that mapping. Because FUSE uses strictlimit and has a default max_ratio of only 1%, in balance_dirty_pages, thresh is ~200, bg_thresh is ~100, and the dirty_freerun_ceiling is the average of those, ~150. So, it pauses the dirtying processes when we have 151 dirty pages and wakes up a background writeback worker. But the worker tests the wrong threshold (200 instead of 100), so it does not initiate writeback and just returns. Thus, balance_dirty_pages keeps looping, sleeping and then waking up the worker who will do nothing. It remains stuck in this state until the few dirty pages that we have finally expire and we write them back for that reason. Then the whole process repeats, resulting in near-zero throughput through the FUSE BDI. The fix is to call the parameterized variant of wb_calc_thresh, so that the worker will do writeback if the bg_thresh is exceeded which was the behavior before the referenced commit. Fixes: 947e9762 ("writeback: update wb_over_bg_thresh() to use wb_domain aware operations") Signed-off-by: NHoward Cochran <hcochran@kernelspring.com> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com> Cc: <stable@vger.kernel.org> # v4.2+ Tested-by Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 03 5月, 2016 1 次提交
-
-
由 Al Viro 提交于
We'll need to verify that there's neither a hashed nor in-lookup dentry with desired parent/name before adding to in-lookup set. One possible solution would be to hold the parent's ->d_lock through both checks, but while the in-lookup set is relatively small at any time, dcache is not. And holding the parent's ->d_lock through something like __d_lookup_rcu() would suck too badly. So we leave the parent's ->d_lock alone, which means that we watch out for the following scenario: * we verify that there's no hashed match * existing in-lookup match gets hashed by another process * we verify that there's no in-lookup matches and decide that everything's fine. Solution: per-directory kinda-sorta seqlock, bumped around the times we hash something that used to be in-lookup or move (and hash) something in place of in-lookup. Then the above would turn into * read the counter * do dcache lookup * if no matches found, check for in-lookup matches * if there had been none of those either, check if the counter has changed; repeat if it has. The "kinda-sorta" part is due to the fact that we don't have much spare space in inode. There is a spare word (shared with i_bdev/i_cdev/i_pipe), so the counter part is not a problem, but spinlock is a different story. We could use the parent's ->d_lock, and it would be less painful in terms of contention, for __d_add() it would be rather inconvenient to grab; we could do that (using lock_parent()), but... Fortunately, we can get serialization on the counter itself, and it might be a good idea in general; we can use cmpxchg() in a loop to get from even to odd and smp_store_release() from odd to even. This commit adds the counter and updating logics; the readers will be added in the next commit. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 02 5月, 2016 5 次提交
-
-
由 Christoph Hellwig 提交于
The kiocb already has the new position, so use that. The only interesting case is AIO, where we currently don't bother updating ki_pos. We're about to free the kiocb after we're done, so we might as well update it to make everyone's life simpler. While we're at it also return the bytes written argument passed in if we were successful so that the boilerplate error switch code in the callers can go away. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Christoph Hellwig 提交于
This will allow us to do per-I/O sync file writes, as required by a lot of fileservers or storage targets. XXX: Will need a few additional audits for O_DSYNC Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Christoph Hellwig 提交于
Including blkdev_direct_IO and dax_do_io. It has to be ki_pos to actually work, so eliminate the superflous argument. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Christoph Hellwig 提交于
Just use ki_pos directly to make everyones life easier. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 29 4月, 2016 6 次提交
-
-
由 Konstantin Khlebnikov 提交于
get_hwpoison_page() must recheck relation between head and tail pages. n-horiguchi said: without this recheck, the race causes kernel to pin an irrelevant page, and finally makes kernel crash for refcount mismatch. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
