tlv320aic3x.c 46.6 KB
Newer Older
1 2 3
/*
 * ALSA SoC TLV320AIC3X codec driver
 *
4
 * Author:      Vladimir Barinov, <vbarinov@embeddedalley.com>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 * Copyright:   (C) 2007 MontaVista Software, Inc., <source@mvista.com>
 *
 * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Notes:
 *  The AIC3X is a driver for a low power stereo audio
 *  codecs aic31, aic32, aic33.
 *
 *  It supports full aic33 codec functionality.
 *  The compatibility with aic32, aic31 is as follows:
 *        aic32        |        aic31
 *  ---------------------------------------
 *   MONO_LOUT -> N/A  |  MONO_LOUT -> N/A
 *                     |  IN1L -> LINE1L
 *                     |  IN1R -> LINE1R
 *                     |  IN2L -> LINE2L
 *                     |  IN2R -> LINE2R
 *                     |  MIC3L/R -> N/A
 *   truncated internal functionality in
 *   accordance with documentation
 *  ---------------------------------------
 *
 *  Hence the machine layer should disable unsupported inputs/outputs by
32
 *  snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
33 34 35 36 37 38 39 40
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
41
#include <linux/regulator/consumer.h>
42 43 44 45 46 47 48
#include <linux/platform_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
49
#include <sound/tlv.h>
50 51 52

#include "tlv320aic3x.h"

53 54 55 56 57 58 59 60
#define AIC3X_NUM_SUPPLIES	4
static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
	"IOVDD",	/* I/O Voltage */
	"DVDD",		/* Digital Core Voltage */
	"AVDD",		/* Analog DAC Voltage */
	"DRVDD",	/* ADC Analog and Output Driver Voltage */
};

61 62
/* codec private data */
struct aic3x_priv {
63
	struct snd_soc_codec codec;
64
	struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
	unsigned int sysclk;
	int master;
};

/*
 * AIC3X register cache
 * We can't read the AIC3X register space when we are
 * using 2 wire for device control, so we cache them instead.
 * There is no point in caching the reset register
 */
static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
	0x00, 0x00, 0x00, 0x10,	/* 0 */
	0x04, 0x00, 0x00, 0x00,	/* 4 */
	0x00, 0x00, 0x00, 0x01,	/* 8 */
	0x00, 0x00, 0x00, 0x80,	/* 12 */
	0x80, 0xff, 0xff, 0x78,	/* 16 */
	0x78, 0x78, 0x78, 0x78,	/* 20 */
	0x78, 0x00, 0x00, 0xfe,	/* 24 */
	0x00, 0x00, 0xfe, 0x00,	/* 28 */
	0x18, 0x18, 0x00, 0x00,	/* 32 */
	0x00, 0x00, 0x00, 0x00,	/* 36 */
	0x00, 0x00, 0x00, 0x80,	/* 40 */
	0x80, 0x00, 0x00, 0x00,	/* 44 */
	0x00, 0x00, 0x00, 0x04,	/* 48 */
	0x00, 0x00, 0x00, 0x00,	/* 52 */
	0x00, 0x00, 0x04, 0x00,	/* 56 */
	0x00, 0x00, 0x00, 0x00,	/* 60 */
	0x00, 0x04, 0x00, 0x00,	/* 64 */
	0x00, 0x00, 0x00, 0x00,	/* 68 */
	0x04, 0x00, 0x00, 0x00,	/* 72 */
	0x00, 0x00, 0x00, 0x00,	/* 76 */
	0x00, 0x00, 0x00, 0x00,	/* 80 */
	0x00, 0x00, 0x00, 0x00,	/* 84 */
	0x00, 0x00, 0x00, 0x00,	/* 88 */
	0x00, 0x00, 0x00, 0x00,	/* 92 */
	0x00, 0x00, 0x00, 0x00,	/* 96 */
	0x00, 0x00, 0x02,	/* 100 */
};

/*
 * read aic3x register cache
 */
static inline unsigned int aic3x_read_reg_cache(struct snd_soc_codec *codec,
						unsigned int reg)
{
	u8 *cache = codec->reg_cache;
	if (reg >= AIC3X_CACHEREGNUM)
		return -1;
	return cache[reg];
}

/*
 * write aic3x register cache
 */
static inline void aic3x_write_reg_cache(struct snd_soc_codec *codec,
					 u8 reg, u8 value)
{
	u8 *cache = codec->reg_cache;
	if (reg >= AIC3X_CACHEREGNUM)
		return;
	cache[reg] = value;
}

/*
 * write to the aic3x register space
 */
static int aic3x_write(struct snd_soc_codec *codec, unsigned int reg,
		       unsigned int value)
{
	u8 data[2];

	/* data is
	 *   D15..D8 aic3x register offset
	 *   D7...D0 register data
	 */
	data[0] = reg & 0xff;
	data[1] = value & 0xff;

	aic3x_write_reg_cache(codec, data[0], data[1]);
	if (codec->hw_write(codec->control_data, data, 2) == 2)
		return 0;
	else
		return -EIO;
}

150 151 152 153 154 155 156
/*
 * read from the aic3x register space
 */
static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
		      u8 *value)
{
	*value = reg & 0xff;
157 158

	value[0] = i2c_smbus_read_byte_data(codec->control_data, value[0]);
159 160 161 162 163

	aic3x_write_reg_cache(codec, reg, *value);
	return 0;
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177
#define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
	.info = snd_soc_info_volsw, \
	.get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
	.private_value =  SOC_SINGLE_VALUE(reg, shift, mask, invert) }

/*
 * All input lines are connected when !0xf and disconnected with 0xf bit field,
 * so we have to use specific dapm_put call for input mixer
 */
static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
178 179 180 181 182 183 184
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	unsigned int reg = mc->reg;
	unsigned int shift = mc->shift;
	int max = mc->max;
	unsigned int mask = (1 << fls(max)) - 1;
	unsigned int invert = mc->invert;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	unsigned short val, val_mask;
	int ret;
	struct snd_soc_dapm_path *path;
	int found = 0;

	val = (ucontrol->value.integer.value[0] & mask);

	mask = 0xf;
	if (val)
		val = mask;

	if (invert)
		val = mask - val;
	val_mask = mask << shift;
	val = val << shift;

	mutex_lock(&widget->codec->mutex);

	if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
		/* find dapm widget path assoc with kcontrol */
		list_for_each_entry(path, &widget->codec->dapm_paths, list) {
			if (path->kcontrol != kcontrol)
				continue;

