tlv320aic3x.c 49.3 KB
Newer Older
1 2 3
/*
 * ALSA SoC TLV320AIC3X codec driver
 *
4
 * Author:      Vladimir Barinov, <vbarinov@embeddedalley.com>
5 6 7 8 9 10 11 12 13 14
 * Copyright:   (C) 2007 MontaVista Software, Inc., <source@mvista.com>
 *
 * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Notes:
 *  The AIC3X is a driver for a low power stereo audio
15
 *  codecs aic31, aic32, aic33, aic3007.
16 17
 *
 *  It supports full aic33 codec functionality.
18 19
 *  The compatibility with aic32, aic31 and aic3007 is as follows:
 *    aic32/aic3007    |        aic31
20 21 22 23 24 25 26 27 28 29 30 31
 *  ---------------------------------------
 *   MONO_LOUT -> N/A  |  MONO_LOUT -> N/A
 *                     |  IN1L -> LINE1L
 *                     |  IN1R -> LINE1R
 *                     |  IN2L -> LINE2L
 *                     |  IN2R -> LINE2R
 *                     |  MIC3L/R -> N/A
 *   truncated internal functionality in
 *   accordance with documentation
 *  ---------------------------------------
 *
 *  Hence the machine layer should disable unsupported inputs/outputs by
32
 *  snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
33 34 35 36 37 38 39 40
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
41
#include <linux/gpio.h>
42
#include <linux/regulator/consumer.h>
43
#include <linux/slab.h>
44 45 46 47 48
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
49
#include <sound/tlv.h>
50
#include <sound/tlv320aic3x.h>
51 52 53

#include "tlv320aic3x.h"

54 55 56 57 58 59 60
#define AIC3X_NUM_SUPPLIES	4
static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
	"IOVDD",	/* I/O Voltage */
	"DVDD",		/* Digital Core Voltage */
	"AVDD",		/* Analog DAC Voltage */
	"DRVDD",	/* ADC Analog and Output Driver Voltage */
};
61

62 63
static LIST_HEAD(reset_list);

64 65 66 67 68 69 70
struct aic3x_priv;

struct aic3x_disable_nb {
	struct notifier_block nb;
	struct aic3x_priv *aic3x;
};

71 72
/* codec private data */
struct aic3x_priv {
73
	struct snd_soc_codec *codec;
74
	struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
75
	struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES];
76 77
	enum snd_soc_control_type control_type;
	struct aic3x_setup_data *setup;
78
	unsigned int sysclk;
79
	struct list_head list;
80
	int master;
81
	int gpio_reset;
82
	int power;
83 84 85 86
#define AIC3X_MODEL_3X 0
#define AIC3X_MODEL_33 1
#define AIC3X_MODEL_3007 2
	u16 model;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
};

/*
 * AIC3X register cache
 * We can't read the AIC3X register space when we are
 * using 2 wire for device control, so we cache them instead.
 * There is no point in caching the reset register
 */
static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
	0x00, 0x00, 0x00, 0x10,	/* 0 */
	0x04, 0x00, 0x00, 0x00,	/* 4 */
	0x00, 0x00, 0x00, 0x01,	/* 8 */
	0x00, 0x00, 0x00, 0x80,	/* 12 */
	0x80, 0xff, 0xff, 0x78,	/* 16 */
	0x78, 0x78, 0x78, 0x78,	/* 20 */
	0x78, 0x00, 0x00, 0xfe,	/* 24 */
	0x00, 0x00, 0xfe, 0x00,	/* 28 */
	0x18, 0x18, 0x00, 0x00,	/* 32 */
	0x00, 0x00, 0x00, 0x00,	/* 36 */
	0x00, 0x00, 0x00, 0x80,	/* 40 */
	0x80, 0x00, 0x00, 0x00,	/* 44 */
	0x00, 0x00, 0x00, 0x04,	/* 48 */
	0x00, 0x00, 0x00, 0x00,	/* 52 */
	0x00, 0x00, 0x04, 0x00,	/* 56 */
	0x00, 0x00, 0x00, 0x00,	/* 60 */
	0x00, 0x04, 0x00, 0x00,	/* 64 */
	0x00, 0x00, 0x00, 0x00,	/* 68 */
	0x04, 0x00, 0x00, 0x00,	/* 72 */
	0x00, 0x00, 0x00, 0x00,	/* 76 */
	0x00, 0x00, 0x00, 0x00,	/* 80 */
	0x00, 0x00, 0x00, 0x00,	/* 84 */
	0x00, 0x00, 0x00, 0x00,	/* 88 */
	0x00, 0x00, 0x00, 0x00,	/* 92 */
	0x00, 0x00, 0x00, 0x00,	/* 96 */
	0x00, 0x00, 0x02,	/* 100 */
};

#define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
	.info = snd_soc_info_volsw, \
	.get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
	.private_value =  SOC_SINGLE_VALUE(reg, shift, mask, invert) }

/*
 * All input lines are connected when !0xf and disconnected with 0xf bit field,
 * so we have to use specific dapm_put call for input mixer
 */
static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
137 138
	struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
	struct snd_soc_dapm_widget *widget = wlist->widgets[0];
139 140 141 142 143 144 145
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	unsigned int reg = mc->reg;
	unsigned int shift = mc->shift;
	int max = mc->max;
	unsigned int mask = (1 << fls(max)) - 1;
	unsigned int invert = mc->invert;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	unsigned short val, val_mask;
	int ret;
	struct snd_soc_dapm_path *path;
	int found = 0;

	val = (ucontrol->value.integer.value[0] & mask);

	mask = 0xf;
	if (val)
		val = mask;

	if (invert)
		val = mask - val;
	val_mask = mask << shift;
	val = val << shift;

	mutex_lock(&widget->codec->mutex);

	if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
		/* find dapm widget path assoc with kcontrol */
166
		list_for_each_entry(path, &widget->dapm->card->paths, list) {
167 168 169 170 171 172 173 174 175 176 177
			if (path->kcontrol != kcontrol)
				continue;

