mvpp2.c 223.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
 *
 * Copyright (C) 2014 Marvell
 *
 * Marcin Wojtas <mw@semihalf.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/inetdevice.h>
#include <linux/mbus.h>
#include <linux/module.h>
A
Antoine Ténart 已提交
21
#include <linux/mfd/syscon.h>
22 23 24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/cpumask.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
29
#include <linux/of_device.h>
30
#include <linux/phy.h>
31
#include <linux/phy/phy.h>
32
#include <linux/clk.h>
33 34
#include <linux/hrtimer.h>
#include <linux/ktime.h>
A
Antoine Ténart 已提交
35
#include <linux/regmap.h>
36 37 38
#include <uapi/linux/ppp_defs.h>
#include <net/ip.h>
#include <net/ipv6.h>
39
#include <net/tso.h>
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

/* RX Fifo Registers */
#define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
#define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
#define MVPP2_RX_FIFO_INIT_REG			0x64

/* RX DMA Top Registers */
#define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
#define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
#define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
#define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
#define     MVPP2_POOL_BUF_SIZE_OFFSET		5
#define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
#define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
#define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
#define     MVPP2_RXQ_POOL_SHORT_OFFS		20
57 58
#define     MVPP21_RXQ_POOL_SHORT_MASK		0x700000
#define     MVPP22_RXQ_POOL_SHORT_MASK		0xf00000
59
#define     MVPP2_RXQ_POOL_LONG_OFFS		24
60 61
#define     MVPP21_RXQ_POOL_LONG_MASK		0x7000000
#define     MVPP22_RXQ_POOL_LONG_MASK		0xf000000
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
#define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
#define     MVPP2_RXQ_DISABLE_MASK		BIT(31)

/* Parser Registers */
#define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
#define     MVPP2_PRS_PORT_LU_MAX		0xf
#define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
#define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
#define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
#define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
#define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
#define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
#define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
#define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
#define MVPP2_PRS_TCAM_IDX_REG			0x1100
#define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
#define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
#define MVPP2_PRS_SRAM_IDX_REG			0x1200
#define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
#define MVPP2_PRS_TCAM_CTRL_REG			0x1230
#define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)

/* Classifier Registers */
#define MVPP2_CLS_MODE_REG			0x1800
#define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
#define MVPP2_CLS_PORT_WAY_REG			0x1810
#define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
#define MVPP2_CLS_LKP_INDEX_REG			0x1814
#define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
#define MVPP2_CLS_LKP_TBL_REG			0x1818
#define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
#define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
#define MVPP2_CLS_FLOW_INDEX_REG		0x1820
#define MVPP2_CLS_FLOW_TBL0_REG			0x1824
#define MVPP2_CLS_FLOW_TBL1_REG			0x1828
#define MVPP2_CLS_FLOW_TBL2_REG			0x182c
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
#define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
#define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
#define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))

/* Descriptor Manager Top Registers */
#define MVPP2_RXQ_NUM_REG			0x2040
#define MVPP2_RXQ_DESC_ADDR_REG			0x2044
109
#define     MVPP22_DESC_ADDR_OFFS		8
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#define MVPP2_RXQ_DESC_SIZE_REG			0x2048
#define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
#define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
#define     MVPP2_RXQ_NUM_NEW_OFFSET		16
#define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
#define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
#define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
#define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
#define MVPP2_RXQ_THRESH_REG			0x204c
#define     MVPP2_OCCUPIED_THRESH_OFFSET	0
#define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
#define MVPP2_RXQ_INDEX_REG			0x2050
#define MVPP2_TXQ_NUM_REG			0x2080
#define MVPP2_TXQ_DESC_ADDR_REG			0x2084
#define MVPP2_TXQ_DESC_SIZE_REG			0x2088
#define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
127 128 129
#define MVPP2_TXQ_THRESH_REG			0x2094
#define	    MVPP2_TXQ_THRESH_OFFSET		16
#define	    MVPP2_TXQ_THRESH_MASK		0x3fff
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
#define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
#define MVPP2_TXQ_INDEX_REG			0x2098
#define MVPP2_TXQ_PREF_BUF_REG			0x209c
#define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
#define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
#define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
#define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
#define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
#define MVPP2_TXQ_PENDING_REG			0x20a0
#define     MVPP2_TXQ_PENDING_MASK		0x3fff
#define MVPP2_TXQ_INT_STATUS_REG		0x20a4
#define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
#define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
#define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
#define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
#define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
#define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
#define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
#define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
#define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
151
#define     MVPP22_AGGR_TXQ_DESC_ADDR_OFFS	8
152 153 154 155 156 157 158 159 160 161 162 163
#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
#define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
#define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
#define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
#define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))

/* MBUS bridge registers */
#define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
#define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
#define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
#define MVPP2_BASE_ADDR_ENABLE			0x4060

