1. 30 12月, 2010 1 次提交
  2. 20 10月, 2010 1 次提交
    • R
      apic, x86: Use BIOS settings for IBS and MCE threshold interrupt LVT offsets · 27afdf20
      Robert Richter 提交于
      We want the BIOS to setup the EILVT APIC registers. The offsets
      were hardcoded and BIOS settings were overwritten by the OS.
      Now, the subsystems for MCE threshold and IBS determine the LVT
      offset from the registers the BIOS has setup. If the BIOS setup
      is buggy on a family 10h system, a workaround enables IBS. If
      the OS determines an invalid register setup, a "[Firmware Bug]:
      " error message is reported.
      
      We need this change also for upcomming cpu families.
      Signed-off-by: NRobert Richter <robert.richter@amd.com>
      LKML-Reference: <1286360874-1471-3-git-send-email-robert.richter@amd.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      27afdf20
  3. 15 10月, 2010 1 次提交
    • A
      llseek: automatically add .llseek fop · 6038f373
      Arnd Bergmann 提交于
      All file_operations should get a .llseek operation so we can make
      nonseekable_open the default for future file operations without a
      .llseek pointer.
      
      The three cases that we can automatically detect are no_llseek, seq_lseek
      and default_llseek. For cases where we can we can automatically prove that
      the file offset is always ignored, we use noop_llseek, which maintains
      the current behavior of not returning an error from a seek.
      
      New drivers should normally not use noop_llseek but instead use no_llseek
      and call nonseekable_open at open time.  Existing drivers can be converted
      to do the same when the maintainer knows for certain that no user code
      relies on calling seek on the device file.
      
      The generated code is often incorrectly indented and right now contains
      comments that clarify for each added line why a specific variant was
      chosen. In the version that gets submitted upstream, the comments will
      be gone and I will manually fix the indentation, because there does not
      seem to be a way to do that using coccinelle.
      
      Some amount of new code is currently sitting in linux-next that should get
      the same modifications, which I will do at the end of the merge window.
      
      Many thanks to Julia Lawall for helping me learn to write a semantic
      patch that does all this.
      
      ===== begin semantic patch =====
      // This adds an llseek= method to all file operations,
      // as a preparation for making no_llseek the default.
      //
      // The rules are
      // - use no_llseek explicitly if we do nonseekable_open
      // - use seq_lseek for sequential files
      // - use default_llseek if we know we access f_pos
      // - use noop_llseek if we know we don't access f_pos,
      //   but we still want to allow users to call lseek
      //
      @ open1 exists @
      identifier nested_open;
      @@
      nested_open(...)
      {
      <+...
      nonseekable_open(...)
      ...+>
      }
      
      @ open exists@
      identifier open_f;
      identifier i, f;
      identifier open1.nested_open;
      @@
      int open_f(struct inode *i, struct file *f)
      {
      <+...
      (
      nonseekable_open(...)
      |
      nested_open(...)
      )
      ...+>
      }
      
      @ read disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      <+...
      (
         *off = E
      |
         *off += E
      |
         func(..., off, ...)
      |
         E = *off
      )
      ...+>
      }
      
      @ read_no_fpos disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ write @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      <+...
      (
        *off = E
      |
        *off += E
      |
        func(..., off, ...)
      |
        E = *off
      )
      ...+>
      }
      
      @ write_no_fpos @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ fops0 @
      identifier fops;
      @@
      struct file_operations fops = {
       ...
      };
      
      @ has_llseek depends on fops0 @
      identifier fops0.fops;
      identifier llseek_f;
      @@
      struct file_operations fops = {
      ...
       .llseek = llseek_f,
      ...
      };
      
      @ has_read depends on fops0 @
      identifier fops0.fops;
      identifier read_f;
      @@
      struct file_operations fops = {
      ...
       .read = read_f,
      ...
      };
      
      @ has_write depends on fops0 @
      identifier fops0.fops;
      identifier write_f;
      @@
      struct file_operations fops = {
      ...
       .write = write_f,
      ...
      };
      
      @ has_open depends on fops0 @
      identifier fops0.fops;
      identifier open_f;
      @@
      struct file_operations fops = {
      ...
       .open = open_f,
      ...
      };
      
      // use no_llseek if we call nonseekable_open
      ////////////////////////////////////////////
      @ nonseekable1 depends on !has_llseek && has_open @
      identifier fops0.fops;
      identifier nso ~= "nonseekable_open";
      @@
      struct file_operations fops = {
      ...  .open = nso, ...
      +.llseek = no_llseek, /* nonseekable */
      };
      