			/* found, now check type */
			found = 1;
			if (val)
				/* new connection */
				path->connect = invert ? 0 : 1;
			else
				/* old connection must be powered down */
				path->connect = invert ? 1 : 0;
			break;
		}

		if (found)
221
			snd_soc_dapm_sync(widget->codec);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	}

	ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);

	mutex_unlock(&widget->codec->mutex);
	return ret;
}

static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
static const char *aic3x_left_hpcom_mux[] =
    { "differential of HPLOUT", "constant VCM", "single-ended" };
static const char *aic3x_right_hpcom_mux[] =
    { "differential of HPROUT", "constant VCM", "single-ended",
      "differential of HPLCOM", "external feedback" };
static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
238 239
static const char *aic3x_adc_hpf[] =
    { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
240 241 242 243 244 245 246 247 248

#define LDAC_ENUM	0
#define RDAC_ENUM	1
#define LHPCOM_ENUM	2
#define RHPCOM_ENUM	3
#define LINE1L_ENUM	4
#define LINE1R_ENUM	5
#define LINE2L_ENUM	6
#define LINE2R_ENUM	7
249
#define ADC_HPF_ENUM	8
250 251 252 253 254 255 256 257 258 259

static const struct soc_enum aic3x_enum[] = {
	SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
	SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
	SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
	SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
	SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
	SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
	SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
	SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
260
	SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
261 262
};

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
 */
static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
/* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
/*
 * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
 * Step size is approximately 0.5 dB over most of the scale but increasing
 * near the very low levels.
 * Define dB scale so that it is mostly correct for range about -55 to 0 dB
 * but having increasing dB difference below that (and where it doesn't count
 * so much). This setting shows -50 dB (actual is -50.3 dB) for register
 * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
 */
static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);

280 281
static const struct snd_kcontrol_new aic3x_snd_controls[] = {
	/* Output */
282 283
	SOC_DOUBLE_R_TLV("PCM Playback Volume",
			 LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
284

285 286 287
	SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
			 DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
288 289
	SOC_SINGLE("LineL Playback Switch", LLOPM_CTRL, 3, 0x01, 0),
	SOC_SINGLE("LineR Playback Switch", RLOPM_CTRL, 3, 0x01, 0),
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	SOC_DOUBLE_R_TLV("LineL DAC Playback Volume",
			 DACL1_2_LLOPM_VOL, DACR1_2_LLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("LineL Left PGA Bypass Playback Volume",
		       PGAL_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("LineR Right PGA Bypass Playback Volume",
		       PGAR_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("LineL Line2 Bypass Playback Volume",
			 LINE2L_2_LLOPM_VOL, LINE2R_2_LLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("LineR Line2 Bypass Playback Volume",
			 LINE2L_2_RLOPM_VOL, LINE2R_2_RLOPM_VOL,
			 0, 118, 1, output_stage_tlv),

	SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
			 DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
307
	SOC_SINGLE("Mono DAC Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
308 309 310 311 312 313 314 315 316 317
	SOC_DOUBLE_R_TLV("Mono PGA Bypass Playback Volume",
			 PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("Mono Line2 Bypass Playback Volume",
			 LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
			 0, 118, 1, output_stage_tlv),

	SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
			 DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
			 0, 118, 1, output_stage_tlv),
318 319
	SOC_DOUBLE_R("HP DAC Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
		     0x01, 0),
320 321 322 323 324 325 326 327 328 329 330 331 332 333
	SOC_DOUBLE_R_TLV("HP Right PGA Bypass Playback Volume",
			 PGAR_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
			 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("HPL PGA Bypass Playback Volume",
		       PGAL_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("HPR PGA Bypass Playback Volume",
		       PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("HP Line2 Bypass Playback Volume",
			 LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
			 0, 118, 1, output_stage_tlv),

	SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
			 DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
			 0, 118, 1, output_stage_tlv),
334 335
	SOC_DOUBLE_R("HPCOM DAC Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
		     0x01, 0),
336 337 338 339 340 341 342
	SOC_SINGLE_TLV("HPLCOM PGA Bypass Playback Volume",
		       PGAL_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("HPRCOM PGA Bypass Playback Volume",
		       PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Playback Volume",
			 LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
			 0, 118, 1, output_stage_tlv),
343 344 345 346 347 348 349 350

	/*
	 * Note: enable Automatic input Gain Controller with care. It can
	 * adjust PGA to max value when ADC is on and will never go back.
	*/
	SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),

	/* Input */
351 352
	SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
			 0, 119, 0, adc_tlv),
353
	SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
354 355

	SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
};

/* Left DAC Mux */
static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);

/* Right DAC Mux */
static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);

/* Left HPCOM Mux */
static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);

/* Right HPCOM Mux */
static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);

/* Left DAC_L1 Mixer */
static const struct snd_kcontrol_new aic3x_left_dac_mixer_controls[] = {
376 377
	SOC_DAPM_SINGLE("LineL Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("LineR Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
378 379 380 381 382 383 384
	SOC_DAPM_SINGLE("Mono Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HP Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HPCOM Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
};

/* Right DAC_R1 Mixer */
static const struct snd_kcontrol_new aic3x_right_dac_mixer_controls[] = {
385 386
	SOC_DAPM_SINGLE("LineL Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("LineR Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
387 388 389 390 391 392 393 394
	SOC_DAPM_SINGLE("Mono Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HP Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HPCOM Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
};

/* Left PGA Mixer */
static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
395
	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
396 397
	SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
398
	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
399 400 401 402 403
};

/* Right PGA Mixer */
static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
404
	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
405
	SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
406
	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
};

/* Left Line1 Mux */
static const struct snd_kcontrol_new aic3x_left_line1_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_ENUM]);

/* Right Line1 Mux */
static const struct snd_kcontrol_new aic3x_right_line1_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_ENUM]);

/* Left Line2 Mux */
static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);

/* Right Line2 Mux */
static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);

/* Left PGA Bypass Mixer */
static const struct snd_kcontrol_new aic3x_left_pga_bp_mixer_controls[] = {
428 429
	SOC_DAPM_SINGLE("LineL Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("LineR Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
430
	SOC_DAPM_SINGLE("Mono Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
431 432 433 434
	SOC_DAPM_SINGLE("HPL Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HPR Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HPLCOM Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HPRCOM Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
435 436 437 438
};

/* Right PGA Bypass Mixer */
static const struct snd_kcontrol_new aic3x_right_pga_bp_mixer_controls[] = {
439 440
	SOC_DAPM_SINGLE("LineL Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("LineR Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
441
	SOC_DAPM_SINGLE("Mono Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
442 443 444 445
	SOC_DAPM_SINGLE("HPL Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HPR Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HPLCOM Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HPRCOM Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
446 447 448 449
};

