提交 4f6bd1a8 编写于 作者: R Rajkumar Manoharan 提交者: John W. Linville

ath9k: cleanup MCI indentation

Fix bad indentation & if nesting to lose about two levels
of unnecessary indentation.
Signed-off-by: NRajkumar Manoharan <rmanohar@qca.qualcomm.com>
Signed-off-by: NJohn W. Linville <linville@tuxdriver.com>
上级 5d294a16
...@@ -35,31 +35,30 @@ static int ar9003_mci_wait_for_interrupt(struct ath_hw *ah, u32 address, ...@@ -35,31 +35,30 @@ static int ar9003_mci_wait_for_interrupt(struct ath_hw *ah, u32 address,
struct ath_common *common = ath9k_hw_common(ah); struct ath_common *common = ath9k_hw_common(ah);
while (time_out) { while (time_out) {
if (REG_READ(ah, address) & bit_position) { if (!(REG_READ(ah, address) & bit_position)) {
REG_WRITE(ah, address, bit_position); udelay(10);
time_out -= 10;
if (address == AR_MCI_INTERRUPT_RX_MSG_RAW) {
if (bit_position &
AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)
ar9003_mci_reset_req_wakeup(ah);
if (bit_position &
(AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING |
AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING))
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
AR_MCI_INTERRUPT_RX_MSG);
}
break;
}
udelay(10); if (time_out < 0)
time_out -= 10; break;
else
continue;
}
REG_WRITE(ah, address, bit_position);
if (time_out < 0) if (address != AR_MCI_INTERRUPT_RX_MSG_RAW)
break; break;
if (bit_position & AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)
ar9003_mci_reset_req_wakeup(ah);
if (bit_position & (AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING |
AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING))
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_RX_MSG);
break;
} }
if (time_out <= 0) { if (time_out <= 0) {
...@@ -127,14 +126,13 @@ static void ar9003_mci_send_coex_version_query(struct ath_hw *ah, ...@@ -127,14 +126,13 @@ static void ar9003_mci_send_coex_version_query(struct ath_hw *ah,
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 payload[4] = {0, 0, 0, 0}; u32 payload[4] = {0, 0, 0, 0};
if (!mci->bt_version_known && if (mci->bt_version_known ||
(mci->bt_state != MCI_BT_SLEEP)) { (mci->bt_state == MCI_BT_SLEEP))
MCI_GPM_SET_TYPE_OPCODE(payload, return;
MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_VERSION_QUERY); MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, MCI_GPM_COEX_VERSION_QUERY);
wait_done, true); ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
}
} }
static void ar9003_mci_send_coex_version_response(struct ath_hw *ah, static void ar9003_mci_send_coex_version_response(struct ath_hw *ah,
...@@ -158,15 +156,14 @@ static void ar9003_mci_send_coex_wlan_channels(struct ath_hw *ah, ...@@ -158,15 +156,14 @@ static void ar9003_mci_send_coex_wlan_channels(struct ath_hw *ah,
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 *payload = &mci->wlan_channels[0]; u32 *payload = &mci->wlan_channels[0];
if ((mci->wlan_channels_update == true) && if (!mci->wlan_channels_update ||
(mci->bt_state != MCI_BT_SLEEP)) { (mci->bt_state == MCI_BT_SLEEP))
MCI_GPM_SET_TYPE_OPCODE(payload, return;
MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_WLAN_CHANNELS); MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, MCI_GPM_COEX_WLAN_CHANNELS);
wait_done, true); ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
MCI_GPM_SET_TYPE_OPCODE(payload, 0xff, 0xff); MCI_GPM_SET_TYPE_OPCODE(payload, 0xff, 0xff);
}
} }
static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah, static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah,
...@@ -174,29 +171,30 @@ static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah, ...@@ -174,29 +171,30 @@ static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah,
{ {
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 payload[4] = {0, 0, 0, 0}; u32 payload[4] = {0, 0, 0, 0};
bool query_btinfo = !!(query_type & (MCI_GPM_COEX_QUERY_BT_ALL_INFO | bool query_btinfo;
MCI_GPM_COEX_QUERY_BT_TOPOLOGY));
if (mci->bt_state != MCI_BT_SLEEP) { if (mci->bt_state == MCI_BT_SLEEP)
return;
MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_STATUS_QUERY);
*(((u8 *)payload) + MCI_GPM_COEX_B_BT_BITMAP) = query_type; query_btinfo = !!(query_type & (MCI_GPM_COEX_QUERY_BT_ALL_INFO |
MCI_GPM_COEX_QUERY_BT_TOPOLOGY));
MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
MCI_GPM_COEX_STATUS_QUERY);
/* *(((u8 *)payload) + MCI_GPM_COEX_B_BT_BITMAP) = query_type;
* If bt_status_query message is not sent successfully,
* then need_flush_btinfo should be set again.