When kswapd goes to sleep it checks if the node is balanced and at first it sleeps only for HZ/10 time, then rechecks if the node is still balanced and nobody has woken it during the initial sleep. Only then it goes fully sleep until an allocation slowpath wakes it up again. For higher-order allocations, waking up kcompactd is done only before the full sleep. This turns out to be an issue in case another high-order allocation fails during the initial sleep. It will wake kswapd up, however kswapd considers the zone balanced from the order-0 perspective, and will just quickly try to sleep again. So if there's a longer stream of high-order allocations hitting the slowpath and waking up kswapd, it might never actually wake up kcompactd, which may be considered a regression from kswapd-based compaction. In the worst case, it might be that a single allocation that cannot direct reclaim/compact itself is waking kswapd in the retry loop and preventing kcompactd from being woken up and unblocking it. This patch makes sure kcompactd is woken up in such situations by simply moving the wakeup before the short initial sleep. More efficient solution would be to wake kcompactd immediately instead of kswapd if the node is already order-0 balanced, but in that case we should also move reset_isolation_suitable() call to kcompactd so it's not adding to the allocator's latency. Since it's late in the 4.6 cycle, let's go with the simpler change for now. Fixes: accf6242 ("mm, kswapd: replace kswapd compaction with waking up kcompactd") Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
Currently, migration code increses num_poisoned_pages on *failed* migration page as well as successfully migrated one at the trial of memory-failure. It will make the stat wrong. As well, it marks the page as PG_HWPoison even if the migration trial failed. It would mean we cannot recover the corrupted page using memory-failure facility. This patches fixes it. Signed-off-by: NMinchan Kim <minchan@kernel.org> Reported-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
Kyeongdon reported below error which is BUG_ON(!PageSwapCache(page)) in page_swap_info. The reason is that page_endio in rw_page unlocks the page if read I/O is completed so we need to hold a PG_lock again to check PageSwapCache. Otherwise, the page can be removed from swapcache. Kernel BUG at c00f9040 [verbose debug info unavailable] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP ARM Modules linked in: CPU: 4 PID: 13446 Comm: RenderThread Tainted: G W 3.10.84-g9f14aec-dirty #73 task: c3b73200 ti: dd192000 task.ti: dd192000 PC is at page_swap_info+0x10/0x2c LR is at swap_slot_free_notify+0x18/0x6c pc : [<c00f9040>] lr : [<c00f5560>] psr: 400f0113 sp : dd193d78 ip : c2deb1e4 fp : da015180 r10: 00000000 r9 : 000200da r8 : c120fe08 r7 : 00000000 r6 : 00000000 r5 : c249a6c0 r4 : = c249a6c0 r3 : 00000000 r2 : 40080009 r1 : 200f0113 r0 : = c249a6c0 ..<snip> .. Call Trace: page_swap_info+0x10/0x2c swap_slot_free_notify+0x18/0x6c swap_readpage+0x90/0x11c read_swap_cache_async+0x134/0x1ac swapin_readahead+0x70/0xb0 handle_pte_fault+0x320/0x6fc handle_mm_fault+0xc0/0xf0 do_page_fault+0x11c/0x36c do_DataAbort+0x34/0x118 Fixes: 3f2b1a04 ("zram: revive swap_slot_free_notify") Signed-off-by: NMinchan Kim <minchan@kernel.org> Tested-by: NKyeongdon Kim <kyeongdon.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
We have been reclaimed highmem zone if buffer_heads is over limit but commit 6b4f7799 ("mm: vmscan: invoke slab shrinkers from shrink_zone()") changed the behavior so it doesn't reclaim highmem zone although buffer_heads is over the limit. This patch restores the logic. Fixes: 6b4f7799 ("mm: vmscan: invoke slab shrinkers from shrink_zone()") Signed-off-by: NMinchan Kim <minchan@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Gerald Schaefer 提交于
In gather_pte_stats() a THP pmd is cast into a pte, which is wrong because the layouts may differ depending on the architecture. On s390 this will lead to inaccurate numa_maps accounting in /proc because of misguided pte_present() and pte_dirty() checks on the fake pte. On other architectures pte_present() and pte_dirty() may work by chance, but there may be an issue with direct-access (dax) mappings w/o underlying struct pages when HAVE_PTE_SPECIAL is set and THP is available. In vm_normal_page() the fake pte will be checked with pte_special() and because there is no "special" bit in a pmd, this will always return false and the VM_PFNMAP | VM_MIXEDMAP checking will be skipped. On dax mappings w/o struct pages, an invalid struct page pointer would then be returned that can crash the kernel. This patch fixes the numa_maps THP handling by introducing new "_pmd" variants of the can_gather_numa_stats() and vm_normal_page() functions. Signed-off-by: NGerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> [4.3+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-