			/* found, now check type */
			found = 1;
			if (val)
				/* new connection */
				path->connect = invert ? 0 : 1;
			else
				/* old connection must be powered down */
				path->connect = invert ? 1 : 0;
178 179 180 181

			dapm_mark_dirty(path->source, "tlv320aic3x source");
			dapm_mark_dirty(path->sink, "tlv320aic3x sink");

182 183 184 185
			break;
		}

		if (found)
L
Liam Girdwood 已提交
186
			snd_soc_dapm_sync(widget->dapm);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	}

	ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);

	mutex_unlock(&widget->codec->mutex);
	return ret;
}

static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
static const char *aic3x_left_hpcom_mux[] =
    { "differential of HPLOUT", "constant VCM", "single-ended" };
static const char *aic3x_right_hpcom_mux[] =
    { "differential of HPROUT", "constant VCM", "single-ended",
      "differential of HPLCOM", "external feedback" };
static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
203 204
static const char *aic3x_adc_hpf[] =
    { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
205 206 207 208 209

#define LDAC_ENUM	0
#define RDAC_ENUM	1
#define LHPCOM_ENUM	2
#define RHPCOM_ENUM	3
210 211 212 213 214 215 216
#define LINE1L_2_L_ENUM	4
#define LINE1L_2_R_ENUM	5
#define LINE1R_2_L_ENUM	6
#define LINE1R_2_R_ENUM	7
#define LINE2L_ENUM	8
#define LINE2R_ENUM	9
#define ADC_HPF_ENUM	10
217 218 219 220 221 222 223

static const struct soc_enum aic3x_enum[] = {
	SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
	SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
	SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
	SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
	SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
224 225
	SOC_ENUM_SINGLE(LINE1L_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
	SOC_ENUM_SINGLE(LINE1R_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
226 227 228
	SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
	SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
	SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
229
	SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
230 231
};

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
 */
static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
/* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
/*
 * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
 * Step size is approximately 0.5 dB over most of the scale but increasing
 * near the very low levels.
 * Define dB scale so that it is mostly correct for range about -55 to 0 dB
 * but having increasing dB difference below that (and where it doesn't count
 * so much). This setting shows -50 dB (actual is -50.3 dB) for register
 * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
 */
static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);

249 250
static const struct snd_kcontrol_new aic3x_snd_controls[] = {
	/* Output */
251 252
	SOC_DOUBLE_R_TLV("PCM Playback Volume",
			 LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	/*
	 * Output controls that map to output mixer switches. Note these are
	 * only for swapped L-to-R and R-to-L routes. See below stereo controls
	 * for direct L-to-L and R-to-R routes.
	 */
	SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume",
		       LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume",
		       PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume",
		       DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume",
		       LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume",
		       PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume",
		       DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume",
		       LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume",
		       PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume",
		       DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume",
		       LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume",
		       PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume",
		       DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume",
		       LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume",
		       PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume",
		       DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume",
		       LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume",
		       PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume",
		       DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),

	/* Stereo output controls for direct L-to-L and R-to-R routes */
	SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume",
			 LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("Line PGA Bypass Volume",
			 PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
308 309 310
	SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
			 DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
311 312 313

	SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume",
			 LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
314
			 0, 118, 1, output_stage_tlv),
315 316
	SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume",
			 PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
317 318 319 320
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
			 DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
321 322 323

	SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume",
			 LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
324
			 0, 118, 1, output_stage_tlv),
325 326
	SOC_DOUBLE_R_TLV("HP PGA Bypass Volume",
			 PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
327 328 329 330
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
			 DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
			 0, 118, 1, output_stage_tlv),
331 332 333

	SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume",
			 LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
334
			 0, 118, 1, output_stage_tlv),
335 336
	SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume",
			 PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL,
337 338 339 340
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
			 DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
			 0, 118, 1, output_stage_tlv),
341 342 343 344 345 346 347

	/* Output pin mute controls */
	SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
		     0x01, 0),
	SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
	SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
		     0x01, 0),
348
	SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
349 350 351 352 353 354 355 356 357
		     0x01, 0),

	/*
	 * Note: enable Automatic input Gain Controller with care. It can
	 * adjust PGA to max value when ADC is on and will never go back.
	*/
	SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),

	/* Input */
358 359
	SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
			 0, 119, 0, adc_tlv),
360
	SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
361 362

	SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
363 364
};

365 366 367 368 369 370 371 372
/*
 * Class-D amplifier gain. From 0 to 18 dB in 6 dB steps
 */
static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0);

static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl =
	SOC_DOUBLE_TLV("Class-D Amplifier Gain", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv);

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/* Left DAC Mux */
static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);

/* Right DAC Mux */
static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);

/* Left HPCOM Mux */
static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);

/* Right HPCOM Mux */
static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);

389 390 391 392 393 394 395 396
/* Left Line Mixer */
static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
397 398
};

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
/* Right Line Mixer */
static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
};

/* Mono Mixer */
static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
};

/* Left HP Mixer */
static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0),
};

/* Right HP Mixer */
static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
};

/* Left HPCOM Mixer */
static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0),
};

/* Right HPCOM Mixer */
static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
457 458 459 460 461
};