/* Left Line2 Bypass Mixer */
static const struct snd_kcontrol_new aic3x_left_line2_bp_mixer_controls[] = {
450 451
	SOC_DAPM_SINGLE("LineL Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("LineR Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
452 453
	SOC_DAPM_SINGLE("Mono Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HP Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
454
	SOC_DAPM_SINGLE("HPLCOM Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
455 456 457 458
};

/* Right Line2 Bypass Mixer */
static const struct snd_kcontrol_new aic3x_right_line2_bp_mixer_controls[] = {
459 460
	SOC_DAPM_SINGLE("LineL Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("LineR Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
461 462
	SOC_DAPM_SINGLE("Mono Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("HP Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
463
	SOC_DAPM_SINGLE("HPRCOM Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
};

static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
	/* Left DAC to Left Outputs */
	SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
	SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_dac_mux_controls),
	SND_SOC_DAPM_MIXER("Left DAC_L1 Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_dac_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_dac_mixer_controls)),
	SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_hpcom_mux_controls),
	SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),

	/* Right DAC to Right Outputs */
	SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
	SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_dac_mux_controls),
	SND_SOC_DAPM_MIXER("Right DAC_R1 Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_dac_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_dac_mixer_controls)),
	SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_hpcom_mux_controls),
	SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),

	/* Mono Output */
	SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),

496
	/* Inputs to Left ADC */
497 498 499 500 501 502
	SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
	SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_pga_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
	SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_line1_mux_controls),
503 504
	SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_line1_mux_controls),
505 506 507
	SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_line2_mux_controls),

508
	/* Inputs to Right ADC */
509 510 511 512 513
	SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
			 LINE1R_2_RADC_CTRL, 2, 0),
	SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_pga_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
514 515
	SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_line1_mux_controls),
516 517 518 519 520
	SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_line1_mux_controls),
	SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_line2_mux_controls),

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	/*
	 * Not a real mic bias widget but similar function. This is for dynamic
	 * control of GPIO1 digital mic modulator clock output function when
	 * using digital mic.
	 */
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
			 AIC3X_GPIO1_REG, 4, 0xf,
			 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
			 AIC3X_GPIO1_FUNC_DISABLED),

	/*
	 * Also similar function like mic bias. Selects digital mic with
	 * configurable oversampling rate instead of ADC converter.
	 */
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
			 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
			 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
			 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),

542
	/* Mic Bias */
543 544 545 546 547 548
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
			 MICBIAS_CTRL, 6, 3, 1, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
			 MICBIAS_CTRL, 6, 3, 2, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
			 MICBIAS_CTRL, 6, 3, 3, 0),
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

	/* Left PGA to Left Output bypass */
	SND_SOC_DAPM_MIXER("Left PGA Bypass Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_pga_bp_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_pga_bp_mixer_controls)),

	/* Right PGA to Right Output bypass */
	SND_SOC_DAPM_MIXER("Right PGA Bypass Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_pga_bp_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_pga_bp_mixer_controls)),

	/* Left Line2 to Left Output bypass */
	SND_SOC_DAPM_MIXER("Left Line2 Bypass Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_line2_bp_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_line2_bp_mixer_controls)),

	/* Right Line2 to Right Output bypass */
	SND_SOC_DAPM_MIXER("Right Line2 Bypass Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_line2_bp_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_line2_bp_mixer_controls)),

	SND_SOC_DAPM_OUTPUT("LLOUT"),
	SND_SOC_DAPM_OUTPUT("RLOUT"),
	SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
	SND_SOC_DAPM_OUTPUT("HPLOUT"),
	SND_SOC_DAPM_OUTPUT("HPROUT"),
	SND_SOC_DAPM_OUTPUT("HPLCOM"),
	SND_SOC_DAPM_OUTPUT("HPRCOM"),

	SND_SOC_DAPM_INPUT("MIC3L"),
	SND_SOC_DAPM_INPUT("MIC3R"),
	SND_SOC_DAPM_INPUT("LINE1L"),
	SND_SOC_DAPM_INPUT("LINE1R"),
	SND_SOC_DAPM_INPUT("LINE2L"),
	SND_SOC_DAPM_INPUT("LINE2R"),
};

586
static const struct snd_soc_dapm_route intercon[] = {
587 588 589 590 591
	/* Left Output */
	{"Left DAC Mux", "DAC_L1", "Left DAC"},
	{"Left DAC Mux", "DAC_L2", "Left DAC"},
	{"Left DAC Mux", "DAC_L3", "Left DAC"},

592 593
	{"Left DAC_L1 Mixer", "LineL Switch", "Left DAC Mux"},
	{"Left DAC_L1 Mixer", "LineR Switch", "Left DAC Mux"},
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	{"Left DAC_L1 Mixer", "Mono Switch", "Left DAC Mux"},
	{"Left DAC_L1 Mixer", "HP Switch", "Left DAC Mux"},
	{"Left DAC_L1 Mixer", "HPCOM Switch", "Left DAC Mux"},
	{"Left Line Out", NULL, "Left DAC Mux"},
	{"Left HP Out", NULL, "Left DAC Mux"},

	{"Left HPCOM Mux", "differential of HPLOUT", "Left DAC_L1 Mixer"},
	{"Left HPCOM Mux", "constant VCM", "Left DAC_L1 Mixer"},
	{"Left HPCOM Mux", "single-ended", "Left DAC_L1 Mixer"},

	{"Left Line Out", NULL, "Left DAC_L1 Mixer"},
	{"Mono Out", NULL, "Left DAC_L1 Mixer"},
	{"Left HP Out", NULL, "Left DAC_L1 Mixer"},
	{"Left HP Com", NULL, "Left HPCOM Mux"},

	{"LLOUT", NULL, "Left Line Out"},
	{"LLOUT", NULL, "Left Line Out"},
	{"HPLOUT", NULL, "Left HP Out"},
	{"HPLCOM", NULL, "Left HP Com"},

	/* Right Output */
	{"Right DAC Mux", "DAC_R1", "Right DAC"},
	{"Right DAC Mux", "DAC_R2", "Right DAC"},
	{"Right DAC Mux", "DAC_R3", "Right DAC"},