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* AXI Bridge Registers */
#define MVPP22_AXI_BM_WR_ATTR_REG		0x4100
#define MVPP22_AXI_BM_RD_ATTR_REG		0x4104
#define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG	0x4110
#define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG	0x4114
#define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG	0x4118
#define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG	0x411c
#define MVPP22_AXI_RX_DATA_WR_ATTR_REG		0x4120
#define MVPP22_AXI_TX_DATA_RD_ATTR_REG		0x4130
#define MVPP22_AXI_RD_NORMAL_CODE_REG		0x4150
#define MVPP22_AXI_RD_SNOOP_CODE_REG		0x4154
#define MVPP22_AXI_WR_NORMAL_CODE_REG		0x4160
#define MVPP22_AXI_WR_SNOOP_CODE_REG		0x4164

/* Values for AXI Bridge registers */
#define MVPP22_AXI_ATTR_CACHE_OFFS		0
#define MVPP22_AXI_ATTR_DOMAIN_OFFS		12

#define MVPP22_AXI_CODE_CACHE_OFFS		0
#define MVPP22_AXI_CODE_DOMAIN_OFFS		4

#define MVPP22_AXI_CODE_CACHE_NON_CACHE		0x3
#define MVPP22_AXI_CODE_CACHE_WR_CACHE		0x7
#define MVPP22_AXI_CODE_CACHE_RD_CACHE		0xb

#define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM	2
#define MVPP22_AXI_CODE_DOMAIN_SYSTEM		3

192
/* Interrupt Cause and Mask registers */
193 194 195
#define MVPP2_ISR_TX_THRESHOLD_REG(port)	(0x5140 + 4 * (port))
#define     MVPP2_MAX_ISR_TX_THRESHOLD		0xfffff0

196
#define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
197
#define     MVPP2_MAX_ISR_RX_THRESHOLD		0xfffff0
198
#define MVPP21_ISR_RXQ_GROUP_REG(port)		(0x5400 + 4 * (port))
199

200
#define MVPP22_ISR_RXQ_GROUP_INDEX_REG		0x5400
201
#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
202 203
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK	0x380
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET	7
204 205

#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
206
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK	0x380
207

208 209 210 211
#define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG	0x5404
#define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK	0x1f
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK	0xf00
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET	8
212

213 214 215 216 217 218
#define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
#define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
#define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
#define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
#define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
#define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
219
#define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET	16
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
#define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
#define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
#define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
#define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
#define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
#define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
#define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
#define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
#define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
#define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
#define MVPP2_ISR_MISC_CAUSE_REG		0x55b0

/* Buffer Manager registers */
#define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
#define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
#define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
#define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
#define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
#define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
#define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
#define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
#define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
#define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
#define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
#define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
#define     MVPP2_BM_START_MASK			BIT(0)
#define     MVPP2_BM_STOP_MASK			BIT(1)
#define     MVPP2_BM_STATE_MASK			BIT(4)
#define     MVPP2_BM_LOW_THRESH_OFFS		8
#define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
#define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
						MVPP2_BM_LOW_THRESH_OFFS)
#define     MVPP2_BM_HIGH_THRESH_OFFS		16
#define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
#define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
						MVPP2_BM_HIGH_THRESH_OFFS)
#define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
#define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
#define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
#define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
#define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
#define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
#define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
#define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
#define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
#define MVPP2_BM_VIRT_ALLOC_REG			0x6440
268 269 270 271
#define MVPP22_BM_ADDR_HIGH_ALLOC		0x6444
#define     MVPP22_BM_ADDR_HIGH_PHYS_MASK	0xff
#define     MVPP22_BM_ADDR_HIGH_VIRT_MASK	0xff00
#define     MVPP22_BM_ADDR_HIGH_VIRT_SHIFT	8
272 273 274 275 276
#define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
#define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
#define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
#define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
#define MVPP2_BM_VIRT_RLS_REG			0x64c0
277 278
#define MVPP22_BM_ADDR_HIGH_RLS_REG		0x64c4
#define     MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK	0xff
279
#define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK	0xff00
280
#define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT	8
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

/* TX Scheduler registers */
#define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
#define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
#define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
#define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
#define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
#define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
#define MVPP2_TXP_SCHED_MTU_REG			0x801c
#define     MVPP2_TXP_MTU_MAX			0x7FFFF
#define MVPP2_TXP_SCHED_REFILL_REG		0x8020
#define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
#define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
#define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
#define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
#define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
#define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
#define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
#define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
#define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
#define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff

/* TX general registers */
#define MVPP2_TX_SNOOP_REG			0x8800
#define MVPP2_TX_PORT_FLUSH_REG			0x8810
#define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))

/* LMS registers */
#define MVPP2_SRC_ADDR_MIDDLE			0x24
#define MVPP2_SRC_ADDR_HIGH			0x28
314 315
#define MVPP2_PHY_AN_CFG0_REG			0x34
#define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
316
#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
317
#define     MVPP2_EXT_GLOBAL_CTRL_DEFAULT	0x27
318 319 320