/* Left PGA Mixer */
static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
462
	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
463 464
	SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
465
	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
466 467 468 469 470
};

/* Right PGA Mixer */
static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
471
	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
472
	SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
473
	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
474 475 476 477
	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
};

/* Left Line1 Mux */
478 479 480 481
static const struct snd_kcontrol_new aic3x_left_line1l_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_L_ENUM]);
static const struct snd_kcontrol_new aic3x_right_line1l_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_R_ENUM]);
482 483

/* Right Line1 Mux */
484 485 486 487
static const struct snd_kcontrol_new aic3x_right_line1r_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_R_ENUM]);
static const struct snd_kcontrol_new aic3x_left_line1r_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_L_ENUM]);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

/* Left Line2 Mux */
static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);

/* Right Line2 Mux */
static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);

static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
	/* Left DAC to Left Outputs */
	SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
	SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_dac_mux_controls),
	SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_hpcom_mux_controls),
	SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),

	/* Right DAC to Right Outputs */
	SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
	SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_dac_mux_controls),
	SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_hpcom_mux_controls),
	SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),

	/* Mono Output */
	SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),

521
	/* Inputs to Left ADC */
522 523 524 525 526
	SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
	SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_pga_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
	SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
527
			 &aic3x_left_line1l_mux_controls),
528
	SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
529
			 &aic3x_left_line1r_mux_controls),
530 531 532
	SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_line2_mux_controls),

533
	/* Inputs to Right ADC */
534 535 536 537 538
	SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
			 LINE1R_2_RADC_CTRL, 2, 0),
	SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_pga_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
539
	SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
540
			 &aic3x_right_line1l_mux_controls),
541
	SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
542
			 &aic3x_right_line1r_mux_controls),
543 544 545
	SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_line2_mux_controls),

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	/*
	 * Not a real mic bias widget but similar function. This is for dynamic
	 * control of GPIO1 digital mic modulator clock output function when
	 * using digital mic.
	 */
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
			 AIC3X_GPIO1_REG, 4, 0xf,
			 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
			 AIC3X_GPIO1_FUNC_DISABLED),

	/*
	 * Also similar function like mic bias. Selects digital mic with
	 * configurable oversampling rate instead of ADC converter.
	 */
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
			 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
			 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
			 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),

567
	/* Mic Bias */
568 569 570 571 572 573
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
			 MICBIAS_CTRL, 6, 3, 1, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
			 MICBIAS_CTRL, 6, 3, 2, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
			 MICBIAS_CTRL, 6, 3, 3, 0),
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	/* Output mixers */
	SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_line_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_line_mixer_controls)),
	SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_line_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_line_mixer_controls)),
	SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_mono_mixer_controls[0],
			   ARRAY_SIZE(aic3x_mono_mixer_controls)),
	SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_hp_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_hp_mixer_controls)),
	SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_hp_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_hp_mixer_controls)),
	SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_hpcom_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)),
	SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_hpcom_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)),
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

	SND_SOC_DAPM_OUTPUT("LLOUT"),
	SND_SOC_DAPM_OUTPUT("RLOUT"),
	SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
	SND_SOC_DAPM_OUTPUT("HPLOUT"),
	SND_SOC_DAPM_OUTPUT("HPROUT"),
	SND_SOC_DAPM_OUTPUT("HPLCOM"),
	SND_SOC_DAPM_OUTPUT("HPRCOM"),

	SND_SOC_DAPM_INPUT("MIC3L"),
	SND_SOC_DAPM_INPUT("MIC3R"),
	SND_SOC_DAPM_INPUT("LINE1L"),
	SND_SOC_DAPM_INPUT("LINE1R"),
	SND_SOC_DAPM_INPUT("LINE2L"),
	SND_SOC_DAPM_INPUT("LINE2R"),
612 613 614 615 616 617 618 619

	/*
	 * Virtual output pin to detection block inside codec. This can be
	 * used to keep codec bias on if gpio or detection features are needed.
	 * Force pin on or construct a path with an input jack and mic bias
	 * widgets.
	 */
	SND_SOC_DAPM_OUTPUT("Detection"),
620 621
};

622 623 624 625 626 627 628 629 630
static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = {
	/* Class-D outputs */
	SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0),

	SND_SOC_DAPM_OUTPUT("SPOP"),
	SND_SOC_DAPM_OUTPUT("SPOM"),
};

631
static const struct snd_soc_dapm_route intercon[] = {
632 633 634 635 636 637 638 639
	/* Left Input */
	{"Left Line1L Mux", "single-ended", "LINE1L"},
	{"Left Line1L Mux", "differential", "LINE1L"},

	{"Left Line2L Mux", "single-ended", "LINE2L"},
	{"Left Line2L Mux", "differential", "LINE2L"},

	{"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
640
	{"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
641 642
	{"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
	{"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
643
	{"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
644 645

	{"Left ADC", NULL, "Left PGA Mixer"},
646
	{"Left ADC", NULL, "GPIO1 dmic modclk"},
647 648 649 650 651 652 653 654

	/* Right Input */
	{"Right Line1R Mux", "single-ended", "LINE1R"},
	{"Right Line1R Mux", "differential", "LINE1R"},

	{"Right Line2R Mux", "single-ended", "LINE2R"},
	{"Right Line2R Mux", "differential", "LINE2R"},

655
	{"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
656 657
	{"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
	{"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
658
	{"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
659 660 661
	{"Right PGA Mixer", "Mic3R Switch", "MIC3R"},

	{"Right ADC", NULL, "Right PGA Mixer"},
662
	{"Right ADC", NULL, "GPIO1 dmic modclk"},
663