619 620
	{"Right DAC_R1 Mixer", "LineL Switch", "Right DAC Mux"},
	{"Right DAC_R1 Mixer", "LineR Switch", "Right DAC Mux"},
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	{"Right DAC_R1 Mixer", "Mono Switch", "Right DAC Mux"},
	{"Right DAC_R1 Mixer", "HP Switch", "Right DAC Mux"},
	{"Right DAC_R1 Mixer", "HPCOM Switch", "Right DAC Mux"},
	{"Right Line Out", NULL, "Right DAC Mux"},
	{"Right HP Out", NULL, "Right DAC Mux"},

	{"Right HPCOM Mux", "differential of HPROUT", "Right DAC_R1 Mixer"},
	{"Right HPCOM Mux", "constant VCM", "Right DAC_R1 Mixer"},
	{"Right HPCOM Mux", "single-ended", "Right DAC_R1 Mixer"},
	{"Right HPCOM Mux", "differential of HPLCOM", "Right DAC_R1 Mixer"},
	{"Right HPCOM Mux", "external feedback", "Right DAC_R1 Mixer"},

	{"Right Line Out", NULL, "Right DAC_R1 Mixer"},
	{"Mono Out", NULL, "Right DAC_R1 Mixer"},
	{"Right HP Out", NULL, "Right DAC_R1 Mixer"},
	{"Right HP Com", NULL, "Right HPCOM Mux"},

	{"RLOUT", NULL, "Right Line Out"},
	{"RLOUT", NULL, "Right Line Out"},
	{"HPROUT", NULL, "Right HP Out"},
	{"HPRCOM", NULL, "Right HP Com"},

	/* Mono Output */
644 645
	{"MONO_LOUT", NULL, "Mono Out"},
	{"MONO_LOUT", NULL, "Mono Out"},
646 647 648 649 650 651 652 653 654

	/* Left Input */
	{"Left Line1L Mux", "single-ended", "LINE1L"},
	{"Left Line1L Mux", "differential", "LINE1L"},

	{"Left Line2L Mux", "single-ended", "LINE2L"},
	{"Left Line2L Mux", "differential", "LINE2L"},

	{"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
655
	{"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
656 657
	{"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
	{"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
658
	{"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
659 660

	{"Left ADC", NULL, "Left PGA Mixer"},
661
	{"Left ADC", NULL, "GPIO1 dmic modclk"},
662 663 664 665 666 667 668 669

	/* Right Input */
	{"Right Line1R Mux", "single-ended", "LINE1R"},
	{"Right Line1R Mux", "differential", "LINE1R"},

	{"Right Line2R Mux", "single-ended", "LINE2R"},
	{"Right Line2R Mux", "differential", "LINE2R"},

670
	{"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
671 672
	{"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
	{"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
673
	{"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
674 675 676
	{"Right PGA Mixer", "Mic3R Switch", "MIC3R"},

	{"Right ADC", NULL, "Right PGA Mixer"},
677
	{"Right ADC", NULL, "GPIO1 dmic modclk"},
678 679

	/* Left PGA Bypass */
680 681
	{"Left PGA Bypass Mixer", "LineL Switch", "Left PGA Mixer"},
	{"Left PGA Bypass Mixer", "LineR Switch", "Left PGA Mixer"},
682
	{"Left PGA Bypass Mixer", "Mono Switch", "Left PGA Mixer"},
683 684 685 686
	{"Left PGA Bypass Mixer", "HPL Switch", "Left PGA Mixer"},
	{"Left PGA Bypass Mixer", "HPR Switch", "Left PGA Mixer"},
	{"Left PGA Bypass Mixer", "HPLCOM Switch", "Left PGA Mixer"},
	{"Left PGA Bypass Mixer", "HPRCOM Switch", "Left PGA Mixer"},
687 688 689 690 691 692 693 694 695 696

	{"Left HPCOM Mux", "differential of HPLOUT", "Left PGA Bypass Mixer"},
	{"Left HPCOM Mux", "constant VCM", "Left PGA Bypass Mixer"},
	{"Left HPCOM Mux", "single-ended", "Left PGA Bypass Mixer"},

	{"Left Line Out", NULL, "Left PGA Bypass Mixer"},
	{"Mono Out", NULL, "Left PGA Bypass Mixer"},
	{"Left HP Out", NULL, "Left PGA Bypass Mixer"},

	/* Right PGA Bypass */
697 698
	{"Right PGA Bypass Mixer", "LineL Switch", "Right PGA Mixer"},
	{"Right PGA Bypass Mixer", "LineR Switch", "Right PGA Mixer"},
699
	{"Right PGA Bypass Mixer", "Mono Switch", "Right PGA Mixer"},
700 701 702 703
	{"Right PGA Bypass Mixer", "HPL Switch", "Right PGA Mixer"},
	{"Right PGA Bypass Mixer", "HPR Switch", "Right PGA Mixer"},
	{"Right PGA Bypass Mixer", "HPLCOM Switch", "Right PGA Mixer"},
	{"Right PGA Bypass Mixer", "HPRCOM Switch", "Right PGA Mixer"},
704 705 706 707 708 709 710 711 712 713 714 715

	{"Right HPCOM Mux", "differential of HPROUT", "Right PGA Bypass Mixer"},
	{"Right HPCOM Mux", "constant VCM", "Right PGA Bypass Mixer"},
	{"Right HPCOM Mux", "single-ended", "Right PGA Bypass Mixer"},
	{"Right HPCOM Mux", "differential of HPLCOM", "Right PGA Bypass Mixer"},
	{"Right HPCOM Mux", "external feedback", "Right PGA Bypass Mixer"},

	{"Right Line Out", NULL, "Right PGA Bypass Mixer"},
	{"Mono Out", NULL, "Right PGA Bypass Mixer"},
	{"Right HP Out", NULL, "Right PGA Bypass Mixer"},

	/* Left Line2 Bypass */
716 717
	{"Left Line2 Bypass Mixer", "LineL Switch", "Left Line2L Mux"},
	{"Left Line2 Bypass Mixer", "LineR Switch", "Left Line2L Mux"},
718 719
	{"Left Line2 Bypass Mixer", "Mono Switch", "Left Line2L Mux"},
	{"Left Line2 Bypass Mixer", "HP Switch", "Left Line2L Mux"},
720
	{"Left Line2 Bypass Mixer", "HPLCOM Switch", "Left Line2L Mux"},
721 722 723 724 725 726 727 728 729 730

	{"Left HPCOM Mux", "differential of HPLOUT", "Left Line2 Bypass Mixer"},
	{"Left HPCOM Mux", "constant VCM", "Left Line2 Bypass Mixer"},
	{"Left HPCOM Mux", "single-ended", "Left Line2 Bypass Mixer"},