/* Per-port registers */
#define MVPP2_GMAC_CTRL_0_REG			0x0
321
#define     MVPP2_GMAC_PORT_EN_MASK		BIT(0)
322
#define     MVPP2_GMAC_PORT_TYPE_MASK		BIT(1)
323 324 325
#define     MVPP2_GMAC_MAX_RX_SIZE_OFFS		2
#define     MVPP2_GMAC_MAX_RX_SIZE_MASK		0x7ffc
#define     MVPP2_GMAC_MIB_CNTR_EN_MASK		BIT(15)
326
#define MVPP2_GMAC_CTRL_1_REG			0x4
327 328 329 330 331
#define     MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
#define     MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
#define     MVPP2_GMAC_PCS_LB_EN_BIT		6
#define     MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
#define     MVPP2_GMAC_SA_LOW_OFFS		7
332
#define MVPP2_GMAC_CTRL_2_REG			0x8
333
#define     MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
334
#define     MVPP2_GMAC_FLOW_CTRL_MASK		GENMASK(2, 1)
335
#define     MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
336
#define     MVPP2_GMAC_INTERNAL_CLK_MASK	BIT(4)
337
#define     MVPP2_GMAC_DISABLE_PADDING		BIT(5)
338
#define     MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
339
#define MVPP2_GMAC_AUTONEG_CONFIG		0xc
340 341
#define     MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
#define     MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
342 343
#define     MVPP2_GMAC_IN_BAND_AUTONEG		BIT(2)
#define     MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS	BIT(3)
344 345 346 347
#define     MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
#define     MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
#define     MVPP2_GMAC_AN_SPEED_EN		BIT(7)
#define     MVPP2_GMAC_FC_ADV_EN		BIT(9)
348
#define     MVPP2_GMAC_FLOW_CTRL_AUTONEG	BIT(11)
349 350
#define     MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
#define     MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
351 352
#define MVPP2_GMAC_STATUS0			0x10
#define     MVPP2_GMAC_STATUS0_LINK_UP		BIT(0)
353
#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
354 355 356
#define     MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
#define     MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
#define     MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
357
					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
358 359 360 361
#define MVPP22_GMAC_INT_STAT			0x20
#define     MVPP22_GMAC_INT_STAT_LINK		BIT(1)
#define MVPP22_GMAC_INT_MASK			0x24
#define     MVPP22_GMAC_INT_MASK_LINK_STAT	BIT(1)
362
#define MVPP22_GMAC_CTRL_4_REG			0x90
363 364
#define     MVPP22_CTRL4_EXT_PIN_GMII_SEL	BIT(0)
#define     MVPP22_CTRL4_DP_CLK_SEL		BIT(5)
365
#define     MVPP22_CTRL4_SYNC_BYPASS_DIS	BIT(6)
366
#define     MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE	BIT(7)
367 368
#define MVPP22_GMAC_INT_SUM_MASK		0xa4
#define     MVPP22_GMAC_INT_SUM_MASK_LINK_STAT	BIT(1)
369 370 371 372

/* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
 * relative to port->base.
 */
373
#define MVPP22_XLG_CTRL0_REG			0x100
374 375
#define     MVPP22_XLG_CTRL0_PORT_EN		BIT(0)
#define     MVPP22_XLG_CTRL0_MAC_RESET_DIS	BIT(1)
376
#define     MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN	BIT(7)
377
#define     MVPP22_XLG_CTRL0_MIB_CNT_DIS	BIT(14)
378
#define MVPP22_XLG_CTRL1_REG			0x104
379
#define     MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS	0
380
#define     MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK	0x1fff
381 382 383 384 385 386
#define MVPP22_XLG_STATUS			0x10c
#define     MVPP22_XLG_STATUS_LINK_UP		BIT(0)
#define MVPP22_XLG_INT_STAT			0x114
#define     MVPP22_XLG_INT_STAT_LINK		BIT(1)
#define MVPP22_XLG_INT_MASK			0x118
#define     MVPP22_XLG_INT_MASK_LINK		BIT(1)
387
#define MVPP22_XLG_CTRL3_REG			0x11c
388 389 390
#define     MVPP22_XLG_CTRL3_MACMODESELECT_MASK	(7 << 13)
#define     MVPP22_XLG_CTRL3_MACMODESELECT_GMAC	(0 << 13)
#define     MVPP22_XLG_CTRL3_MACMODESELECT_10G	(1 << 13)
391 392 393
#define MVPP22_XLG_EXT_INT_MASK			0x15c
#define     MVPP22_XLG_EXT_INT_MASK_XLG		BIT(1)
#define     MVPP22_XLG_EXT_INT_MASK_GIG		BIT(2)
394 395 396 397 398
#define MVPP22_XLG_CTRL4_REG			0x184
#define     MVPP22_XLG_CTRL4_FWD_FC		BIT(5)
#define     MVPP22_XLG_CTRL4_FWD_PFC		BIT(6)
#define     MVPP22_XLG_CTRL4_MACMODSELECT_GMAC	BIT(12)