664 665 666 667 668 669 670
	/*
	 * Logical path between digital mic enable and GPIO1 modulator clock
	 * output function
	 */
	{"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
	{"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
	{"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

	/* Left DAC Output */
	{"Left DAC Mux", "DAC_L1", "Left DAC"},
	{"Left DAC Mux", "DAC_L2", "Left DAC"},
	{"Left DAC Mux", "DAC_L3", "Left DAC"},

	/* Right DAC Output */
	{"Right DAC Mux", "DAC_R1", "Right DAC"},
	{"Right DAC Mux", "DAC_R2", "Right DAC"},
	{"Right DAC Mux", "DAC_R3", "Right DAC"},

	/* Left Line Output */
	{"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Left Line Out", NULL, "Left Line Mixer"},
	{"Left Line Out", NULL, "Left DAC Mux"},
	{"LLOUT", NULL, "Left Line Out"},

	/* Right Line Output */
	{"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Right Line Out", NULL, "Right Line Mixer"},
	{"Right Line Out", NULL, "Right DAC Mux"},
	{"RLOUT", NULL, "Right Line Out"},

	/* Mono Output */
	{"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Mono Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Mono Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Mono Out", NULL, "Mono Mixer"},
	{"MONO_LOUT", NULL, "Mono Out"},

	/* Left HP Output */
	{"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Left HP Out", NULL, "Left HP Mixer"},
	{"Left HP Out", NULL, "Left DAC Mux"},
	{"HPLOUT", NULL, "Left HP Out"},

	/* Right HP Output */
	{"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Right HP Out", NULL, "Right HP Mixer"},
	{"Right HP Out", NULL, "Right DAC Mux"},
	{"HPROUT", NULL, "Right HP Out"},

	/* Left HPCOM Output */
	{"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"},
	{"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"},
	{"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"},
	{"Left HP Com", NULL, "Left HPCOM Mux"},
	{"HPLCOM", NULL, "Left HP Com"},

	/* Right HPCOM Output */
	{"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"},
	{"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"},
	{"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"},
	{"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"},
	{"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"},
	{"Right HP Com", NULL, "Right HPCOM Mux"},
	{"HPRCOM", NULL, "Right HP Com"},
770 771
};

772 773 774 775 776 777 778 779
static const struct snd_soc_dapm_route intercon_3007[] = {
	/* Class-D outputs */
	{"Left Class-D Out", NULL, "Left Line Out"},
	{"Right Class-D Out", NULL, "Left Line Out"},
	{"SPOP", NULL, "Left Class-D Out"},
	{"SPOM", NULL, "Right Class-D Out"},
};

780 781
static int aic3x_add_widgets(struct snd_soc_codec *codec)
{
782
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
L
Liam Girdwood 已提交
783
	struct snd_soc_dapm_context *dapm = &codec->dapm;
784

L
Liam Girdwood 已提交
785
	snd_soc_dapm_new_controls(dapm, aic3x_dapm_widgets,
786
				  ARRAY_SIZE(aic3x_dapm_widgets));
787 788

	/* set up audio path interconnects */
L
Liam Girdwood 已提交
789
	snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon));
790

791
	if (aic3x->model == AIC3X_MODEL_3007) {
L
Liam Girdwood 已提交
792
		snd_soc_dapm_new_controls(dapm, aic3007_dapm_widgets,
793
			ARRAY_SIZE(aic3007_dapm_widgets));
L
Liam Girdwood 已提交
794 795
		snd_soc_dapm_add_routes(dapm, intercon_3007,
					ARRAY_SIZE(intercon_3007));
796 797
	}

798 799 800 801
	return 0;
}

static int aic3x_hw_params(struct snd_pcm_substream *substream,
802 803
			   struct snd_pcm_hw_params *params,
			   struct snd_soc_dai *dai)
804 805
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
806
	struct snd_soc_codec *codec =rtd->codec;
807
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
808
	int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
809 810 811
	u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
	u16 d, pll_d = 1;
	int clk;
812

813
	/* select data word length */
814
	data = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
815 816
	switch (params_format(params)) {
	case SNDRV_PCM_FORMAT_S16_LE:
817
		break;
818 819
	case SNDRV_PCM_FORMAT_S20_3LE:
		data |= (0x01 << 4);
820
		break;
821 822
	case SNDRV_PCM_FORMAT_S24_LE:
		data |= (0x02 << 4);
823
		break;
824 825
	case SNDRV_PCM_FORMAT_S32_LE:
		data |= (0x03 << 4);
826 827
		break;
	}
828
	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, data);
829 830 831 832 833 834 835 836 837 838 839 840 841 842

	/* Fsref can be 44100 or 48000 */
	fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;

	/* Try to find a value for Q which allows us to bypass the PLL and
	 * generate CODEC_CLK directly. */
	for (pll_q = 2; pll_q < 18; pll_q++)
		if (aic3x->sysclk / (128 * pll_q) == fsref) {
			bypass_pll = 1;
			break;
		}

	if (bypass_pll) {
		pll_q &= 0xf;
843 844
		snd_soc_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
		snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
845
		/* disable PLL if it is bypassed */
846
		snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG, PLL_ENABLE, 0);
847 848

	} else {
849
		snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
850
		/* enable PLL when it is used */
851 852
		snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
				    PLL_ENABLE, PLL_ENABLE);
853
	}
854 855 856 857 858 859 860

	/* Route Left DAC to left channel input and
	 * right DAC to right channel input */
	data = (LDAC2LCH | RDAC2RCH);
	data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
	if (params_rate(params) >= 64000)
		data |= DUAL_RATE_MODE;
861
	snd_soc_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
862 863

	/* codec sample rate select */
864 865 866 867 868
	data = (fsref * 20) / params_rate(params);
	if (params_rate(params) < 64000)
		data /= 2;
	data /= 5;
	data -= 2;
869
	data |= (data << 4);
870
	snd_soc_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
871

872 873 874
	if (bypass_pll)
		return 0;

L
Lucas De Marchi 已提交
875
	/* Use PLL, compute appropriate setup for j, d, r and p, the closest
876 877
	 * one wins the game. Try with d==0 first, next with d!=0.
	 * Constraints for j are according to the datasheet.
878
	 * The sysclk is divided by 1000 to prevent integer overflows.
879
	 */
880

881 882 883 884
	codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);

	for (r = 1; r <= 16; r++)
		for (p = 1; p <= 8; p++) {
885 886 887 888 889
			for (j = 4; j <= 55; j++) {
				/* This is actually 1000*((j+(d/10000))*r)/p
				 * The term had to be converted to get
				 * rid of the division by 10000; d = 0 here
				 */
890
				int tmp_clk = (1000 * j * r) / p;
891 892 893 894

				/* Check whether this values get closer than
				 * the best ones we had before
				 */
895
				if (abs(codec_clk - tmp_clk) <
896 897 898
					abs(codec_clk - last_clk)) {
					pll_j = j; pll_d = 0;
					pll_r = r; pll_p = p;
899
					last_clk = tmp_clk;
900 901 902
				}

				/* Early exit for exact matches */
903
				if (tmp_clk == codec_clk)
904 905 906
					goto found;
			}
		}
907

908 909 910
	/* try with d != 0 */
	for (p = 1; p <= 8; p++) {
		j = codec_clk * p / 1000;
911

912 913
		if (j < 4 || j > 11)
			continue;
914

915 916 917
		/* do not use codec_clk here since we'd loose precision */
		d = ((2048 * p * fsref) - j * aic3x->sysclk)
			* 100 / (aic3x->sysclk/100);
918

919
		clk = (10000 * j + d) / (10 * p);
920

921 922 923 924 925
		/* check whether this values get closer than the best
		 * ones we had before */
		if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
			pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
			last_clk = clk;
926 927
		}

928 929 930 931 932
		/* Early exit for exact matches */
		if (clk == codec_clk)
			goto found;
	}

933 934 935 936
	if (last_clk == 0) {
		printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
		return -EINVAL;
	}
937

938
found:
939 940 941 942 943 944 945 946 947 948
	data = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
	snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
		      data | (pll_p << PLLP_SHIFT));
	snd_soc_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG,
		      pll_r << PLLR_SHIFT);
	snd_soc_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
	snd_soc_write(codec, AIC3X_PLL_PROGC_REG,
		      (pll_d >> 6) << PLLD_MSB_SHIFT);
	snd_soc_write(codec, AIC3X_PLL_PROGD_REG,
		      (pll_d & 0x3F) << PLLD_LSB_SHIFT);
949 950 951 952

	return 0;
}

953
static int aic3x_mute(struct snd_soc_dai *dai, int mute)
954 955
{
	struct snd_soc_codec *codec = dai->codec;
956 957
	u8 ldac_reg = snd_soc_read(codec, LDAC_VOL) & ~MUTE_ON;
	u8 rdac_reg = snd_soc_read(codec, RDAC_VOL) & ~MUTE_ON;
958 959

	if (mute) {
960 961
		snd_soc_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
		snd_soc_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
962
	} else {
963 964
		snd_soc_write(codec, LDAC_VOL, ldac_reg);
		snd_soc_write(codec, RDAC_VOL, rdac_reg);
965 966 967 968 969
	}

	return 0;
}

970
static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
971 972 973
				int clk_id, unsigned int freq, int dir)
{
	struct snd_soc_codec *codec = codec_dai->codec;
974
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
975

976 977
	aic3x->sysclk = freq;
	return 0;
978 979
}

980
static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
981 982 983
			     unsigned int fmt)
{
	struct snd_soc_codec *codec = codec_dai->codec;
984
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
985
	u8 iface_areg, iface_breg;
T
Troy Kisky 已提交
986
	int delay = 0;
987

988 989
	iface_areg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
	iface_breg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
990 991 992 993 994 995 996 997 998

	/* set master/slave audio interface */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBM_CFM:
		aic3x->master = 1;
		iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
		break;
	case SND_SOC_DAIFMT_CBS_CFS:
		aic3x->master = 0;
999
		iface_areg &= ~(BIT_CLK_MASTER | WORD_CLK_MASTER);
1000 1001 1002 1003 1004
		break;
	default:
		return -EINVAL;
	}

1005 1006 1007 1008 1009 1010 1011
	/*
	 * match both interface format and signal polarities since they
	 * are fixed
	 */
	switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
		       SND_SOC_DAIFMT_INV_MASK)) {
	case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
1012
		break;
T
Troy Kisky 已提交
1013 1014
	case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
		delay = 1;
1015
	case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
1016 1017
		iface_breg |= (0x01 << 6);
		break;
1018
	case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
1019 1020
		iface_breg |= (0x02 << 6);
		break;
1021
	case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
1022 1023 1024 1025 1026 1027 1028
		iface_breg |= (0x03 << 6);
		break;
	default:
		return -EINVAL;
	}

	/* set iface */
1029 1030 1031
	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
1032 1033 1034 1035

	return 0;
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static int aic3x_init_3007(struct snd_soc_codec *codec)
{
	u8 tmp1, tmp2, *cache = codec->reg_cache;

	/*
	 * There is no need to cache writes to undocumented page 0xD but
	 * respective page 0 register cache entries must be preserved
	 */
	tmp1 = cache[0xD];
	tmp2 = cache[0x8];
	/* Class-D speaker driver init; datasheet p. 46 */
	snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x0D);
	snd_soc_write(codec, 0xD, 0x0D);
	snd_soc_write(codec, 0x8, 0x5C);
	snd_soc_write(codec, 0x8, 0x5D);
	snd_soc_write(codec, 0x8, 0x5C);
	snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x00);
	cache[0xD] = tmp1;
	cache[0x8] = tmp2;

	return 0;
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static int aic3x_regulator_event(struct notifier_block *nb,
				 unsigned long event, void *data)
{
	struct aic3x_disable_nb *disable_nb =
		container_of(nb, struct aic3x_disable_nb, nb);
	struct aic3x_priv *aic3x = disable_nb->aic3x;

	if (event & REGULATOR_EVENT_DISABLE) {
		/*
		 * Put codec to reset and require cache sync as at least one
		 * of the supplies was disabled
		 */
1071
		if (gpio_is_valid(aic3x->gpio_reset))
1072 1073 1074 1075 1076 1077 1078
			gpio_set_value(aic3x->gpio_reset, 0);
		aic3x->codec->cache_sync = 1;
	}

	return 0;
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static int aic3x_set_power(struct snd_soc_codec *codec, int power)
{
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
	int i, ret;
	u8 *cache = codec->reg_cache;

	if (power) {
		ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
					    aic3x->supplies);
		if (ret)
			goto out;
		aic3x->power = 1;
1091 1092 1093 1094 1095 1096 1097
		/*
		 * Reset release and cache sync is necessary only if some
		 * supply was off or if there were cached writes
		 */
		if (!codec->cache_sync)
			goto out;

1098
		if (gpio_is_valid(aic3x->gpio_reset)) {
1099 1100 1101 1102 1103 1104
			udelay(1);
			gpio_set_value(aic3x->gpio_reset, 1);
		}

		/* Sync reg_cache with the hardware */
		codec->cache_only = 0;
1105
		for (i = AIC3X_SAMPLE_RATE_SEL_REG; i < ARRAY_SIZE(aic3x_reg); i++)
1106 1107 1108 1109 1110
			snd_soc_write(codec, i, cache[i]);
		if (aic3x->model == AIC3X_MODEL_3007)
			aic3x_init_3007(codec);
		codec->cache_sync = 0;
	} else {
1111 1112 1113 1114 1115 1116 1117
		/*
		 * Do soft reset to this codec instance in order to clear
		 * possible VDD leakage currents in case the supply regulators
		 * remain on
		 */
		snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
		codec->cache_sync = 1;
1118
		aic3x->power = 0;
1119 1120
		/* HW writes are needless when bias is off */
		codec->cache_only = 1;
1121 1122 1123 1124 1125 1126 1127
		ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies),
					     aic3x->supplies);
	}
out:
	return ret;
}

1128 1129
static int aic3x_set_bias_level(struct snd_soc_codec *codec,
				enum snd_soc_bias_level level)
1130
{
1131
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1132

1133 1134
	switch (level) {
	case SND_SOC_BIAS_ON:
1135 1136
		break;
	case SND_SOC_BIAS_PREPARE:
L
Liam Girdwood 已提交
1137
		if (codec->dapm.bias_level == SND_SOC_BIAS_STANDBY &&
1138
		    aic3x->master) {
1139
			/* enable pll */
1140 1141
			snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
					    PLL_ENABLE, PLL_ENABLE);
1142 1143
		}
		break;
1144
	case SND_SOC_BIAS_STANDBY:
1145 1146
		if (!aic3x->power)
			aic3x_set_power(codec, 1);
L
Liam Girdwood 已提交
1147
		if (codec->dapm.bias_level == SND_SOC_BIAS_PREPARE &&
1148
		    aic3x->master) {
1149
			/* disable pll */
1150 1151
			snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
					    PLL_ENABLE, 0);
1152 1153
		}
		break;
1154
	case SND_SOC_BIAS_OFF:
1155 1156
		if (aic3x->power)
			aic3x_set_power(codec, 0);
1157
		break;
1158
	}
L
Liam Girdwood 已提交
1159
	codec->dapm.bias_level = level;
1160 1161 1162 1163

	return 0;
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
void aic3x_set_headset_detection(struct snd_soc_codec *codec, int detect,
				 int headset_debounce, int button_debounce)
{
	u8 val;

	val = ((detect & AIC3X_HEADSET_DETECT_MASK)
		<< AIC3X_HEADSET_DETECT_SHIFT) |
	      ((headset_debounce & AIC3X_HEADSET_DEBOUNCE_MASK)
		<< AIC3X_HEADSET_DEBOUNCE_SHIFT) |
	      ((button_debounce & AIC3X_BUTTON_DEBOUNCE_MASK)
		<< AIC3X_BUTTON_DEBOUNCE_SHIFT);

	if (detect & AIC3X_HEADSET_DETECT_MASK)
		val |= AIC3X_HEADSET_DETECT_ENABLED;

1179
	snd_soc_write(codec, AIC3X_HEADSET_DETECT_CTRL_A, val);
1180 1181
}

1182 1183 1184 1185
#define AIC3X_RATES	SNDRV_PCM_RATE_8000_96000
#define AIC3X_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
			 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)

1186
static const struct snd_soc_dai_ops aic3x_dai_ops = {
1187 1188 1189 1190 1191 1192
	.hw_params	= aic3x_hw_params,
	.digital_mute	= aic3x_mute,
	.set_sysclk	= aic3x_set_dai_sysclk,
	.set_fmt	= aic3x_set_dai_fmt,
};

1193 1194
static struct snd_soc_dai_driver aic3x_dai = {
	.name = "tlv320aic3x-hifi",
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	.playback = {
		.stream_name = "Playback",
		.channels_min = 1,
		.channels_max = 2,
		.rates = AIC3X_RATES,
		.formats = AIC3X_FORMATS,},
	.capture = {
		.stream_name = "Capture",
		.channels_min = 1,
		.channels_max = 2,
		.rates = AIC3X_RATES,
		.formats = AIC3X_FORMATS,},
1207
	.ops = &aic3x_dai_ops,
1208
	.symmetric_rates = 1,
1209 1210
};

1211
static int aic3x_suspend(struct snd_soc_codec *codec)
1212
{
1213
	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1214 1215 1216 1217

	return 0;
}

1218
static int aic3x_resume(struct snd_soc_codec *codec)
1219
{
1220
	aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1221 1222 1223 1224 1225 1226 1227 1228

	return 0;
}

/*
 * initialise the AIC3X driver
 * register the mixer and dsp interfaces with the kernel
 */
1229
static int aic3x_init(struct snd_soc_codec *codec)
1230
{
1231
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1232

1233 1234
	snd_soc_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
	snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1235 1236

	/* DAC default volume and mute */
1237 1238
	snd_soc_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
	snd_soc_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
1239 1240

	/* DAC to HP default volume and route to Output mixer */
1241 1242 1243 1244
	snd_soc_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1245
	/* DAC to Line Out default volume and route to Output mixer */
1246 1247
	snd_soc_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1248
	/* DAC to Mono Line Out default volume and route to Output mixer */
1249 1250
	snd_soc_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1251 1252

	/* unmute all outputs */
1253 1254 1255 1256 1257 1258 1259
	snd_soc_update_bits(codec, LLOPM_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, RLOPM_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, MONOLOPM_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, HPLOUT_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, HPROUT_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, HPLCOM_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, HPRCOM_CTRL, UNMUTE, UNMUTE);
1260 1261

	/* ADC default volume and unmute */
1262 1263
	snd_soc_write(codec, LADC_VOL, DEFAULT_GAIN);
	snd_soc_write(codec, RADC_VOL, DEFAULT_GAIN);
1264
	/* By default route Line1 to ADC PGA mixer */
1265 1266
	snd_soc_write(codec, LINE1L_2_LADC_CTRL, 0x0);
	snd_soc_write(codec, LINE1R_2_RADC_CTRL, 0x0);
1267 1268

	/* PGA to HP Bypass default volume, disconnect from Output Mixer */
1269 1270 1271 1272
	snd_soc_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
1273
	/* PGA to Line Out default volume, disconnect from Output Mixer */
1274 1275
	snd_soc_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
1276
	/* PGA to Mono Line Out default volume, disconnect from Output Mixer */
1277 1278
	snd_soc_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
1279 1280

	/* Line2 to HP Bypass default volume, disconnect from Output Mixer */
1281 1282 1283 1284
	snd_soc_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
1285
	/* Line2 Line Out default volume, disconnect from Output Mixer */
1286 1287
	snd_soc_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
1288
	/* Line2 to Mono Out default volume, disconnect from Output Mixer */
1289 1290
	snd_soc_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
1291

1292
	if (aic3x->model == AIC3X_MODEL_3007) {
1293
		aic3x_init_3007(codec);
1294
		snd_soc_write(codec, CLASSD_CTRL, 0);
1295 1296
	}

1297 1298
	return 0;
}
1299

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
static bool aic3x_is_shared_reset(struct aic3x_priv *aic3x)
{
	struct aic3x_priv *a;

	list_for_each_entry(a, &reset_list, list) {
		if (gpio_is_valid(aic3x->gpio_reset) &&
		    aic3x->gpio_reset == a->gpio_reset)
			return true;
	}

	return false;
}

1313
static int aic3x_probe(struct snd_soc_codec *codec)
1314
{
1315
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1316
	int ret, i;
1317

1318
	INIT_LIST_HEAD(&aic3x->list);
1319
	aic3x->codec = codec;
1320

1321 1322 1323 1324 1325 1326
	ret = snd_soc_codec_set_cache_io(codec, 8, 8, aic3x->control_type);
	if (ret != 0) {
		dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
		return ret;
	}

1327 1328
	if (gpio_is_valid(aic3x->gpio_reset) &&
	    !aic3x_is_shared_reset(aic3x)) {
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		ret = gpio_request(aic3x->gpio_reset, "tlv320aic3x reset");
		if (ret != 0)
			goto err_gpio;
		gpio_direction_output(aic3x->gpio_reset, 0);
	}

	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
		aic3x->supplies[i].supply = aic3x_supply_names[i];

	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
				 aic3x->supplies);
	if (ret != 0) {
		dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
		goto err_get;
	}
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) {
		aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event;
		aic3x->disable_nb[i].aic3x = aic3x;
		ret = regulator_register_notifier(aic3x->supplies[i].consumer,
						  &aic3x->disable_nb[i].nb);
		if (ret) {
			dev_err(codec->dev,
				"Failed to request regulator notifier: %d\n",
				 ret);
			goto err_notif;
		}
	}
1356

1357
	codec->cache_only = 1;
1358 1359
	aic3x_init(codec);

1360 1361
	if (aic3x->setup) {
		/* setup GPIO functions */
1362 1363 1364 1365
		snd_soc_write(codec, AIC3X_GPIO1_REG,
			      (aic3x->setup->gpio_func[0] & 0xf) << 4);
		snd_soc_write(codec, AIC3X_GPIO2_REG,
			      (aic3x->setup->gpio_func[1] & 0xf) << 4);
1366 1367
	}

1368
	snd_soc_add_codec_controls(codec, aic3x_snd_controls,
1369
			     ARRAY_SIZE(aic3x_snd_controls));
1370
	if (aic3x->model == AIC3X_MODEL_3007)
1371
		snd_soc_add_codec_controls(codec, &aic3x_classd_amp_gain_ctrl, 1);
1372

1373
	aic3x_add_widgets(codec);
1374
	list_add(&aic3x->list, &reset_list);
1375 1376

	return 0;
1377

1378 1379 1380 1381
err_notif:
	while (i--)
		regulator_unregister_notifier(aic3x->supplies[i].consumer,
					      &aic3x->disable_nb[i].nb);
1382 1383
	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
err_get:
1384 1385
	if (gpio_is_valid(aic3x->gpio_reset) &&
	    !aic3x_is_shared_reset(aic3x))
1386 1387 1388
		gpio_free(aic3x->gpio_reset);
err_gpio:
	return ret;
1389 1390
}

1391
static int aic3x_remove(struct snd_soc_codec *codec)
1392
{
1393
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1394
	int i;
1395

1396
	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1397 1398 1399
	list_del(&aic3x->list);
	if (gpio_is_valid(aic3x->gpio_reset) &&
	    !aic3x_is_shared_reset(aic3x)) {
1400 1401 1402
		gpio_set_value(aic3x->gpio_reset, 0);
		gpio_free(aic3x->gpio_reset);
	}
1403 1404 1405
	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
		regulator_unregister_notifier(aic3x->supplies[i].consumer,
					      &aic3x->disable_nb[i].nb);
1406 1407
	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);

1408 1409
	return 0;
}
1410

1411 1412
static struct snd_soc_codec_driver soc_codec_dev_aic3x = {
	.set_bias_level = aic3x_set_bias_level,
1413
	.idle_bias_off = true,
1414 1415 1416 1417 1418 1419 1420 1421 1422
	.reg_cache_size = ARRAY_SIZE(aic3x_reg),
	.reg_word_size = sizeof(u8),
	.reg_cache_default = aic3x_reg,
	.probe = aic3x_probe,
	.remove = aic3x_remove,
	.suspend = aic3x_suspend,
	.resume = aic3x_resume,
};

1423 1424 1425 1426 1427
/*
 * AIC3X 2 wire address can be up to 4 devices with device addresses
 * 0x18, 0x19, 0x1A, 0x1B
 */

1428
static const struct i2c_device_id aic3x_i2c_id[] = {
1429 1430 1431
	{ "tlv320aic3x", AIC3X_MODEL_3X },
	{ "tlv320aic33", AIC3X_MODEL_33 },
	{ "tlv320aic3007", AIC3X_MODEL_3007 },
1432 1433 1434 1435
	{ }
};
MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);

1436 1437 1438 1439
/*
 * If the i2c layer weren't so broken, we could pass this kind of data
 * around
 */
1440 1441
static int aic3x_i2c_probe(struct i2c_client *i2c,
			   const struct i2c_device_id *id)
1442
{
1443
	struct aic3x_pdata *pdata = i2c->dev.platform_data;
1444
	struct aic3x_priv *aic3x;
1445
	int ret;
1446

1447
	aic3x = devm_kzalloc(&i2c->dev, sizeof(struct aic3x_priv), GFP_KERNEL);
1448 1449 1450 1451 1452
	if (aic3x == NULL) {
		dev_err(&i2c->dev, "failed to create private data\n");
		return -ENOMEM;
	}

1453 1454
	aic3x->control_type = SND_SOC_I2C;

1455
	i2c_set_clientdata(i2c, aic3x);
1456 1457 1458 1459 1460 1461
	if (pdata) {
		aic3x->gpio_reset = pdata->gpio_reset;
		aic3x->setup = pdata->setup;
	} else {
		aic3x->gpio_reset = -1;
	}
1462

1463
	aic3x->model = id->driver_data;
1464

1465 1466
	ret = snd_soc_register_codec(&i2c->dev,
			&soc_codec_dev_aic3x, &aic3x_dai, 1);
1467
	return ret;
1468 1469
}

1470
static int aic3x_i2c_remove(struct i2c_client *client)
1471
{
1472 1473
	snd_soc_unregister_codec(&client->dev);
	return 0;
1474 1475 1476 1477 1478
}

/* machine i2c codec control layer */
static struct i2c_driver aic3x_i2c_driver = {
	.driver = {
1479
		.name = "tlv320aic3x-codec",
1480 1481
		.owner = THIS_MODULE,
	},
1482
	.probe	= aic3x_i2c_probe,
1483 1484
	.remove = aic3x_i2c_remove,
	.id_table = aic3x_i2c_id,
1485 1486
};

1487
static int __init aic3x_modinit(void)
1488 1489
{
	int ret = 0;
1490 1491 1492 1493
	ret = i2c_add_driver(&aic3x_i2c_driver);
	if (ret != 0) {
		printk(KERN_ERR "Failed to register TLV320AIC3x I2C driver: %d\n",
		       ret);
1494 1495 1496
	}
	return ret;
}
M
Mark Brown 已提交
1497 1498 1499 1500
module_init(aic3x_modinit);

static void __exit aic3x_exit(void)
{
1501
	i2c_del_driver(&aic3x_i2c_driver);
M
Mark Brown 已提交
1502 1503 1504
}
module_exit(aic3x_exit);

1505 1506 1507
MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
MODULE_AUTHOR("Vladimir Barinov");
MODULE_LICENSE("GPL");