	{"Left Line Out", NULL, "Left Line2 Bypass Mixer"},
	{"Mono Out", NULL, "Left Line2 Bypass Mixer"},
	{"Left HP Out", NULL, "Left Line2 Bypass Mixer"},

	/* Right Line2 Bypass */
731 732
	{"Right Line2 Bypass Mixer", "LineL Switch", "Right Line2R Mux"},
	{"Right Line2 Bypass Mixer", "LineR Switch", "Right Line2R Mux"},
733 734
	{"Right Line2 Bypass Mixer", "Mono Switch", "Right Line2R Mux"},
	{"Right Line2 Bypass Mixer", "HP Switch", "Right Line2R Mux"},
735
	{"Right Line2 Bypass Mixer", "HPRCOM Switch", "Right Line2R Mux"},
736 737 738 739 740 741 742 743 744 745

	{"Right HPCOM Mux", "differential of HPROUT", "Right Line2 Bypass Mixer"},
	{"Right HPCOM Mux", "constant VCM", "Right Line2 Bypass Mixer"},
	{"Right HPCOM Mux", "single-ended", "Right Line2 Bypass Mixer"},
	{"Right HPCOM Mux", "differential of HPLCOM", "Right Line2 Bypass Mixer"},
	{"Right HPCOM Mux", "external feedback", "Right Line2 Bypass Mixer"},

	{"Right Line Out", NULL, "Right Line2 Bypass Mixer"},
	{"Mono Out", NULL, "Right Line2 Bypass Mixer"},
	{"Right HP Out", NULL, "Right Line2 Bypass Mixer"},
746 747 748 749 750 751 752 753

	/*
	 * Logical path between digital mic enable and GPIO1 modulator clock
	 * output function
	 */
	{"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
	{"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
	{"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
754 755 756 757
};

static int aic3x_add_widgets(struct snd_soc_codec *codec)
{
758 759
	snd_soc_dapm_new_controls(codec, aic3x_dapm_widgets,
				  ARRAY_SIZE(aic3x_dapm_widgets));
760 761

	/* set up audio path interconnects */
762
	snd_soc_dapm_add_routes(codec, intercon, ARRAY_SIZE(intercon));
763 764 765 766 767

	return 0;
}

static int aic3x_hw_params(struct snd_pcm_substream *substream,
768 769
			   struct snd_pcm_hw_params *params,
			   struct snd_soc_dai *dai)
770 771 772
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct snd_soc_device *socdev = rtd->socdev;
773
	struct snd_soc_codec *codec = socdev->card->codec;
774
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
775
	int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
776 777
	u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
	u16 d, pll_d = 1;
778
	u8 reg;
779
	int clk;
780

781 782 783 784 785
	/* select data word length */
	data =
	    aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
	switch (params_format(params)) {
	case SNDRV_PCM_FORMAT_S16_LE:
786
		break;
787 788
	case SNDRV_PCM_FORMAT_S20_3LE:
		data |= (0x01 << 4);
789
		break;
790 791
	case SNDRV_PCM_FORMAT_S24_LE:
		data |= (0x02 << 4);
792
		break;
793 794
	case SNDRV_PCM_FORMAT_S32_LE:
		data |= (0x03 << 4);
795 796
		break;
	}
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	aic3x_write(codec, AIC3X_ASD_INTF_CTRLB, data);

	/* Fsref can be 44100 or 48000 */
	fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;

	/* Try to find a value for Q which allows us to bypass the PLL and
	 * generate CODEC_CLK directly. */
	for (pll_q = 2; pll_q < 18; pll_q++)
		if (aic3x->sysclk / (128 * pll_q) == fsref) {
			bypass_pll = 1;
			break;
		}

	if (bypass_pll) {
		pll_q &= 0xf;
		aic3x_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
		aic3x_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
814 815 816 817 818
		/* disable PLL if it is bypassed */
		reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
		aic3x_write(codec, AIC3X_PLL_PROGA_REG, reg & ~PLL_ENABLE);

	} else {
819
		aic3x_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
820 821 822 823
		/* enable PLL when it is used */
		reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
		aic3x_write(codec, AIC3X_PLL_PROGA_REG, reg | PLL_ENABLE);
	}
824 825 826 827 828 829 830

	/* Route Left DAC to left channel input and
	 * right DAC to right channel input */
	data = (LDAC2LCH | RDAC2RCH);
	data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
	if (params_rate(params) >= 64000)
		data |= DUAL_RATE_MODE;
831 832 833
	aic3x_write(codec, AIC3X_CODEC_DATAPATH_REG, data);

	/* codec sample rate select */
834 835 836 837 838
	data = (fsref * 20) / params_rate(params);
	if (params_rate(params) < 64000)
		data /= 2;
	data /= 5;
	data -= 2;
839 840 841
	data |= (data << 4);
	aic3x_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);

842 843 844
	if (bypass_pll)
		return 0;

845 846 847
	/* Use PLL, compute apropriate setup for j, d, r and p, the closest
	 * one wins the game. Try with d==0 first, next with d!=0.
	 * Constraints for j are according to the datasheet.
848
	 * The sysclk is divided by 1000 to prevent integer overflows.
849
	 */
850

851 852 853 854
	codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);

	for (r = 1; r <= 16; r++)
		for (p = 1; p <= 8; p++) {
855 856 857 858 859
			for (j = 4; j <= 55; j++) {
				/* This is actually 1000*((j+(d/10000))*r)/p
				 * The term had to be converted to get
				 * rid of the division by 10000; d = 0 here
				 */
860
				int tmp_clk = (1000 * j * r) / p;
861 862 863 864

				/* Check whether this values get closer than
				 * the best ones we had before
				 */
865
				if (abs(codec_clk - tmp_clk) <
866 867 868
					abs(codec_clk - last_clk)) {
					pll_j = j; pll_d = 0;
					pll_r = r; pll_p = p;
869
					last_clk = tmp_clk;
870 871 872
				}

				/* Early exit for exact matches */
873
				if (tmp_clk == codec_clk)
874 875 876
					goto found;
			}
		}
877

878 879 880
	/* try with d != 0 */
	for (p = 1; p <= 8; p++) {
		j = codec_clk * p / 1000;
881

882 883
		if (j < 4 || j > 11)
			continue;
884

885 886 887
		/* do not use codec_clk here since we'd loose precision */
		d = ((2048 * p * fsref) - j * aic3x->sysclk)
			* 100 / (aic3x->sysclk/100);
888