399 400
/* SMI registers. PPv2.2 only, relative to priv->iface_base. */
#define MVPP22_SMI_MISC_CFG_REG			0x1204
401
#define     MVPP22_SMI_POLLING_EN		BIT(10)
402

403 404
#define MVPP22_GMAC_BASE(port)		(0x7000 + (port) * 0x1000 + 0xe00)

405 406 407 408 409 410
#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff

/* Descriptor ring Macros */
#define MVPP2_QUEUE_NEXT_DESC(q, index) \
	(((index) < (q)->last_desc) ? ((index) + 1) : 0)

A
Antoine Ténart 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/* XPCS registers. PPv2.2 only */
#define MVPP22_MPCS_BASE(port)			(0x7000 + (port) * 0x1000)
#define MVPP22_MPCS_CTRL			0x14
#define     MVPP22_MPCS_CTRL_FWD_ERR_CONN	BIT(10)
#define MVPP22_MPCS_CLK_RESET			0x14c
#define     MAC_CLK_RESET_SD_TX			BIT(0)
#define     MAC_CLK_RESET_SD_RX			BIT(1)
#define     MAC_CLK_RESET_MAC			BIT(2)
#define     MVPP22_MPCS_CLK_RESET_DIV_RATIO(n)	((n) << 4)
#define     MVPP22_MPCS_CLK_RESET_DIV_SET	BIT(11)

/* XPCS registers. PPv2.2 only */
#define MVPP22_XPCS_BASE(port)			(0x7400 + (port) * 0x1000)
#define MVPP22_XPCS_CFG0			0x0
#define     MVPP22_XPCS_CFG0_PCS_MODE(n)	((n) << 3)
#define     MVPP22_XPCS_CFG0_ACTIVE_LANE(n)	((n) << 5)

/* System controller registers. Accessed through a regmap. */
#define GENCONF_SOFT_RESET1				0x1108
#define     GENCONF_SOFT_RESET1_GOP			BIT(6)
#define GENCONF_PORT_CTRL0				0x1110
#define     GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT		BIT(1)
#define     GENCONF_PORT_CTRL0_RX_DATA_SAMPLE		BIT(29)
#define     GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR	BIT(31)
#define GENCONF_PORT_CTRL1				0x1114
#define     GENCONF_PORT_CTRL1_EN(p)			BIT(p)
#define     GENCONF_PORT_CTRL1_RESET(p)			(BIT(p) << 28)
#define GENCONF_CTRL0					0x1120
#define     GENCONF_CTRL0_PORT0_RGMII			BIT(0)
#define     GENCONF_CTRL0_PORT1_RGMII_MII		BIT(1)
#define     GENCONF_CTRL0_PORT1_RGMII			BIT(2)

443 444 445 446
/* Various constants */

/* Coalescing */
#define MVPP2_TXDONE_COAL_PKTS_THRESH	15
447
#define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
448
#define MVPP2_TXDONE_COAL_USEC		1000
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
#define MVPP2_RX_COAL_PKTS		32
#define MVPP2_RX_COAL_USEC		100

/* The two bytes Marvell header. Either contains a special value used
 * by Marvell switches when a specific hardware mode is enabled (not
 * supported by this driver) or is filled automatically by zeroes on
 * the RX side. Those two bytes being at the front of the Ethernet
 * header, they allow to have the IP header aligned on a 4 bytes
 * boundary automatically: the hardware skips those two bytes on its
 * own.
 */
#define MVPP2_MH_SIZE			2
#define MVPP2_ETH_TYPE_LEN		2
#define MVPP2_PPPOE_HDR_SIZE		8
#define MVPP2_VLAN_TAG_LEN		4

/* Lbtd 802.3 type */
#define MVPP2_IP_LBDT_TYPE		0xfffa

#define MVPP2_TX_CSUM_MAX_SIZE		9800

/* Timeout constants */
#define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
#define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000

#define MVPP2_TX_MTU_MAX		0x7ffff

/* Maximum number of T-CONTs of PON port */
#define MVPP2_MAX_TCONT			16

/* Maximum number of supported ports */
#define MVPP2_MAX_PORTS			4

/* Maximum number of TXQs used by single port */
#define MVPP2_MAX_TXQ			8

/* Dfault number of RXQs in use */
#define MVPP2_DEFAULT_RXQ		4

/* Max number of Rx descriptors */
#define MVPP2_MAX_RXD			128

/* Max number of Tx descriptors */
#define MVPP2_MAX_TXD			1024

/* Amount of Tx descriptors that can be reserved at once by CPU */
#define MVPP2_CPU_DESC_CHUNK		64

/* Max number of Tx descriptors in each aggregated queue */
#define MVPP2_AGGR_TXQ_SIZE		256

/* Descriptor aligned size */
#define MVPP2_DESC_ALIGNED_SIZE		32

/* Descriptor alignment mask */
#define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)

/* RX FIFO constants */
#define MVPP2_RX_FIFO_PORT_DATA_SIZE	0x2000
#define MVPP2_RX_FIFO_PORT_ATTR_SIZE	0x80
#define MVPP2_RX_FIFO_PORT_MIN_PKT	0x80

/* RX buffer constants */
#define MVPP2_SKB_SHINFO_SIZE \
	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))

#define MVPP2_RX_PKT_SIZE(mtu) \
	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
517
	      ETH_HLEN + ETH_FCS_LEN, cache_line_size())
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

#define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
#define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)

#define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)

/* IPv6 max L3 address size */
#define MVPP2_MAX_L3_ADDR_SIZE		16

/* Port flags */
#define MVPP2_F_LOOPBACK		BIT(0)

/* Marvell tag types */
enum mvpp2_tag_type {
	MVPP2_TAG_TYPE_NONE = 0,
	MVPP2_TAG_TYPE_MH   = 1,
	MVPP2_TAG_TYPE_DSA  = 2,
	MVPP2_TAG_TYPE_EDSA = 3,
	MVPP2_TAG_TYPE_VLAN = 4,
	MVPP2_TAG_TYPE_LAST = 5
};

/* Parser constants */
#define MVPP2_PRS_TCAM_SRAM_SIZE	256
#define MVPP2_PRS_TCAM_WORDS		6
#define MVPP2_PRS_SRAM_WORDS		4
#define MVPP2_PRS_FLOW_ID_SIZE		64
#define MVPP2_PRS_FLOW_ID_MASK		0x3f
#define MVPP2_PRS_TCAM_ENTRY_INVALID	1
#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
#define MVPP2_PRS_IPV4_HEAD		0x40
#define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
#define MVPP2_PRS_IPV4_MC		0xe0
#define MVPP2_PRS_IPV4_MC_MASK		0xf0
#define MVPP2_PRS_IPV4_BC_MASK		0xff
#define MVPP2_PRS_IPV4_IHL		0x5
#define MVPP2_PRS_IPV4_IHL_MASK		0xf
#define MVPP2_PRS_IPV6_MC		0xff
#define MVPP2_PRS_IPV6_MC_MASK		0xff
#define MVPP2_PRS_IPV6_HOP_MASK		0xff
#define MVPP2_PRS_TCAM_PROTO_MASK	0xff
#define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
#define MVPP2_PRS_DBL_VLANS_MAX		100

/* Tcam structure:
 * - lookup ID - 4 bits
 * - port ID - 1 byte
 * - additional information - 1 byte
 * - header data - 8 bytes
 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
 */
#define MVPP2_PRS_AI_BITS			8
#define MVPP2_PRS_PORT_MASK			0xff
#define MVPP2_PRS_LU_MASK			0xf
#define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
					      (((offs) * 2) - ((offs) % 2)  + 2)
#define MVPP2_PRS_TCAM_AI_BYTE			16
#define MVPP2_PRS_TCAM_PORT_BYTE		17
#define MVPP2_PRS_TCAM_LU_BYTE			20
#define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
#define MVPP2_PRS_TCAM_INV_WORD			5
/* Tcam entries ID */
#define MVPP2_PE_DROP_ALL		0
#define MVPP2_PE_FIRST_FREE_TID		1
#define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
#define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
#define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
#define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
#define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
#define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
#define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
#define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
#define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
#define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
#define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
#define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
#define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
#define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
#define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
#define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
#define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
#define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
#define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
#define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
#define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
#define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
#define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
#define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
#define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)

/* Sram structure
 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
 */
#define MVPP2_PRS_SRAM_RI_OFFS			0
#define MVPP2_PRS_SRAM_RI_WORD			0
#define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
#define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
#define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
#define MVPP2_PRS_SRAM_SHIFT_OFFS		64
#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
#define MVPP2_PRS_SRAM_UDF_OFFS			73
#define MVPP2_PRS_SRAM_UDF_BITS			8
#define MVPP2_PRS_SRAM_UDF_MASK			0xff
#define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
#define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
#define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
#define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
#define MVPP2_PRS_SRAM_AI_OFFS			90
#define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
#define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
#define MVPP2_PRS_SRAM_AI_MASK			0xff
#define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
#define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
#define MVPP2_PRS_SRAM_LU_DONE_BIT		110
#define MVPP2_PRS_SRAM_LU_GEN_BIT		111

/* Sram result info bits assignment */
#define MVPP2_PRS_RI_MAC_ME_MASK		0x1
#define MVPP2_PRS_RI_DSA_MASK			0x2
654 655
#define MVPP2_PRS_RI_VLAN_MASK			(BIT(2) | BIT(3))
#define MVPP2_PRS_RI_VLAN_NONE			0x0
656 657 658 659 660
#define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
#define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
#define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
#define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
661 662
#define MVPP2_PRS_RI_L2_CAST_MASK		(BIT(9) | BIT(10))
#define MVPP2_PRS_RI_L2_UCAST			0x0
663 664 665
#define MVPP2_PRS_RI_L2_MCAST			BIT(9)
#define MVPP2_PRS_RI_L2_BCAST			BIT(10)
#define MVPP2_PRS_RI_PPPOE_MASK			0x800
666 667
#define MVPP2_PRS_RI_L3_PROTO_MASK		(BIT(12) | BIT(13) | BIT(14))
#define MVPP2_PRS_RI_L3_UN			0x0
668 669 670 671 672 673
#define MVPP2_PRS_RI_L3_IP4			BIT(12)
#define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
#define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
#define MVPP2_PRS_RI_L3_IP6			BIT(14)
#define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
#define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
674 675
#define MVPP2_PRS_RI_L3_ADDR_MASK		(BIT(15) | BIT(16))
#define MVPP2_PRS_RI_L3_UCAST			0x0
676 677 678
#define MVPP2_PRS_RI_L3_MCAST			BIT(15)
#define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
#define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
679
#define MVPP2_PRS_RI_IP_FRAG_TRUE		BIT(17)
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
#define MVPP2_PRS_RI_UDF3_MASK			0x300000
#define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
#define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
#define MVPP2_PRS_RI_L4_TCP			BIT(22)
#define MVPP2_PRS_RI_L4_UDP			BIT(23)
#define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
#define MVPP2_PRS_RI_UDF7_MASK			0x60000000
#define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
#define MVPP2_PRS_RI_DROP_MASK			0x80000000

/* Sram additional info bits assignment */
#define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
#define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
#define MVPP2_PRS_SINGLE_VLAN_AI		0
#define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)

/* DSA/EDSA type */
#define MVPP2_PRS_TAGGED		true
#define MVPP2_PRS_UNTAGGED		false
#define MVPP2_PRS_EDSA			true
#define MVPP2_PRS_DSA			false

/* MAC entries, shadow udf */
enum mvpp2_prs_udf {
	MVPP2_PRS_UDF_MAC_DEF,
	MVPP2_PRS_UDF_MAC_RANGE,
	MVPP2_PRS_UDF_L2_DEF,
	MVPP2_PRS_UDF_L2_DEF_COPY,
	MVPP2_PRS_UDF_L2_USER,
};

/* Lookup ID */
enum mvpp2_prs_lookup {
	MVPP2_PRS_LU_MH,
	MVPP2_PRS_LU_MAC,
	MVPP2_PRS_LU_DSA,
	MVPP2_PRS_LU_VLAN,
	MVPP2_PRS_LU_L2,
	MVPP2_PRS_LU_PPPOE,
	MVPP2_PRS_LU_IP4,
	MVPP2_PRS_LU_IP6,
	MVPP2_PRS_LU_FLOWS,
	MVPP2_PRS_LU_LAST,
};

/* L3 cast enum */
enum mvpp2_prs_l3_cast {
	MVPP2_PRS_L3_UNI_CAST,
	MVPP2_PRS_L3_MULTI_CAST,
	MVPP2_PRS_L3_BROAD_CAST
};

/* Classifier constants */
#define MVPP2_CLS_FLOWS_TBL_SIZE	512
#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
#define MVPP2_CLS_LKP_TBL_SIZE		64

/* BM constants */
#define MVPP2_BM_POOLS_NUM		8
#define MVPP2_BM_LONG_BUF_NUM		1024
#define MVPP2_BM_SHORT_BUF_NUM		2048
#define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
#define MVPP2_BM_POOL_PTR_ALIGN		128
#define MVPP2_BM_SWF_LONG_POOL(port)	((port > 2) ? 2 : port)
#define MVPP2_BM_SWF_SHORT_POOL		3

/* BM cookie (32 bits) definition */
#define MVPP2_BM_COOKIE_POOL_OFFS	8
#define MVPP2_BM_COOKIE_CPU_OFFS	24

/* BM short pool packet size
 * These value assure that for SWF the total number
 * of bytes allocated for each buffer will be 512
 */
#define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)

760 761 762
#define MVPP21_ADDR_SPACE_SZ		0
#define MVPP22_ADDR_SPACE_SZ		SZ_64K

763
#define MVPP2_MAX_THREADS		8
764
#define MVPP2_MAX_QVECS			MVPP2_MAX_THREADS
765

766 767 768 769 770 771 772 773 774 775 776 777
enum mvpp2_bm_type {
	MVPP2_BM_FREE,
	MVPP2_BM_SWF_LONG,
	MVPP2_BM_SWF_SHORT
};

/* Definitions */

/* Shared Packet Processor resources */
struct mvpp2 {
	/* Shared registers' base addresses */
	void __iomem *lms_base;
778 779
	void __iomem *iface_base;

780 781 782 783
	/* On PPv2.2, each "software thread" can access the base
	 * register through a separate address space, each 64 KB apart
	 * from each other. Typically, such address spaces will be
	 * used per CPU.
784
	 */
785
	void __iomem *swth_base[MVPP2_MAX_THREADS];
786

A
Antoine Ténart 已提交
787 788 789 790 791
	/* On PPv2.2, some port control registers are located into the system
	 * controller space. These registers are accessible through a regmap.
	 */
	struct regmap *sysctrl_base;

792 793 794
	/* Common clocks */
	struct clk *pp_clk;
	struct clk *gop_clk;
795
	struct clk *mg_clk;
796
	struct clk *axi_clk;
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

	/* List of pointers to port structures */
	struct mvpp2_port **port_list;

	/* Aggregated TXQs */
	struct mvpp2_tx_queue *aggr_txqs;

	/* BM pools */
	struct mvpp2_bm_pool *bm_pools;

	/* PRS shadow table */
	struct mvpp2_prs_shadow *prs_shadow;
	/* PRS auxiliary table for double vlan entries control */
	bool *prs_double_vlans;

	/* Tclk value */
	u32 tclk;
814 815 816

	/* HW version */
	enum { MVPP21, MVPP22 } hw_version;
817 818 819

	/* Maximum number of RXQs per port */
	unsigned int max_port_rxqs;
820 821 822 823 824 825 826 827 828 829
};

struct mvpp2_pcpu_stats {
	struct	u64_stats_sync syncp;
	u64	rx_packets;
	u64	rx_bytes;
	u64	tx_packets;
	u64	tx_bytes;
};

830 831 832 833 834 835 836 837
/* Per-CPU port control */
struct mvpp2_port_pcpu {
	struct hrtimer tx_done_timer;
	bool timer_scheduled;
	/* Tasklet for egress finalization */
	struct tasklet_struct tx_done_tasklet;
};

838 839 840 841 842 843 844 845 846 847 848 849
struct mvpp2_queue_vector {
	int irq;
	struct napi_struct napi;
	enum { MVPP2_QUEUE_VECTOR_SHARED, MVPP2_QUEUE_VECTOR_PRIVATE } type;
	int sw_thread_id;
	u16 sw_thread_mask;
	int first_rxq;
	int nrxqs;
	u32 pending_cause_rx;
	struct mvpp2_port *port;
};

850 851 852
struct mvpp2_port {
	u8 id;

853 854 855 856 857
	/* Index of the port from the "group of ports" complex point
	 * of view
	 */
	int gop_id;

858 859
	int link_irq;

860 861 862 863 864 865
	struct mvpp2 *priv;

	/* Per-port registers' base address */
	void __iomem *base;

	struct mvpp2_rx_queue **rxqs;
866
	unsigned int nrxqs;
867
	struct mvpp2_tx_queue **txqs;
868
	unsigned int ntxqs;
869 870 871 872
	struct net_device *dev;

	int pkt_size;

873 874 875
	/* Per-CPU port control */
	struct mvpp2_port_pcpu __percpu *pcpu;

876 877 878 879 880 881 882 883 884
	/* Flags */
	unsigned long flags;

	u16 tx_ring_size;
	u16 rx_ring_size;
	struct mvpp2_pcpu_stats __percpu *stats;

	phy_interface_t phy_interface;
	struct device_node *phy_node;
885
	struct phy *comphy;
886 887 888 889 890 891 892 893 894
	unsigned int link;
	unsigned int duplex;
	unsigned int speed;

	struct mvpp2_bm_pool *pool_long;
	struct mvpp2_bm_pool *pool_short;

	/* Index of first port's physical RXQ */
	u8 first_rxq;
895 896 897

	struct mvpp2_queue_vector qvecs[MVPP2_MAX_QVECS];
	unsigned int nqvecs;
898 899 900
	bool has_tx_irqs;

	u32 tx_time_coal;
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
};

/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
 * layout of the transmit and reception DMA descriptors, and their
 * layout is therefore defined by the hardware design
 */

#define MVPP2_TXD_L3_OFF_SHIFT		0
#define MVPP2_TXD_IP_HLEN_SHIFT		8
#define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
#define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
#define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
#define MVPP2_TXD_PADDING_DISABLE	BIT(23)
#define MVPP2_TXD_L4_UDP		BIT(24)
#define MVPP2_TXD_L3_IP6		BIT(26)
#define MVPP2_TXD_L_DESC		BIT(28)
#define MVPP2_TXD_F_DESC		BIT(29)

#define MVPP2_RXD_ERR_SUMMARY		BIT(15)
#define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
#define MVPP2_RXD_ERR_CRC		0x0
#define MVPP2_RXD_ERR_OVERRUN		BIT(13)
#define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
#define MVPP2_RXD_BM_POOL_ID_OFFS	16
#define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
#define MVPP2_RXD_HWF_SYNC		BIT(21)
#define MVPP2_RXD_L4_CSUM_OK		BIT(22)
#define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
#define MVPP2_RXD_L4_TCP		BIT(25)
#define MVPP2_RXD_L4_UDP		BIT(26)
#define MVPP2_RXD_L3_IP4		BIT(28)
#define MVPP2_RXD_L3_IP6		BIT(30)
#define MVPP2_RXD_BUF_HDR		BIT(31)

935 936
/* HW TX descriptor for PPv2.1 */
struct mvpp21_tx_desc {
937 938 939 940
	u32 command;		/* Options used by HW for packet transmitting.*/
	u8  packet_offset;	/* the offset from the buffer beginning	*/
	u8  phys_txq;		/* destination queue ID			*/
	u16 data_size;		/* data size of transmitted packet in bytes */
941
	u32 buf_dma_addr;	/* physical addr of transmitted buffer	*/
942 943 944 945 946
	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
	u32 reserved2;		/* reserved (for future use)		*/
};

947 948
/* HW RX descriptor for PPv2.1 */
struct mvpp21_rx_desc {
949 950 951
	u32 status;		/* info about received packet		*/
	u16 reserved1;		/* parser_info (for future use, PnC)	*/
	u16 data_size;		/* size of received packet in bytes	*/
952
	u32 buf_dma_addr;	/* physical address of the buffer	*/
953 954 955 956 957 958 959 960 961 962
	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
	u8  reserved4;		/* bm_qset (for future use, BM)		*/
	u8  reserved5;
	u16 reserved6;		/* classify_info (for future use, PnC)	*/
	u32 reserved7;		/* flow_id (for future use, PnC) */
	u32 reserved8;
};

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
/* HW TX descriptor for PPv2.2 */
struct mvpp22_tx_desc {
	u32 command;
	u8  packet_offset;
	u8  phys_txq;
	u16 data_size;
	u64 reserved1;
	u64 buf_dma_addr_ptp;
	u64 buf_cookie_misc;
};

/* HW RX descriptor for PPv2.2 */
struct mvpp22_rx_desc {
	u32 status;
	u16 reserved1;
	u16 data_size;
	u32 reserved2;
	u32 reserved3;
	u64 buf_dma_addr_key_hash;
	u64 buf_cookie_misc;
};

985 986 987 988 989 990
/* Opaque type used by the driver to manipulate the HW TX and RX
 * descriptors
 */
struct mvpp2_tx_desc {
	union {
		struct mvpp21_tx_desc pp21;
991
		struct mvpp22_tx_desc pp22;
992 993 994 995 996 997
	};
};

struct mvpp2_rx_desc {
	union {
		struct mvpp21_rx_desc pp21;
998
		struct mvpp22_rx_desc pp22;
999 1000 1001
	};
};

1002 1003 1004 1005 1006
struct mvpp2_txq_pcpu_buf {
	/* Transmitted SKB */
	struct sk_buff *skb;

	/* Physical address of transmitted buffer */
1007
	dma_addr_t dma;
1008 1009 1010 1011 1012

	/* Size transmitted */
	size_t size;
};

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/* Per-CPU Tx queue control */
struct mvpp2_txq_pcpu {
	int cpu;

	/* Number of Tx DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used Tx DMA descriptor in the
	 * descriptor ring
	 */
	int count;

	/* Number of Tx DMA descriptors reserved for each CPU */
	int reserved_num;

1028 1029
	/* Infos about transmitted buffers */
	struct mvpp2_txq_pcpu_buf *buffs;
1030

1031 1032 1033 1034 1035
	/* Index of last TX DMA descriptor that was inserted */
	int txq_put_index;

	/* Index of the TX DMA descriptor to be cleaned up */
	int txq_get_index;
1036 1037 1038 1039

	/* DMA buffer for TSO headers */
	char *tso_headers;
	dma_addr_t tso_headers_dma;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
};

struct mvpp2_tx_queue {
	/* Physical number of this Tx queue */
	u8 id;

	/* Logical number of this Tx queue */
	u8 log_id;

	/* Number of Tx DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used Tx DMA descriptor in the descriptor ring */
	int count;

	/* Per-CPU control of physical Tx queues */
	struct mvpp2_txq_pcpu __percpu *pcpu;

	u32 done_pkts_coal;

	/* Virtual address of thex Tx DMA descriptors array */
	struct mvpp2_tx_desc *descs;

	/* DMA address of the Tx DMA descriptors array */
1064
	dma_addr_t descs_dma;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

	/* Index of the last Tx DMA descriptor */
	int last_desc;

	/* Index of the next Tx DMA descriptor to process */
	int next_desc_to_proc;
};

struct mvpp2_rx_queue {
	/* RX queue number, in the range 0-31 for physical RXQs */
	u8 id;

	/* