- 06 10月, 2014 1 次提交
-
-
由 David S. Miller 提交于
If max_phys_bits needs to be > 43 (f.e. for T4 chips), things like DEBUG_PAGEALLOC stop working because the 3-level page tables only can cover up to 43 bits. Another problem is that when we increased MAX_PHYS_ADDRESS_BITS up to 47, several statically allocated tables became enormous. Compounding this is that we will need to support up to 49 bits of physical addressing for M7 chips. The two tables in question are sparc64_valid_addr_bitmap and kpte_linear_bitmap. The first holds a bitmap, with 1 bit for each 4MB chunk of physical memory, indicating whether that chunk actually exists in the machine and is valid. The second table is a set of 2-bit values which tell how large of a mapping (4MB, 256MB, 2GB, 16GB, respectively) we can use at each 256MB chunk of ram in the system. These tables are huge and take up an enormous amount of the BSS section of the sparc64 kernel image. Specifically, the sparc64_valid_addr_bitmap is 4MB, and the kpte_linear_bitmap is 128K. So let's solve the space wastage and the DEBUG_PAGEALLOC problem at the same time, by using the kernel page tables (as designed) to manage this information. We have to keep using large mappings when DEBUG_PAGEALLOC is disabled, and we do this by encoding huge PMDs and PUDs. On a T4-2 with 256GB of ram the kernel page table takes up 16K with DEBUG_PAGEALLOC disabled and 256MB with it enabled. Furthermore, this memory is dynamically allocated at run time rather than coded statically into the kernel image. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
- 04 5月, 2014 1 次提交
-
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 11月, 2013 2 次提交
-
-
由 David S. Miller 提交于
Choose PAGE_OFFSET dynamically based upon cpu type. Original UltraSPARC-I (spitfire) chips only supported a 44-bit virtual address space. Newer chips (T4 and later) support 52-bit virtual addresses and up to 47-bits of physical memory space. Therefore we have to adjust PAGE_SIZE dynamically based upon the capabilities of the chip. Note that this change alone does not allow us to support > 43-bit physical memory, to do that we need to re-arrange our page table support. The current encodings of the pmd_t and pgd_t pointers restricts us to "32 + 11" == 43 bits. This change can waste quite a bit of memory for the various tables. In particular, a future change should work to size and allocate kern_linear_bitmap[] and sparc64_valid_addr_bitmap[] dynamically. This isn't easy as we really cannot take a TLB miss when accessing kern_linear_bitmap[]. We'd have to lock it into the TLB or similar. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
由 David S. Miller 提交于
This way we can see exactly what they are derived from, and in particular how they would change if we were to use a different PAGE_OFFSET value. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NBob Picco <bob.picco@oracle.com>
-
- 03 8月, 2013 1 次提交
-
-
由 Kirill Tkhai 提交于
1)Use kvmap_itlb_longpath instead of kvmap_dtlb_longpath. 2)Handle page #0 only, don't handle page #1: bleu -> blu (KERNBASE is 0x400000, so #1 does not exist too. But everything is possible in the future. Fix to not to have problems later.) 3)Remove unused kvmap_itlb_nonlinear. Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> CC: David Miller <davem@davemloft.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 9月, 2012 1 次提交
-
-
由 David S. Miller 提交于
SPARC-T4 supports 2GB pages. So convert kpte_linear_bitmap into an array of 2-bit values which index into kern_linear_pte_xor. Now kern_linear_pte_xor is used for 4 page size aligned regions, 4MB, 256MB, 2GB, and 16GB respectively. Enabling 2GB pages is currently hardcoded using a check against sun4v_chip_type. In the future this will be done more cleanly by interrogating the machine description which is the correct way to determine this kind of thing. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 8月, 2011 1 次提交
-
-
由 David S. Miller 提交于
On sun4v this is basically required since we point the hypervisor and the TSB walking hardware at these tables using physical addressing too. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 9月, 2009 1 次提交
-
-
由 David S. Miller 提交于
Since we now use the embedding percpu allocator we have to make the vmalloc area at least as large as the stretch can be between nodes. Besides some minor asm adjustments, this turned out to be pretty trivial. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 8月, 2009 1 次提交
-
-
由 David S. Miller 提交于