889
		clk = (10000 * j + d) / (10 * p);
890

891 892 893 894 895
		/* check whether this values get closer than the best
		 * ones we had before */
		if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
			pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
			last_clk = clk;
896 897
		}

898 899 900 901 902
		/* Early exit for exact matches */
		if (clk == codec_clk)
			goto found;
	}

903 904 905 906
	if (last_clk == 0) {
		printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
		return -EINVAL;
	}
907

908
found:
909 910 911 912 913 914 915 916 917 918 919
	data = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
	aic3x_write(codec, AIC3X_PLL_PROGA_REG, data | (pll_p << PLLP_SHIFT));
	aic3x_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG, pll_r << PLLR_SHIFT);
	aic3x_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
	aic3x_write(codec, AIC3X_PLL_PROGC_REG, (pll_d >> 6) << PLLD_MSB_SHIFT);
	aic3x_write(codec, AIC3X_PLL_PROGD_REG,
		    (pll_d & 0x3F) << PLLD_LSB_SHIFT);

	return 0;
}

920
static int aic3x_mute(struct snd_soc_dai *dai, int mute)
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
{
	struct snd_soc_codec *codec = dai->codec;
	u8 ldac_reg = aic3x_read_reg_cache(codec, LDAC_VOL) & ~MUTE_ON;
	u8 rdac_reg = aic3x_read_reg_cache(codec, RDAC_VOL) & ~MUTE_ON;

	if (mute) {
		aic3x_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
		aic3x_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
	} else {
		aic3x_write(codec, LDAC_VOL, ldac_reg);
		aic3x_write(codec, RDAC_VOL, rdac_reg);
	}

	return 0;
}

937
static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
938 939 940
				int clk_id, unsigned int freq, int dir)
{
	struct snd_soc_codec *codec = codec_dai->codec;
941
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
942

943 944
	aic3x->sysclk = freq;
	return 0;
945 946
}

947
static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
948 949 950
			     unsigned int fmt)
{
	struct snd_soc_codec *codec = codec_dai->codec;
951
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
952
	u8 iface_areg, iface_breg;
T
Troy Kisky 已提交
953
	int delay = 0;
954 955 956

	iface_areg = aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
	iface_breg = aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
957 958 959 960 961 962 963 964 965 966 967 968 969 970

	/* set master/slave audio interface */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBM_CFM:
		aic3x->master = 1;
		iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
		break;
	case SND_SOC_DAIFMT_CBS_CFS:
		aic3x->master = 0;
		break;
	default:
		return -EINVAL;
	}

971 972 973 974 975 976 977
	/*
	 * match both interface format and signal polarities since they
	 * are fixed
	 */
	switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
		       SND_SOC_DAIFMT_INV_MASK)) {
	case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
978
		break;
T
Troy Kisky 已提交
979 980
	case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
		delay = 1;
981
	case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
982 983
		iface_breg |= (0x01 << 6);
		break;
984
	case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
985 986
		iface_breg |= (0x02 << 6);
		break;
987
	case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
988 989 990 991 992 993 994 995 996
		iface_breg |= (0x03 << 6);
		break;
	default:
		return -EINVAL;
	}

	/* set iface */
	aic3x_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
	aic3x_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
T
Troy Kisky 已提交
997
	aic3x_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
998 999 1000 1001

	return 0;
}

1002 1003
static int aic3x_set_bias_level(struct snd_soc_codec *codec,
				enum snd_soc_bias_level level)
1004
{
1005
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1006 1007
	u8 reg;

1008 1009
	switch (level) {
	case SND_SOC_BIAS_ON:
1010 1011
		break;
	case SND_SOC_BIAS_PREPARE:
1012 1013 1014 1015 1016 1017 1018
		if (aic3x->master) {
			/* enable pll */
			reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
			aic3x_write(codec, AIC3X_PLL_PROGA_REG,
				    reg | PLL_ENABLE);
		}
		break;
1019
	case SND_SOC_BIAS_STANDBY:
1020
		/* fall through and disable pll */
1021
	case SND_SOC_BIAS_OFF:
1022 1023 1024 1025 1026 1027 1028 1029
		if (aic3x->master) {
			/* disable pll */
			reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
			aic3x_write(codec, AIC3X_PLL_PROGA_REG,
				    reg & ~PLL_ENABLE);
		}
		break;
	}
1030
	codec->bias_level = level;
1031 1032 1033 1034

	return 0;
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
{
	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
	u8 bit = gpio ? 3: 0;
	u8 val = aic3x_read_reg_cache(codec, reg) & ~(1 << bit);
	aic3x_write(codec, reg, val | (!!state << bit));
}
EXPORT_SYMBOL_GPL(aic3x_set_gpio);

int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
{
	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
	u8 val, bit = gpio ? 2: 1;

	aic3x_read(codec, reg, &val);
	return (val >> bit) & 1;
}
EXPORT_SYMBOL_GPL(aic3x_get_gpio);

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
void aic3x_set_headset_detection(struct snd_soc_codec *codec, int detect,
				 int headset_debounce, int button_debounce)
{
	u8 val;

	val = ((detect & AIC3X_HEADSET_DETECT_MASK)
		<< AIC3X_HEADSET_DETECT_SHIFT) |
	      ((headset_debounce & AIC3X_HEADSET_DEBOUNCE_MASK)
		<< AIC3X_HEADSET_DEBOUNCE_SHIFT) |
	      ((button_debounce & AIC3X_BUTTON_DEBOUNCE_MASK)
		<< AIC3X_BUTTON_DEBOUNCE_SHIFT);

	if (detect & AIC3X_HEADSET_DETECT_MASK)
		val |= AIC3X_HEADSET_DETECT_ENABLED;

	aic3x_write(codec, AIC3X_HEADSET_DETECT_CTRL_A, val);
}
EXPORT_SYMBOL_GPL(aic3x_set_headset_detection);

1073 1074 1075
int aic3x_headset_detected(struct snd_soc_codec *codec)
{
	u8 val;
1076 1077
	aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
	return (val >> 4) & 1;
1078 1079 1080
}
EXPORT_SYMBOL_GPL(aic3x_headset_detected);

1081 1082 1083 1084 1085 1086 1087 1088
int aic3x_button_pressed(struct snd_soc_codec *codec)
{
	u8 val;
	aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
	return (val >> 5) & 1;
}
EXPORT_SYMBOL_GPL(aic3x_button_pressed);

1089 1090 1091 1092
#define AIC3X_RATES	SNDRV_PCM_RATE_8000_96000
#define AIC3X_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
			 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)

1093 1094 1095 1096 1097 1098 1099
static struct snd_soc_dai_ops aic3x_dai_ops = {
	.hw_params	= aic3x_hw_params,
	.digital_mute	= aic3x_mute,
	.set_sysclk	= aic3x_set_dai_sysclk,
	.set_fmt	= aic3x_set_dai_fmt,
};

1100
struct snd_soc_dai aic3x_dai = {
1101
	.name = "tlv320aic3x",
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	.playback = {
		.stream_name = "Playback",
		.channels_min = 1,
		.channels_max = 2,
		.rates = AIC3X_RATES,
		.formats = AIC3X_FORMATS,},
	.capture = {
		.stream_name = "Capture",
		.channels_min = 1,
		.channels_max = 2,
		.rates = AIC3X_RATES,
		.formats = AIC3X_FORMATS,},
1114
	.ops = &aic3x_dai_ops,
1115 1116 1117 1118 1119 1120
};
EXPORT_SYMBOL_GPL(aic3x_dai);

static int aic3x_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1121
	struct snd_soc_codec *codec = socdev->card->codec;
1122

1123
	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1124 1125 1126 1127 1128 1129 1130

	return 0;
}

static int aic3x_resume(struct platform_device *pdev)
{
	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1131
	struct snd_soc_codec *codec = socdev->card->codec;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	int i;
	u8 data[2];
	u8 *cache = codec->reg_cache;

	/* Sync reg_cache with the hardware */
	for (i = 0; i < ARRAY_SIZE(aic3x_reg); i++) {
		data[0] = i;
		data[1] = cache[i];
		codec->hw_write(codec->control_data, data, 2);
	}

1143
	aic3x_set_bias_level(codec, codec->suspend_bias_level);
1144 1145 1146 1147 1148 1149 1150 1151

	return 0;
}

/*
 * initialise the AIC3X driver
 * register the mixer and dsp interfaces with the kernel
 */
1152
static int aic3x_init(struct snd_soc_codec *codec)
1153
{
1154 1155 1156 1157 1158
	int reg;

	mutex_init(&codec->mutex);
	INIT_LIST_HEAD(&codec->dapm_widgets);
	INIT_LIST_HEAD(&codec->dapm_paths);
1159

1160
	codec->name = "tlv320aic3x";
1161 1162 1163
	codec->owner = THIS_MODULE;
	codec->read = aic3x_read_reg_cache;
	codec->write = aic3x_write;
1164
	codec->set_bias_level = aic3x_set_bias_level;
1165 1166
	codec->dai = &aic3x_dai;
	codec->num_dai = 1;
1167
	codec->reg_cache_size = ARRAY_SIZE(aic3x_reg);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	codec->reg_cache = kmemdup(aic3x_reg, sizeof(aic3x_reg), GFP_KERNEL);
	if (codec->reg_cache == NULL)
		return -ENOMEM;

	aic3x_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
	aic3x_write(codec, AIC3X_RESET, SOFT_RESET);

	/* DAC default volume and mute */
	aic3x_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
	aic3x_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);

	/* DAC to HP default volume and route to Output mixer */
	aic3x_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
	aic3x_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
	aic3x_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
	aic3x_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
	/* DAC to Line Out default volume and route to Output mixer */
	aic3x_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
	aic3x_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
	/* DAC to Mono Line Out default volume and route to Output mixer */
	aic3x_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
	aic3x_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);

	/* unmute all outputs */
	reg = aic3x_read_reg_cache(codec, LLOPM_CTRL);
	aic3x_write(codec, LLOPM_CTRL, reg | UNMUTE);
	reg = aic3x_read_reg_cache(codec, RLOPM_CTRL);
	aic3x_write(codec, RLOPM_CTRL, reg | UNMUTE);
	reg = aic3x_read_reg_cache(codec, MONOLOPM_CTRL);
	aic3x_write(codec, MONOLOPM_CTRL, reg | UNMUTE);
	reg = aic3x_read_reg_cache(codec, HPLOUT_CTRL);
	aic3x_write(codec, HPLOUT_CTRL, reg | UNMUTE);
	reg = aic3x_read_reg_cache(codec, HPROUT_CTRL);
	aic3x_write(codec, HPROUT_CTRL, reg | UNMUTE);
	reg = aic3x_read_reg_cache(codec, HPLCOM_CTRL);
	aic3x_write(codec, HPLCOM_CTRL, reg | UNMUTE);
	reg = aic3x_read_reg_cache(codec, HPRCOM_CTRL);
	aic3x_write(codec, HPRCOM_CTRL, reg | UNMUTE);

	/* ADC default volume and unmute */
	aic3x_write(codec, LADC_VOL, DEFAULT_GAIN);
	aic3x_write(codec, RADC_VOL, DEFAULT_GAIN);
	/* By default route Line1 to ADC PGA mixer */
	aic3x_write(codec, LINE1L_2_LADC_CTRL, 0x0);
	aic3x_write(codec, LINE1R_2_RADC_CTRL, 0x0);

	/* PGA to HP Bypass default volume, disconnect from Output Mixer */
	aic3x_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
	aic3x_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
	aic3x_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
	aic3x_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
	/* PGA to Line Out default volume, disconnect from Output Mixer */
	aic3x_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
	aic3x_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
	/* PGA to Mono Line Out default volume, disconnect from Output Mixer */
	aic3x_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
	aic3x_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);

	/* Line2 to HP Bypass default volume, disconnect from Output Mixer */
	aic3x_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
	aic3x_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
	aic3x_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
	aic3x_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
	/* Line2 Line Out default volume, disconnect from Output Mixer */
	aic3x_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
	aic3x_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
	/* Line2 to Mono Out default volume, disconnect from Output Mixer */
	aic3x_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
	aic3x_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);

	/* off, with power on */
1239
	aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1240

1241 1242
	return 0;
}
1243

1244 1245 1246 1247 1248 1249 1250
static struct snd_soc_codec *aic3x_codec;

static int aic3x_register(struct snd_soc_codec *codec)
{
	int ret;

	ret = aic3x_init(codec);
1251
	if (ret < 0) {
1252 1253
		dev_err(codec->dev, "Failed to initialise device\n");
		return ret;
1254 1255
	}

1256
	aic3x_codec = codec;
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	ret = snd_soc_register_codec(codec);
	if (ret) {
		dev_err(codec->dev, "Failed to register codec\n");
		return ret;
	}

	ret = snd_soc_register_dai(&aic3x_dai);
	if (ret) {
		dev_err(codec->dev, "Failed to register dai\n");
		snd_soc_unregister_codec(codec);
		return ret;
	}

	return 0;
1272 1273
}

1274 1275 1276 1277 1278 1279 1280
static int aic3x_unregister(struct aic3x_priv *aic3x)
{
	aic3x_set_bias_level(&aic3x->codec, SND_SOC_BIAS_OFF);

	snd_soc_unregister_dai(&aic3x_dai);
	snd_soc_unregister_codec(&aic3x->codec);

1281 1282 1283
	regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);

1284 1285 1286 1287 1288
	kfree(aic3x);
	aic3x_codec = NULL;

	return 0;
}
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
/*
 * AIC3X 2 wire address can be up to 4 devices with device addresses
 * 0x18, 0x19, 0x1A, 0x1B
 */

/*
 * If the i2c layer weren't so broken, we could pass this kind of data
 * around
 */
1300 1301
static int aic3x_i2c_probe(struct i2c_client *i2c,
			   const struct i2c_device_id *id)
1302
{
1303 1304
	struct snd_soc_codec *codec;
	struct aic3x_priv *aic3x;
1305
	int ret, i;
1306

1307 1308 1309 1310 1311 1312 1313 1314
	aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL);
	if (aic3x == NULL) {
		dev_err(&i2c->dev, "failed to create private data\n");
		return -ENOMEM;
	}

	codec = &aic3x->codec;
	codec->dev = &i2c->dev;
1315
	snd_soc_codec_set_drvdata(codec, aic3x);
1316
	codec->control_data = i2c;
1317
	codec->hw_write = (hw_write_t) i2c_master_send;
1318

1319 1320
	i2c_set_clientdata(i2c, aic3x);

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
		aic3x->supplies[i].supply = aic3x_supply_names[i];

	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
				 aic3x->supplies);
	if (ret != 0) {
		dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
		goto err_get;
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
				    aic3x->supplies);
	if (ret != 0) {
		dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
		goto err_enable;
	}

1338
	return aic3x_register(codec);
1339 1340 1341 1342 1343 1344

err_enable:
	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
err_get:
	kfree(aic3x);
	return ret;
1345 1346
}

1347
static int aic3x_i2c_remove(struct i2c_client *client)
1348
{
1349 1350 1351
	struct aic3x_priv *aic3x = i2c_get_clientdata(client);

	return aic3x_unregister(aic3x);
1352 1353
}

1354 1355
static const struct i2c_device_id aic3x_i2c_id[] = {
	{ "tlv320aic3x", 0 },
1356
	{ "tlv320aic33", 0 },
1357 1358 1359
	{ }
};
MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);
1360 1361 1362 1363 1364 1365 1366

/* machine i2c codec control layer */
static struct i2c_driver aic3x_i2c_driver = {
	.driver = {
		.name = "aic3x I2C Codec",
		.owner = THIS_MODULE,
	},
1367
	.probe	= aic3x_i2c_probe,
1368 1369
	.remove = aic3x_i2c_remove,
	.id_table = aic3x_i2c_id,
1370
};
1371

1372
static inline void aic3x_i2c_init(void)
1373 1374 1375 1376
{
	int ret;

	ret = i2c_add_driver(&aic3x_i2c_driver);
1377 1378 1379 1380
	if (ret)
		printk(KERN_ERR "%s: error regsitering i2c driver, %d\n",
		       __func__, ret);
}
1381

1382 1383
static inline void aic3x_i2c_exit(void)
{
1384 1385
	i2c_del_driver(&aic3x_i2c_driver);
}
1386 1387 1388
#else
static inline void aic3x_i2c_init(void) { }
static inline void aic3x_i2c_exit(void) { }
1389 1390 1391 1392 1393 1394 1395 1396 1397
#endif

static int aic3x_probe(struct platform_device *pdev)
{
	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
	struct aic3x_setup_data *setup;
	struct snd_soc_codec *codec;
	int ret = 0;

1398 1399 1400 1401 1402
	codec = aic3x_codec;
	if (!codec) {
		dev_err(&pdev->dev, "Codec not registered\n");
		return -ENODEV;
	}
1403

1404
	socdev->card->codec = codec;
1405 1406
	setup = socdev->codec_data;

1407 1408 1409 1410 1411 1412
	if (setup) {
		/* setup GPIO functions */
		aic3x_write(codec, AIC3X_GPIO1_REG,
			    (setup->gpio_func[0] & 0xf) << 4);
		aic3x_write(codec, AIC3X_GPIO2_REG,
			    (setup->gpio_func[1] & 0xf) << 4);
1413 1414
	}

1415 1416 1417 1418 1419
	/* register pcms */
	ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1);
	if (ret < 0) {
		printk(KERN_ERR "aic3x: failed to create pcms\n");
		goto pcm_err;
1420
	}
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430
	snd_soc_add_controls(codec, aic3x_snd_controls,
			     ARRAY_SIZE(aic3x_snd_controls));

	aic3x_add_widgets(codec);

	return ret;

pcm_err:
	kfree(codec->reg_cache);
1431 1432 1433 1434 1435 1436
	return ret;
}

static int aic3x_remove(struct platform_device *pdev)
{
	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1437
	struct snd_soc_codec *codec = socdev->card->codec;
1438 1439 1440

	/* power down chip */
	if (codec->control_data)
1441
		aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1442 1443 1444

	snd_soc_free_pcms(socdev);
	snd_soc_dapm_free(socdev);
1445 1446

	kfree(codec->reg_cache);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	return 0;
}

struct snd_soc_codec_device soc_codec_dev_aic3x = {
	.probe = aic3x_probe,
	.remove = aic3x_remove,
	.suspend = aic3x_suspend,
	.resume = aic3x_resume,
};
EXPORT_SYMBOL_GPL(soc_codec_dev_aic3x);

1459
static int __init aic3x_modinit(void)
M
Mark Brown 已提交
1460
{
1461 1462 1463
	aic3x_i2c_init();

	return 0;
M
Mark Brown 已提交
1464 1465 1466 1467 1468
}
module_init(aic3x_modinit);

static void __exit aic3x_exit(void)
{
1469
	aic3x_i2c_exit();
M
Mark Brown 已提交
1470 1471 1472
}
module_exit(aic3x_exit);

1473 1474 1475
MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
MODULE_AUTHOR("Vladimir Barinov");
MODULE_LICENSE("GPL");