      @ nonseekable2 depends on !has_llseek @
      identifier fops0.fops;
      identifier open.open_f;
      @@
      struct file_operations fops = {
      ...  .open = open_f, ...
      +.llseek = no_llseek, /* open uses nonseekable */
      };
      
      // use seq_lseek for sequential files
      /////////////////////////////////////
      @ seq depends on !has_llseek @
      identifier fops0.fops;
      identifier sr ~= "seq_read";
      @@
      struct file_operations fops = {
      ...  .read = sr, ...
      +.llseek = seq_lseek, /* we have seq_read */
      };
      
      // use default_llseek if there is a readdir
      ///////////////////////////////////////////
      @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier readdir_e;
      @@
      // any other fop is used that changes pos
      struct file_operations fops = {
      ... .readdir = readdir_e, ...
      +.llseek = default_llseek, /* readdir is present */
      };
      
      // use default_llseek if at least one of read/write touches f_pos
      /////////////////////////////////////////////////////////////////
      @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read.read_f;
      @@
      // read fops use offset
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = default_llseek, /* read accesses f_pos */
      };
      
      @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ... .write = write_f, ...
      +	.llseek = default_llseek, /* write accesses f_pos */
      };
      
      // Use noop_llseek if neither read nor write accesses f_pos
      ///////////////////////////////////////////////////////////
      
      @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      identifier write_no_fpos.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ...
       .write = write_f,
       .read = read_f,
      ...
      +.llseek = noop_llseek, /* read and write both use no f_pos */
      };
      
      @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write_no_fpos.write_f;
      @@
      struct file_operations fops = {
      ... .write = write_f, ...
      +.llseek = noop_llseek, /* write uses no f_pos */
      };
      
      @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      @@
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = noop_llseek, /* read uses no f_pos */
      };
      
      @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      @@
      struct file_operations fops = {
      ...
      +.llseek = noop_llseek, /* no read or write fn */
      };
      ===== End semantic patch =====
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Cc: Julia Lawall <julia@diku.dk>
      Cc: Christoph Hellwig <hch@infradead.org>
      6038f373
  4. 11 10月, 2010 1 次提交
    • B
      x86, AMD, MCE thresholding: Fix the MCi_MISCj iteration order · 6dcbfe4f
      Borislav Petkov 提交于
      This fixes possible cases of not collecting valid error info in
      the MCE error thresholding groups on F10h hardware.
      
      The current code contains a subtle problem of checking only the
      Valid bit of MSR0000_0413 (which is MC4_MISC0 - DRAM
      thresholding group) in its first iteration and breaking out if
      the bit is cleared.
      
      But (!), this MSR contains an offset value, BlkPtr[31:24], which
      points to the remaining MSRs in this thresholding group which
      might contain valid information too. But if we bail out only
      after we checked the valid bit in the first MSR and not the
      block pointer too, we miss that other information.
      
      The thing is, MC4_MISC0[BlkPtr] is not predicated on
      MCi_STATUS[MiscV] or MC4_MISC0[Valid] and should be checked
      prior to iterating over the MCI_MISCj thresholding group,
      irrespective of the MC4_MISC0[Valid] setting.
      Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com>
      Cc: <stable@kernel.org>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      6dcbfe4f
  5. 08 10月, 2010 1 次提交
  6. 06 9月, 2010 1 次提交
    • J
      therm_throt.c: Trivial printk message fix for a unsuitable abbreviation of 'thermal' · 592091c0
      Jin Dongming 提交于
      In unexpected_thermal_interrupt(), "LVT TMR interrupt" is used
      in error message.
      
      I don't think TMR is a suitable abbreviation for thermal.
        1.TMR has been used in IA32 Architectures Software Developer's
          Manual, and is the abbreviation for Trigger Mode Register.
        2.There is not an standard abbreviation "TMR" defined for thermal
          in IA32 Architectures Software Developer's Manual.
        3.Though we could understand it as Thermal Monitor Register, it is
          easy to be misunderstood as a *TIMER* interrupt also.
      
      I think this patch will fix it.
      Signed-off-by: NJin Dongming <jin.dongming@np.css.fujitsu.com>
      Reviewed-by: NJean Delvare <khali@linux-fr.org>
      Cc: Brown Len <len.brown@intel.com>
      Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      LKML-Reference: <4C7C492D.5020704@np.css.fujitsu.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      592091c0
  7. 05 9月, 2010 1 次提交
    • A
      x86, mcheck: Avoid duplicate sysfs links/files for thresholding banks · 1389298f
      Andreas Herrmann 提交于
      kobject_add_internal failed for threshold_bank2 with -EEXIST,
      don't try to register things with the same name in the same
      directory:
      
        Pid: 1, comm: swapper Tainted: G        W  2.6.31 #1
        Call Trace:
        [<ffffffff81161b07>] ? kobject_add_internal+0x156/0x180
        [<ffffffff81161cc0>] ? kobject_add+0x66/0x6b
        [<ffffffff81161793>] ? kobject_init+0x42/0x82
        [<ffffffff81161cf9>] ? kobject_create_and_add+0x34/0x63
        [<ffffffff81393963>] ? threshold_create_bank+0x14f/0x259
        [<ffffffff8139310a>] ? mce_create_device+0x8d/0x1b8
        [<ffffffff81646497>] ? threshold_init_device+0x3f/0x80
        [<ffffffff81646458>] ? threshold_init_device+0x0/0x80
        [<ffffffff81009050>] ? do_one_initcall+0x4f/0x143
        [<ffffffff816413a0>] ? kernel_init+0x14c/0x1a2
        [<ffffffff8100c8da>] ? child_rip+0xa/0x20
        [<ffffffff81641254>] ? kernel_init+0x0/0x1a2
        [<ffffffff8100c8d0>] ? child_rip+0x0/0x20
        kobject_create_and_add: kobject_add error: -17
      
      (Probably the for_each_cpu loop should be entirely removed.)
      Signed-off-by: NAndreas Herrmann <andreas.herrmann3@amd.com>
      LKML-Reference: <20100827092006.GB5348@loge.amd.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      1389298f
  8. 21 8月, 2010 1 次提交
  9. 09 8月, 2010 1 次提交
  10. 04 8月, 2010 2 次提交
    • F
      x86, hwmon: Package Level Thermal/Power: power limit · 0199114c
      Fenghua Yu 提交于
      Power limit notification feature is published in Intel 64 and IA-32
      Architectures SDMV Vol 3A 14.5.6 Power Limit Notification.
      
      It is implemented first on Intel Sandy Bridge platform.
      
      The patch handles notification interrupt. Interrupt handler dumps power limit
      information in log_buf, logs the event in mce log, and increases the event
      counters (core_power_limit and package_power_limit). Upper level applications
      could use the data to detect system health or diagnose functionality/performance
      issues.
      
      In the future, the event could be handled in a more fancy way.
      Signed-off-by: NFenghua Yu <fenghua.yu@intel.com>
      LKML-Reference: <1280448826-12004-5-git-send-email-fenghua.yu@intel.com>
      Reviewed-by: NLen Brown <len.brown@intel.com>
      Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      0199114c
    • F
      x86, hwmon: Package Level Thermal/Power: thermal throttling handler · 55d435a2
      Fenghua Yu 提交于
      Add package level thermal throttle interrupt support. The interrupt handler
      increases package level thermal throttle count. It also logs the event in MCE
      log.
      
      The package level thermal throttle interrupt happens across threads in a
      package. Each thread handles the interrupt individually. User level application
      is supposed to retrieve correct event count and log based on package/thread
      topology. This is the same situation for core level interrupt handler. In the
      future, interrupt may be reported only per package or per core.
      
      core_throttle_count and package_throttle_count are used for user interface.
      Previously only throttle_count is used for core throttle count. If you think
      new core_throttle_count name breaks user interface, I can change this part.
      Signed-off-by: NFenghua Yu <fenghua.yu@intel.com>
      LKML-Reference: <1280448826-12004-4-git-send-email-fenghua.yu@intel.com>
      Reviewed-by: NLen Brown <len.brown@intel.com>
      Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      55d435a2
  11. 03 8月, 2010 1 次提交
  12. 15 6月, 2010 1 次提交
    • P
      mce: convert to rcu_dereference_index_check() · ec8c27e0
      Paul E. McKenney 提交于
      The mce processing applies rcu_dereference_check() to integers used as
      array indices.  This patch therefore moves mce to the new RCU API
      rcu_dereference_index_check() that avoids the sparse processing that
      would otherwise result in compiler errors.
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      ec8c27e0
  13. 11 6月, 2010 3 次提交
  14. 28 5月, 2010 1 次提交
  15. 20 5月, 2010 2 次提交
    • H
      ACPI, APEI, Use ERST for persistent storage of MCE · 482908b4
      Huang Ying 提交于
      Traditionally, fatal MCE will cause Linux print error log to console
      then reboot. Because MCE registers will preserve their content after
      warm reboot, the hardware error can be logged to disk or network after
      reboot. But system may fail to warm reboot, then you may lose the
      hardware error log. ERST can help here. Through saving the hardware
      error log into flash via ERST before go panic, the hardware error log
      can be gotten from the flash after system boot successful again.
      
      The fatal MCE processing procedure with ERST involved is as follow:
      
      - Hardware detect error, MCE raised
      - MCE read MCE registers, check error severity (fatal), prepare error record
      - Write MCE error record into flash via ERST
      - Go panic, then trigger system reboot
      - System reboot, /sbin/mcelog run, it reads /dev/mcelog to check flash
        for error record of previous boot via ERST, and output and clear
        them if available
      - /sbin/mcelog logs error records into disk or network
      
      ERST only accepts CPER record format, but there is no pre-defined CPER
      section can accommodate all information in struct mce, so a customized
      section type is defined to hold struct mce inside a CPER record as an
      error section.
      Signed-off-by: NHuang Ying <ying.huang@intel.com>
      Signed-off-by: NAndi Kleen <ak@linux.intel.com>
      Signed-off-by: NLen Brown <len.brown@intel.com>
      482908b4
    • H
      ACPI, APEI, Generic Hardware Error Source memory error support · d334a491
      Huang Ying 提交于
      Generic Hardware Error Source provides a way to report platform
      hardware errors (such as that from chipset). It works in so called
      "Firmware First" mode, that is, hardware errors are reported to
      firmware firstly, then reported to Linux by firmware. This way, some
      non-standard hardware error registers or non-standard hardware link
      can be checked by firmware to produce more valuable hardware error
      information for Linux.
      
      Now, only SCI notification type and memory errors are supported. More
      notification type and hardware error type will be added later. These
      memory errors are reported to user space through /dev/mcelog via
      faking a corrected Machine Check, so that the error memory page can be
      offlined by /sbin/mcelog if the error count for one page is beyond the
      threshold.
      
      On some machines, Machine Check can not report physical address for
      some corrected memory errors, but GHES can do that. So this simplified
      GHES is implemented firstly.
      Signed-off-by: NHuang Ying <ying.huang@intel.com>
      Signed-off-by: NAndi Kleen <ak@linux.intel.com>
      Signed-off-by: NLen Brown <len.brown@intel.com>
      d334a491
  16. 10 5月, 2010 1 次提交
  17. 29 4月, 2010 1 次提交
  18. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  19. 14 3月, 2010 1 次提交
    • I
      x86/mce: Fix build bug with CONFIG_PROVE_LOCKING=y && CONFIG_X86_MCE_INTEL=y · 2aa2b50d
      Ingo Molnar 提交于
      Commit f56e8a07 "x86/mce: Fix RCU lockdep splats" introduced the
      following build bug:
      
        arch/x86/kernel/cpu/mcheck/mce.c: In function 'mce_log':
        arch/x86/kernel/cpu/mcheck/mce.c:166: error: 'mce_read_mutex' undeclared (first use in this function)
        arch/x86/kernel/cpu/mcheck/mce.c:166: error: (Each undeclared identifier is reported only once
        arch/x86/kernel/cpu/mcheck/mce.c:166: error: for each function it appears in.)
      
      Move the in-the-middle-of-file lock variable up to the variable
      definition section, the top of the .c file.
      
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: x86@kernel.org
      Cc: laijs@cn.fujitsu.com
      Cc: dipankar@in.ibm.com
      Cc: mathieu.desnoyers@polymtl.ca
      Cc: josh@joshtriplett.org
      Cc: dvhltc@us.ibm.com
      Cc: niv@us.ibm.com
      Cc: peterz@infradead.org
      Cc: rostedt@goodmis.org
      Cc: Valdis.Kletnieks@vt.edu
      Cc: dhowells@redhat.com
      LKML-Reference: <1267830207-9474-3-git-send-email-paulmck@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      2aa2b50d
  20. 11 3月, 2010 2 次提交
    • M
      x86: Reduce per cpu MCA boot up messages · 10fb7f1f
      Mike Travis 提交于
      Don't write per cpu MCA boot up messages.
      Signed-of-by: NMike Travis <travis@sgi.com>
      Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
      Cc: x86@kernel.org
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      10fb7f1f
    • P
      x86/mce: Fix RCU lockdep splats · f56e8a07
      Paul E. McKenney 提交于
      Create an rcu_dereference_check_mce() that checks for RCU-sched
      read side and mce_read_mutex being held on update side.  Replace
      uses of rcu_dereference() in arch/x86/kernel/cpu/mcheck/mce.c
      with this new macro.
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: x86@kernel.org
      Cc: laijs@cn.fujitsu.com
      Cc: dipankar@in.ibm.com
      Cc: mathieu.desnoyers@polymtl.ca
      Cc: josh@joshtriplett.org
      Cc: dvhltc@us.ibm.com
      Cc: niv@us.ibm.com
      Cc: peterz@infradead.org
      Cc: rostedt@goodmis.org
      Cc: Valdis.Kletnieks@vt.edu
      Cc: dhowells@redhat.com
      LKML-Reference: <1267830207-9474-3-git-send-email-paulmck@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      f56e8a07
  21. 08 3月, 2010 2 次提交
  22. 14 12月, 2009 2 次提交
  23. 12 12月, 2009 1 次提交
    • M
      x86: Limit the number of processor bootup messages · 2eaad1fd
      Mike Travis 提交于
      When there are a large number of processors in a system, there
      is an excessive amount of messages sent to the system console.
      It's estimated that with 4096 processors in a system, and the
      console baudrate set to 56K, the startup messages will take
      about 84 minutes to clear the serial port.
      
      This set of patches limits the number of repetitious messages
      which contain no additional information.  Much of this information
      is obtainable from the /proc and /sysfs.   Some of the messages
      are also sent to the kernel log buffer as KERN_DEBUG messages so
      dmesg can be used to examine more closely any details specific to
      a problem.
      
      The new cpu bootup sequence for system_state == SYSTEM_BOOTING:
      
      Booting Node   0, Processors  #1 #2 #3 #4 #5 #6 #7 Ok.
      Booting Node   1, Processors  #8 #9 #10 #11 #12 #13 #14 #15 Ok.
      ...
      Booting Node   3, Processors  #56 #57 #58 #59 #60 #61 #62 #63 Ok.
      Brought up 64 CPUs
      
      After the system is running, a single line boot message is displayed
      when CPU's are hotplugged on:
      
          Booting Node %d Processor %d APIC 0x%x
      
      Status of the following lines:
      
          CPU: Physical Processor ID:		printed once (for boot cpu)
          CPU: Processor Core ID:		printed once (for boot cpu)
          CPU: Hyper-Threading is disabled	printed once (for boot cpu)
          CPU: Thermal monitoring enabled	printed once (for boot cpu)
          CPU %d/0x%x -> Node %d:		removed
          CPU %d is now offline:		only if system_state == RUNNING
          Initializing CPU#%d:		KERN_DEBUG
      Signed-off-by: NMike Travis <travis@sgi.com>
      LKML-Reference: <4B219E28.8080601@sgi.com>
      Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
      2eaad1fd
  24. 09 12月, 2009 1 次提交
  25. 08 12月, 2009 1 次提交
  26. 03 12月, 2009 1 次提交
  27. 26 11月, 2009 1 次提交
  28. 12 11月, 2009 1 次提交
  29. 11 11月, 2009 1 次提交
  30. 10 11月, 2009 1 次提交
    • Y
      x86: Under BIOS control, restore AP's APIC_LVTTHMR to the BSP value · a2202aa2
      Yong Wang 提交于
      On platforms where the BIOS handles the thermal monitor interrupt,
      APIC_LVTTHMR on each logical CPU is programmed to generate a SMI
      and OS must not touch it.
      
      Unfortunately AP bringup sequence using INIT-SIPI-SIPI clears all
      the LVT entries except the mask bit. Essentially this results in
      all LVT entries including the thermal monitoring interrupt set
      to masked (clearing the bios programmed value for APIC_LVTTHMR).
      
      And this leads to kernel take over the thermal monitoring
      interrupt on AP's but not on BSP (leaving the bios programmed
      value only on BSP).
      
      As a result of this, we have seen system hangs when the thermal
      monitoring interrupt is generated.
      
      Fix this by reading the initial value of thermal LVT entry on
      BSP and if bios has taken over the control, then program the
      same value on all AP's and leave the thermal monitoring
      interrupt control on all the logical cpu's to the bios.
      Signed-off-by: NYong Wang <yong.y.wang@intel.com>
      Reviewed-by: NSuresh Siddha <suresh.b.siddha@intel.com>
      Cc: Borislav Petkov <borislav.petkov@amd.com>
      Cc: Arjan van de Ven <arjan@infradead.org>
      LKML-Reference: <20091110013824.GA24940@ywang-moblin2.bj.intel.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      Cc: stable@kernel.org
      a2202aa2
  31. 04 11月, 2009 1 次提交
  32. 16 10月, 2009 2 次提交