*/
if (!ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
wait_done, true)) {
if (query_btinfo)
mci->need_flush_btinfo = true;
}
/*
* If bt_status_query message is not sent successfully,
* then need_flush_btinfo should be set again.
*/
if (!ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
wait_done, true)) {
if (query_btinfo) if (query_btinfo)
mci->query_bt = false; mci->need_flush_btinfo = true;
} }
if (query_btinfo)
mci->query_bt = false;
} }
static void ar9003_mci_send_coex_halt_bt_gpm(struct ath_hw *ah, bool halt, static void ar9003_mci_send_coex_halt_bt_gpm(struct ath_hw *ah, bool halt,
...@@ -241,73 +239,73 @@ static void ar9003_mci_prep_interface(struct ath_hw *ah) ...@@ -241,73 +239,73 @@ static void ar9003_mci_prep_interface(struct ath_hw *ah)
ar9003_mci_remote_reset(ah, true); ar9003_mci_remote_reset(ah, true);
ar9003_mci_send_req_wake(ah, true); ar9003_mci_send_req_wake(ah, true);
if (ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, if (!ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING, 500)) { AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING, 500))
goto clear_redunt;
mci->bt_state = MCI_BT_AWAKE; mci->bt_state = MCI_BT_AWAKE;
/* /*
* we don't need to send more remote_reset at this moment. * we don't need to send more remote_reset at this moment.
* If BT receive first remote_reset, then BT HW will * If BT receive first remote_reset, then BT HW will
* be cleaned up and will be able to receive req_wake * be cleaned up and will be able to receive req_wake
* and BT HW will respond sys_waking. * and BT HW will respond sys_waking.
* In this case, WLAN will receive BT's HW sys_waking. * In this case, WLAN will receive BT's HW sys_waking.
* Otherwise, if BT SW missed initial remote_reset, * Otherwise, if BT SW missed initial remote_reset,
* that remote_reset will still clean up BT MCI RX, * that remote_reset will still clean up BT MCI RX,
* and the req_wake will wake BT up, * and the req_wake will wake BT up,
* and BT SW will respond this req_wake with a remote_reset and * and BT SW will respond this req_wake with a remote_reset and
* sys_waking. In this case, WLAN will receive BT's SW * sys_waking. In this case, WLAN will receive BT's SW
* sys_waking. In either case, BT's RX is cleaned up. So we * sys_waking. In either case, BT's RX is cleaned up. So we
* don't need to reply BT's remote_reset now, if any. * don't need to reply BT's remote_reset now, if any.
* Similarly, if in any case, WLAN can receive BT's sys_waking, * Similarly, if in any case, WLAN can receive BT's sys_waking,
* that means WLAN's RX is also fine. * that means WLAN's RX is also fine.
*/ */
ar9003_mci_send_sys_waking(ah, true); ar9003_mci_send_sys_waking(ah, true);
udelay(10); udelay(10);
/* /*
* Set BT priority interrupt value to be 0xff to * Set BT priority interrupt value to be 0xff to
* avoid having too many BT PRIORITY interrupts. * avoid having too many BT PRIORITY interrupts.
*/ */
REG_WRITE(ah, AR_MCI_BT_PRI0, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI0, 0xFFFFFFFF);
REG_WRITE(ah, AR_MCI_BT_PRI1, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI1, 0xFFFFFFFF);
REG_WRITE(ah, AR_MCI_BT_PRI2, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI2, 0xFFFFFFFF);
REG_WRITE(ah, AR_MCI_BT_PRI3, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI3, 0xFFFFFFFF);
REG_WRITE(ah, AR_MCI_BT_PRI, 0X000000FF); REG_WRITE(ah, AR_MCI_BT_PRI, 0X000000FF);
/* /*
* A contention reset will be received after send out * A contention reset will be received after send out
* sys_waking. Also BT priority interrupt bits will be set. * sys_waking. Also BT priority interrupt bits will be set.
