提交 3ec2cdb8 编写于 作者: E Eric Huang 提交者: Alex Deucher

drm/amd/powerplay: update atomctrl for fiji

Add some new functions to support Fiji.  Split out
from the previous patch.
Reviewed-by: NJammy Zhou <Jammy.Zhou@amd.com>
Signed-off-by: NEric Huang <JinHuiEric.Huang@amd.com>
上级 770911a3
...@@ -28,6 +28,8 @@ ...@@ -28,6 +28,8 @@
#include "atombios.h" #include "atombios.h"
#include "cgs_common.h" #include "cgs_common.h"
#include "pp_debug.h" #include "pp_debug.h"
#include "ppevvmath.h"
#define MEM_ID_MASK 0xff000000 #define MEM_ID_MASK 0xff000000
#define MEM_ID_SHIFT 24 #define MEM_ID_SHIFT 24
#define CLOCK_RANGE_MASK 0x00ffffff #define CLOCK_RANGE_MASK 0x00ffffff
...@@ -94,7 +96,7 @@ static int atomctrl_retrieve_ac_timing( ...@@ -94,7 +96,7 @@ static int atomctrl_retrieve_ac_timing(
* VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
* @param reg_block the address ATOM_INIT_REG_BLOCK * @param reg_block the address ATOM_INIT_REG_BLOCK
* @param table the address of MCRegTable * @param table the address of MCRegTable
* @return PP_Result_OK * @return 0
*/ */
static int atomctrl_set_mc_reg_address_table( static int atomctrl_set_mc_reg_address_table(
ATOM_INIT_REG_BLOCK *reg_block, ATOM_INIT_REG_BLOCK *reg_block,
...@@ -286,6 +288,31 @@ int atomctrl_get_memory_pll_dividers_si( ...@@ -286,6 +288,31 @@ int atomctrl_get_memory_pll_dividers_si(
return result; return result;
} }
/** atomctrl_get_memory_pll_dividers_vi().
*
* @param hwmgr input parameter: pointer to HwMgr
* @param clock_value input parameter: memory clock
* @param dividers output parameter: memory PLL dividers
*/
int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
{
COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
int result;
mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
&mpll_parameters);
if (!result)
mpll_param->mpll_post_divider =
(uint32_t)mpll_parameters.ulClock.ucPostDiv;
return result;
}
int atomctrl_get_engine_pll_dividers_vi( int atomctrl_get_engine_pll_dividers_vi(
struct pp_hwmgr *hwmgr, struct pp_hwmgr *hwmgr,
uint32_t clock_value, uint32_t clock_value,
...@@ -387,7 +414,7 @@ uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr) ...@@ -387,7 +414,7 @@ uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
} }
/** /**
* Returns 0 if the given voltage type is controlled by GPIO pins. * Returns true if the given voltage type is controlled by GPIO pins.
* voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC, * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
* SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ. * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
* voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
...@@ -402,10 +429,10 @@ bool atomctrl_is_voltage_controled_by_gpio_v3( ...@@ -402,10 +429,10 @@ bool atomctrl_is_voltage_controled_by_gpio_v3(
bool ret; bool ret;
PP_ASSERT_WITH_CODE((NULL != voltage_info), PP_ASSERT_WITH_CODE((NULL != voltage_info),
"Could not find Voltage Table in BIOS.", return -1;); "Could not find Voltage Table in BIOS.", return false;);
ret = (NULL != atomctrl_lookup_voltage_type_v3 ret = (NULL != atomctrl_lookup_voltage_type_v3
(voltage_info, voltage_type, voltage_mode)) ? 0 : 1; (voltage_info, voltage_type, voltage_mode)) ? true : false;
return ret; return ret;
} }
...@@ -525,6 +552,441 @@ bool atomctrl_get_pp_assign_pin( ...@@ -525,6 +552,441 @@ bool atomctrl_get_pp_assign_pin(
return bRet; return bRet;
} }
int atomctrl_calculate_voltage_evv_on_sclk(
struct pp_hwmgr *hwmgr,
uint8_t voltage_type,
uint32_t sclk,
uint16_t virtual_voltage_Id,
uint16_t *voltage,
uint16_t dpm_level,
bool debug)
{
ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
EFUSE_INPUT_PARAMETER sInput_FuseValues;
READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
fInt fLkg_FT, repeat;
fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
fInt fSclk_margin, fSclk, fEVV_V;
fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
uint32_t ul_FT_Lkg_V0NORM;
fInt fLn_MaxDivMin, fMin, fAverage, fRange;
fInt fRoots[2];
fInt fStepSize = GetScaledFraction(625, 100000);
int result;
getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
cgs_atom_get_data_table(hwmgr->device,
GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
NULL, NULL, NULL);
if (!getASICProfilingInfo)
return -1;
if(getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
(getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
return -1;
/*-----------------------------------------------------------
*GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
*-----------------------------------------------------------
*/
fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
switch (dpm_level) {
case 1:
fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
break;
case 2:
fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
break;
case 3:
fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
break;
case 4:
fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
break;
case 5:
fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
break;
case 6:
fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
break;
case 7:
fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
break;
default:
printk(KERN_ERR "DPM Level not supported\n");
fPowerDPMx = Convert_ULONG_ToFraction(1);
fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
}
/*-------------------------
* DECODING FUSE VALUES
* ------------------------
*/
/*Decode RO_Fused*/
sRO_fuse = getASICProfilingInfo->sRoFuse;
sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
/* Finally, the actual fuse value */
ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
sCACm_fuse = getASICProfilingInfo->sCACm;
sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
sCACb_fuse = getASICProfilingInfo->sCACb;
sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
sKv_m_fuse = getASICProfilingInfo->sKv_m;
sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
fRange = fMultiply(fRange, ConvertToFraction(-1));
fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
fAverage, fRange, sKv_m_fuse.ucEfuseLength);
sKv_b_fuse = getASICProfilingInfo->sKv_b;
sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
fAverage, fRange, sKv_b_fuse.ucEfuseLength);
/* Decoding the Leakage - No special struct container */
/*
* usLkgEuseIndex=56
* ucLkgEfuseBitLSB=6
* ucLkgEfuseLength=10
* ulLkgEncodeLn_MaxDivMin=69077
* ulLkgEncodeMax=1000000
* ulLkgEncodeMin=1000
* ulEfuseLogisticAlpha=13
*/
sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
fLkg_FT = fFT_Lkg_V0NORM;
/*-------------------------------------------
* PART 2 - Grabbing all required values
*-------------------------------------------
*/
fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
fMargin_FMAX_mean = GetScaledFraction(
getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
fMargin_Plat_mean = GetScaledFraction(
getASICProfilingInfo->ulMargin_plat_mean, 10000);
fMargin_FMAX_sigma = GetScaledFraction(
getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
fMargin_Plat_sigma = GetScaledFraction(
getASICProfilingInfo->ulMargin_plat_sigma, 10000);
fMargin_DC_sigma = GetScaledFraction(
getASICProfilingInfo->ulMargin_DC_sigma, 100);
fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
fSclk = GetScaledFraction(sclk, 100);
fV_max = fDivide(GetScaledFraction(
getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
fV_FT = fDivide(GetScaledFraction(
getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
fV_min = fDivide(GetScaledFraction(
getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
/*-----------------------
* PART 3
*-----------------------
*/
fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4,fSclk), fSM_A5));
fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
fC_Term = fAdd(fMargin_RO_c,
fAdd(fMultiply(fSM_A0,fLkg_FT),
fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT,fSclk)),
fAdd(fMultiply(fSM_A3, fSclk),
fSubtract(fSM_A7,fRO_fused)))));
fVDDC_base = fSubtract(fRO_fused,
fSubtract(fMargin_RO_c,
fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0,fSclk), fSM_A2));
repeat = fSubtract(fVDDC_base,
fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
fGetSquare(repeat)),
fAdd(fMultiply(fMargin_RO_b, repeat),
fMargin_RO_c));
fDC_SCLK = fSubtract(fRO_fused,
fSubtract(fRO_DC_margin,
fSubtract(fSM_A3,
fMultiply(fSM_A2, repeat))));
fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0,repeat), fSM_A1));
fSigma_DC = fSubtract(fSclk, fDC_SCLK);
fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
fSquared_Sigma_DC = fGetSquare(fSigma_DC);
fSquared_Sigma_CR = fGetSquare(fSigma_CR);
fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
fSclk_margin = fAdd(fMicro_FMAX,
fAdd(fMicro_CR,
fAdd(fMargin_fixed,
fSqrt(fAdd(fSquared_Sigma_FMAX,
fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
/*
fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
*/
fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
fC_Term = fAdd(fRO_DC_margin,
fAdd(fMultiply(fSM_A0, fLkg_FT),
fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
fAdd(fSclk, fSclk_margin)),
fAdd(fMultiply(fSM_A3,
fAdd(fSclk, fSclk_margin)),
fSubtract(fSM_A7, fRO_fused)))));
SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
if (GreaterThan(fRoots[0], fRoots[1]))
fEVV_V = fRoots[1];
else
fEVV_V = fRoots[0];
if (GreaterThan(fV_min, fEVV_V))
fEVV_V = fV_min;
else if (GreaterThan(fEVV_V, fV_max))