When page alloc debugging is not enabled, we essentially accept any virtual address for linear kernel TLB misses. But with kgdb, kernel address probing, and other facilities we can try to access arbitrary crap. So, make sure the address we miss on will translate to physical memory that actually exists. In order to make this work we have to embed the valid address bitmap into the kernel image. And in order to make that less expensive we make an adjustment, in that the max physical memory address is decreased to "1 << 41", even on the chips that support a 42-bit physical address space. We can do this because bit 41 indicates "I/O space" and thus covers non-memory ranges. The result of this is that: 1) kpte_linear_bitmap shrinks from 2K to 1K in size 2) we need 64K more for the valid address bitmap We can't let the valid address bitmap be dynamically allocated once we start using it to validate TLB misses, otherwise we have crazy issues to deal with wrt. recursive TLB misses and such. If we're in a TLB miss it could be the deepest trap level that's legal inside of the cpu. So if we TLB miss referencing the bitmap, the cpu will be out of trap levels and enter RED state. To guard against out-of-range accesses to the bitmap, we have to check to make sure no bits in the physical address above bit 40 are set. We could export and use last_valid_pfn for this check, but that's just an unnecessary extra memory reference. On the plus side of all this, since we load all of these translations into the special 4MB mapping TSB, and we check the TSB first for TLB misses, there should be absolutely no real cost for these new checks in the TLB miss path. Reported-by: heyongli@gmail.com Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 12月, 2008 1 次提交
-
-
由 Sam Ravnborg 提交于
o Move all files from sparc64/kernel/ to sparc/kernel - rename as appropriate o Update sparc/Makefile to the changes o Update sparc/kernel/Makefile to include the sparc64 files NOTE: This commit changes link order on sparc64! Link order had to change for either of sparc32 and sparc64. And assuming sparc64 see more testing than sparc32 change link order on sparc64 where issues will be caught faster. Signed-off-by: NSam Ravnborg <sam@ravnborg.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 1月, 2008 1 次提交
-
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 10月, 2007 1 次提交
-
-
由 David Miller 提交于
[apw@shadowen.org: style fixups] [apw@shadowen.org: vmemmap sparc64: convert to new config options] Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Acked-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NChristoph Lameter <clameter@sgi.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 3月, 2007 1 次提交
-
-
由 David S. Miller 提交于
We have to make sure to use base-pagesize TLB entries even during the early transition period where we need TLB miss handling but don't have the kernel page tables setup yet for the linear region. Also, it is necessary therefore to not use the 4MB TSB for these translations, and instead use the normal kernel TSB. This allows us to also get rid of the 4MB tsb for debug builds which shrinks the kernel a little bit. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 7月, 2006 1 次提交
-
-
由 Jörn Engel 提交于
Signed-off-by: NJörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: NAdrian Bunk <bunk@stusta.de>
-
- 20 3月, 2006 12 次提交
-
-
由 David S. Miller 提交于
Need to shift back up by 3 bits to get 8-byte entry index. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
It can map all of the linear kernel mappings with zero TSB hash conflicts for systems with 16GB or less ram. In such cases, on SUN4V, once we load up this TSB the first time with all the mappings, we never take a linear kernel mapping TLB miss ever again, the hypervisor handles them all. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
We use a bitmap, one bit for every 256MB of memory. If the bit is set we can use a 256MB PTE for linear mappings, else we have to use a 4MB PTE. SUN4V support is there, and we can very easily add support for Panther cpu 256MB PTEs in the future. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Just like kvmap_dtlb_longpath we have to force the global register level to one in order to mimick the PSTATE_MG --> PSTATE_AG trasition done on SUN4U. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
The SUN4V convention with non-shared TSBs is that the context bit of the TAG is clear. So we have to choose an "invalid" bit and initialize new TSBs appropriately. Otherwise a zero TAG looks "valid". Make sure, for the window fixup cases, that we use the right global registers and that we don't potentially trample on the live global registers in etrap/rtrap handling (%g2 and %g6) and that we put the missing virtual address properly in %g5. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Yes, you heard it right, they changed the PTE layout for SUN4V. Ho hum... This is the simple and inefficient way to support this. It'll get optimized, don't worry. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Code patching did not sign extend negative branch offsets correctly. Kernel TLB miss path needs patching and %g4 register preservation in order to handle SUN4V correctly. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Things are a little tricky because, unlike sun4u, we have to: 1) do a hypervisor trap to do the TLB load. 2) do the TSB lookup calculations by hand Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