* Clear those bits before the next step. * Clear those bits before the next step.
*/ */
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_CONT_RST); AR_MCI_INTERRUPT_RX_MSG_CONT_RST);
REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_BT_PRI);
AR_MCI_INTERRUPT_BT_PRI);
if (mci->is_2g) { if (mci->is_2g) {
ar9003_mci_send_lna_transfer(ah, true); ar9003_mci_send_lna_transfer(ah, true);
udelay(5); udelay(5);
} }
if ((mci->is_2g && !mci->update_2g5g)) { if ((mci->is_2g && !mci->update_2g5g)) {
if (ar9003_mci_wait_for_interrupt(ah, if (ar9003_mci_wait_for_interrupt(ah,
AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_LNA_INFO, AR_MCI_INTERRUPT_RX_MSG_LNA_INFO,
mci_timeout)) mci_timeout))
ath_dbg(common, MCI, ath_dbg(common, MCI,
"MCI WLAN has control over the LNA & BT obeys it\n"); "MCI WLAN has control over the LNA & BT obeys it\n");
else else
ath_dbg(common, MCI, ath_dbg(common, MCI,
"MCI BT didn't respond to LNA_TRANS\n"); "MCI BT didn't respond to LNA_TRANS\n");
}
} }
clear_redunt:
/* Clear the extra redundant SYS_WAKING from BT */ /* Clear the extra redundant SYS_WAKING from BT */
if ((mci->bt_state == MCI_BT_AWAKE) && if ((mci->bt_state == MCI_BT_AWAKE) &&
(REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) && AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) &&
(REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) == 0)) { AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) == 0)) {
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
...@@ -614,9 +612,9 @@ static u32 ar9003_mci_wait_for_gpm(struct ath_hw *ah, u8 gpm_type, ...@@ -614,9 +612,9 @@ static u32 ar9003_mci_wait_for_gpm(struct ath_hw *ah, u8 gpm_type,
} }
break; break;
} }
} else if ((recv_type == gpm_type) && (recv_opcode == gpm_opcode)) { } else if ((recv_type == gpm_type) &&
(recv_opcode == gpm_opcode))
break; break;
}
/* /*
* check if it's cal_grant * check if it's cal_grant
...@@ -730,38 +728,38 @@ int ar9003_mci_end_reset(struct ath_hw *ah, struct ath9k_channel *chan, ...@@ -730,38 +728,38 @@ int ar9003_mci_end_reset(struct ath_hw *ah, struct ath9k_channel *chan,
if (!IS_CHAN_2GHZ(chan) || (mci_hw->bt_state != MCI_BT_SLEEP)) if (!IS_CHAN_2GHZ(chan) || (mci_hw->bt_state != MCI_BT_SLEEP))
goto exit; goto exit;
if (ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) || if (!ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) &&
ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)) { !ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE))
goto exit;
/* /*
* BT is sleeping. Check if BT wakes up during * BT is sleeping. Check if BT wakes up during
* WLAN calibration. If BT wakes up during * WLAN calibration. If BT wakes up during
* WLAN calibration, need to go through all * WLAN calibration, need to go through all
* message exchanges again and recal. * message exchanges again and recal.
*/ */
REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET | (AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE); AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE));
ar9003_mci_remote_reset(ah, true); ar9003_mci_remote_reset(ah, true);
ar9003_mci_send_sys_waking(ah, true); ar9003_mci_send_sys_waking(ah, true);
udelay(1); udelay(1);
if (IS_CHAN_2GHZ(chan)) if (IS_CHAN_2GHZ(chan))
ar9003_mci_send_lna_transfer(ah, true); ar9003_mci_send_lna_transfer(ah, true);
mci_hw->bt_state = MCI_BT_AWAKE; mci_hw->bt_state = MCI_BT_AWAKE;
if (caldata) { if (caldata) {
caldata->done_txiqcal_once = false; caldata->done_txiqcal_once = false;
caldata->done_txclcal_once = false; caldata->done_txclcal_once = false;
caldata->rtt_done = false; caldata->rtt_done = false;
} }
if (!ath9k_hw_init_cal(ah, chan)) if (!ath9k_hw_init_cal(ah, chan))
return -EIO; return -EIO;
}
exit: exit:
ar9003_mci_enable_interrupt(ah); ar9003_mci_enable_interrupt(ah);
return 0; return 0;
...@@ -797,29 +795,27 @@ static void ar9003_mci_osla_setup(struct ath_hw *ah, bool enable) ...@@ -797,29 +795,27 @@ static void ar9003_mci_osla_setup(struct ath_hw *ah, bool enable)
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 thresh; u32 thresh;
if (enable) { if (!enable) {
REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
AR_MCI_SCHD_TABLE_2_HW_BASED, 1);
REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
AR_MCI_SCHD_TABLE_2_MEM_BASED, 1);
if (!(mci->config & ATH_MCI_CONFIG_DISABLE_AGGR_THRESH)) {
thresh = MS(mci->config, ATH_MCI_CONFIG_AGGR_THRESH);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_AGGR_THRESH, thresh);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 1);
} else {
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 0);
}
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN, 1);
} else {
REG_CLR_BIT(ah, AR_BTCOEX_CTRL, REG_CLR_BIT(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN); AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
return;
} }
REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2, AR_MCI_SCHD_TABLE_2_HW_BASED, 1);
REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
AR_MCI_SCHD_TABLE_2_MEM_BASED, 1);
if (!(mci->config & ATH_MCI_CONFIG_DISABLE_AGGR_THRESH)) {
thresh = MS(mci->config, ATH_MCI_CONFIG_AGGR_THRESH);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_AGGR_THRESH, thresh);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 1);
} else
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 0);
REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN, 1);
} }
void ar9003_mci_reset(struct ath_hw *ah, bool en_int, bool is_2g, void ar9003_mci_reset(struct ath_hw *ah, bool en_int, bool is_2g,
...@@ -942,26 +938,27 @@ static void ar9003_mci_send_2g5g_status(struct ath_hw *ah, bool wait_done) ...@@ -942,26 +938,27 @@ static void ar9003_mci_send_2g5g_status(struct ath_hw *ah, bool wait_done)
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
u32 new_flags, to_set, to_clear; u32 new_flags, to_set, to_clear;
if (mci->update_2g5g && (mci->bt_state != MCI_BT_SLEEP)) { if (!mci->update_2g5g || (mci->bt_state == MCI_BT_SLEEP))
if (mci->is_2g) { return;
new_flags = MCI_2G_FLAGS;
to_clear = MCI_2G_FLAGS_CLEAR_MASK;
to_set = MCI_2G_FLAGS_SET_MASK;
} else {
new_flags = MCI_5G_FLAGS;
to_clear = MCI_5G_FLAGS_CLEAR_MASK;
to_set = MCI_5G_FLAGS_SET_MASK;
}
if (to_clear) if (mci->is_2g) {
ar9003_mci_send_coex_bt_flags(ah, wait_done, new_flags = MCI_2G_FLAGS;
to_clear = MCI_2G_FLAGS_CLEAR_MASK;
to_set = MCI_2G_FLAGS_SET_MASK;
} else {
new_flags = MCI_5G_FLAGS;
to_clear = MCI_5G_FLAGS_CLEAR_MASK;
to_set = MCI_5G_FLAGS_SET_MASK;
}
if (to_clear)
ar9003_mci_send_coex_bt_flags(ah, wait_done,
MCI_GPM_COEX_BT_FLAGS_CLEAR, MCI_GPM_COEX_BT_FLAGS_CLEAR,
to_clear); to_clear);
if (to_set) if (to_set)
ar9003_mci_send_coex_bt_flags(ah, wait_done, ar9003_mci_send_coex_bt_flags(ah, wait_done,
MCI_GPM_COEX_BT_FLAGS_SET, MCI_GPM_COEX_BT_FLAGS_SET,
to_set); to_set);
}
} }
static void ar9003_mci_queue_unsent_gpm(struct ath_hw *ah, u8 header, static void ar9003_mci_queue_unsent_gpm(struct ath_hw *ah, u8 header,
...@@ -1017,34 +1014,34 @@ void ar9003_mci_2g5g_switch(struct ath_hw *ah, bool wait_done) ...@@ -1017,34 +1014,34 @@ void ar9003_mci_2g5g_switch(struct ath_hw *ah, bool wait_done)
{ {
struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
if (mci->update_2g5g) { if (!mci->update_2g5g)
if (mci->is_2g) { return;
ar9003_mci_send_2g5g_status(ah, true);
ar9003_mci_send_lna_transfer(ah, true);
udelay(5);
REG_CLR_BIT(ah, AR_MCI_TX_CTRL, if (mci->is_2g) {
AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE); ar9003_mci_send_2g5g_status(ah, true);
REG_CLR_BIT(ah, AR_PHY_GLB_CONTROL, ar9003_mci_send_lna_transfer(ah, true);
AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL); udelay(5);
if (!(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA)) { REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
REG_SET_BIT(ah, AR_BTCOEX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN); REG_CLR_BIT(ah, AR_PHY_GLB_CONTROL,
} AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
} else {
ar9003_mci_send_lna_take(ah, true); if (!(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA))
udelay(5); REG_SET_BIT(ah, AR_BTCOEX_CTRL,
REG_SET_BIT(ah, AR_MCI_TX_CTRL,
AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
REG_CLR_BIT(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN); AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
} else {
ar9003_mci_send_lna_take(ah, true);
udelay(5);
ar9003_mci_send_2g5g_status(ah, true); REG_SET_BIT(ah, AR_MCI_TX_CTRL,
} AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
REG_CLR_BIT(ah, AR_BTCOEX_CTRL,
AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
ar9003_mci_send_2g5g_status(ah, true);
} }
} }
...@@ -1258,12 +1255,12 @@ u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type, u32 *p_data) ...@@ -1258,12 +1255,12 @@ u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type, u32 *p_data)
} }
if (p_data) if (p_data)
*p_data = more_gpm; *p_data = more_gpm;
} }
if (value != MCI_GPM_INVALID) if (value != MCI_GPM_INVALID)
value <<= 4; value <<= 4;
break; break;
case MCI_STATE_LAST_SCHD_MSG_OFFSET: case MCI_STATE_LAST_SCHD_MSG_OFFSET:
value = MS(REG_READ(ah, AR_MCI_RX_STATUS), value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
AR_MCI_RX_LAST_SCHD_MSG_INDEX); AR_MCI_RX_LAST_SCHD_MSG_INDEX);
...@@ -1358,24 +1355,22 @@ u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type, u32 *p_data) ...@@ -1358,24 +1355,22 @@ u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type, u32 *p_data)
ar9003_mci_send_coex_bt_status_query(ah, true, query_type); ar9003_mci_send_coex_bt_status_query(ah, true, query_type);
break; break;
case MCI_STATE_NEED_FLUSH_BT_INFO: case MCI_STATE_NEED_FLUSH_BT_INFO:
/* /*
* btcoex_hw.mci.unhalt_bt_gpm means whether it's * btcoex_hw.mci.unhalt_bt_gpm means whether it's
* needed to send UNHALT message. It's set whenever * needed to send UNHALT message. It's set whenever
* there's a request to send HALT message. * there's a request to send HALT message.
* mci_halted_bt_gpm means whether HALT message is sent * mci_halted_bt_gpm means whether HALT message is sent
* out successfully. * out successfully.
* *
* Checking (mci_unhalt_bt_gpm == false) instead of * Checking (mci_unhalt_bt_gpm == false) instead of
* checking (ah->mci_halted_bt_gpm == false) will make * checking (ah->mci_halted_bt_gpm == false) will make
* sure currently is in UNHALT-ed mode and BT can * sure currently is in UNHALT-ed mode and BT can
* respond to status query. * respond to status query.
*/ */
value = (!mci->unhalt_bt_gpm && value = (!mci->unhalt_bt_gpm && mci->need_flush_btinfo) ? 1 : 0;
mci->need_flush_btinfo) ? 1 : 0; if (p_data)
if (p_data) mci->need_flush_btinfo = (*p_data != 0) ? true : false;
mci->need_flush_btinfo = break;
(*p_data != 0) ? true : false;
break;
case MCI_STATE_RECOVER_RX: case MCI_STATE_RECOVER_RX:
ar9003_mci_prep_interface(ah); ar9003_mci_prep_interface(ah);
mci->query_bt = true; mci->query_bt = true;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册