fEVV_V = fSubtract(fV_max, fStepSize);
fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
/*-----------------
* PART 4
*-----------------
*/
fV_x = fV_min;
while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
fGetSquare(fV_x)), fDerateTDP);
fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
fT_prod), fKv_b_fused), fV_x)), fV_x)));
fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
fKt_Beta_fused, fT_prod)));
fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
fKt_Beta_fused, fT_FT)));
fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
fTDP_Current = fDivide(fTDP_Power, fV_x);
fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
ConvertToFraction(10)));
fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
if (GreaterThan(fV_max, fV_NL) &&
(GreaterThan(fV_NL,fEVV_V) ||
Equal(fV_NL, fEVV_V))) {
fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
*voltage = (uint16_t)fV_NL.partial.real;
break;
} else
fV_x = fAdd(fV_x, fStepSize);
}
return result;
}
/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table. /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
* @param hwmgr input: pointer to hwManager * @param hwmgr input: pointer to hwManager
* @param voltage_type input: type of EVV voltage VDDC or VDDGFX * @param voltage_type input: type of EVV voltage VDDC or VDDGFX
...@@ -701,4 +1163,23 @@ int atomctrl_get_engine_clock_spread_spectrum( ...@@ -701,4 +1163,23 @@ int atomctrl_get_engine_clock_spread_spectrum(
ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo); ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
} }
int atomctrl_read_efuse(void *device, uint16_t start_index,
uint16_t end_index, uint32_t mask, uint32_t *efuse)
{
int result;
READ_EFUSE_VALUE_PARAMETER efuse_param;
efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
efuse_param.sEfuse.ucBitShift = (uint8_t)
(start_index - ((start_index / 32) * 32));
efuse_param.sEfuse.ucBitLength = (uint8_t)
((end_index - start_index) + 1);
result = cgs_atom_exec_cmd_table(device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&efuse_param);
if (!result)
*efuse = efuse_param.ulEfuseValue & mask;
return result;
}
...@@ -231,6 +231,12 @@ extern int atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t ...@@ -231,6 +231,12 @@ extern int atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t
extern int atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers); extern int atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers);
extern bool atomctrl_is_voltage_controled_by_gpio_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode); extern bool atomctrl_is_voltage_controled_by_gpio_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode);
extern int atomctrl_get_voltage_table_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, pp_atomctrl_voltage_table *voltage_table); extern int atomctrl_get_voltage_table_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, pp_atomctrl_voltage_table *voltage_table);
extern int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param);
extern int atomctrl_read_efuse(void *device, uint16_t start_index,
uint16_t end_index, uint32_t mask, uint32_t *efuse);
extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug);
#endif #endif
......
...@@ -4507,14 +4507,14 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr) ...@@ -4507,14 +4507,14 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE; data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE; data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2; data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
} }
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDGFX)) { PHM_PlatformCaps_ControlVDDGFX)) {
if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) { VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2; data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
} }
...@@ -4527,7 +4527,7 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr) ...@@ -4527,7 +4527,7 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableMVDDControl)) { PHM_PlatformCaps_EnableMVDDControl)) {
if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) { VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO; data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
} }
...@@ -4540,10 +4540,10 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr) ...@@ -4540,10 +4540,10 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI)) { PHM_PlatformCaps_ControlVDDCI)) {
if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO; data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
else if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2; data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册