If we're just switching between different alternate global sets, nop it out on sun4v. Also, get rid of all of the alternate global save/restore in the OBP CIF trampoline code. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
This way we don't need to lock the TSB into the TLB. The trick is that every TSB load/store is registered into a special instruction patch section. The default uses virtual addresses, and the patch instructions use physical address load/stores. We can't do this on all chips because only cheetah+ and later have the physical variant of the atomic quad load. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
We now use the TSB hardware assist features of the UltraSPARC MMUs. SMP is currently knowingly broken, we need to find another place to store the per-cpu base pointers. We hid them away in the TSB base register, and that obviously will not work any more :-) Another known broken case is non-8KB base page size. Also noticed that flush_tlb_all() is not referenced anywhere, only the internal __flush_tlb_all() (local cpu only) is used by the sparc64 port, so we can get rid of flush_tlb_all(). The kernel gets it's own 8KB TSB (swapper_tsb) and each address space gets it's own private 8K TSB. Later we can add code to dynamically increase the size of per-process TSB as the RSS grows. An 8KB TSB is good enough for up to about a 4MB RSS, after which the TSB starts to incur many capacity and conflict misses. We even accumulate OBP translations into the kernel TSB. Another area for refinement is large page size support. We could use a secondary address space TSB to handle those. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 10月, 2005 1 次提交
-
-
由 David S. Miller 提交于
The sequence to move over to the Linux trap tables from the firmware ones needs to be more air tight. It turns out that to be %100 safe we do need to be able to translate OBP mappings in our TLB miss handlers early. In order not to eat up a lot of kernel image memory with static page tables, just use the translations array in the OBP TLB miss handlers. That solves the bulk of the problem. Furthermore, to make sure the OBP TLB miss path will work even before the fixed MMU globals are loaded, explicitly load %g1 to TLB_SFSR at the beginning of the i-TLB and d-TLB miss handlers. To ease the OBP TLB miss walking of the prom_trans[] array, we sort it then delete all of the non-OBP entries in there (for example, there are entries for the kernel image itself which we're not interested in at all). We also save about 32K of kernel image size with this change. Not a bad side effect :-) There are still some reasons why trampoline.S can't use the setup_trap_table() yet. The most noteworthy are: 1) OBP boots secondary processors with non-bias'd stack for some reason. This is easily fixed by using a small bootup stack in the kernel image explicitly for this purpose. 2) Doing a firmware call via the normal C call prom_set_trap_table() goes through the whole OBP enter/exit sequence that saves and restores OBP and Linux kernel state in the MMUs. This path unfortunately does a "flush %g6" while loading up the OBP locked TLB entries for the firmware call. If we setup the %g6 in the trampoline.S code properly, that is in the PAGE_OFFSET linear mapping, but we're not on the kernel trap table yet so those addresses won't translate properly. One idea is to do a by-hand firmware call like we do in the early bootup code and elsewhere here in trampoline.S But this fails as well, as aparently the secondary processors are not booted with OBP's special locked TLB entries loaded. These are necessary for the firwmare to processes TLB misses correctly up until the point where we take over the trap table. This does need to be resolved at some point. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 9月, 2005 1 次提交
-
-
由 David S. Miller 提交于
The trick is that we do the kernel linear mapping TLB miss starting with an instruction sequence like this: ba,pt %xcc, kvmap_load xor %g2, %g4, %g5 succeeded by an instruction sequence which performs a full page table walk starting at swapper_pg_dir. We first take over the trap table from the firmware. Then, using this constant PTE generation for the linear mapping area above, we build the kernel page tables for the linear mapping. After this is setup, we patch that branch above into a "nop", which will cause TLB misses to fall through to the full page table walk. With this, the page unmapping for CONFIG_DEBUG_PAGEALLOC is trivial. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 9月, 2005 2 次提交
-
-
由 David S. Miller 提交于
This was kind of ugly, and actually buggy. The bug was that we didn't handle a machine with memory starting > 4GB. If the 'prompmd' was allocated in physical memory > 4GB we'd croak because the obp_iaddr_patch and obp_daddr_patch things only supported a 32-bit physical address. So fix this by just loading the appropriate values from two variables in the kernel image, which is locked into the TLB and thus accesses to them can't cause a recursive TLB miss. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-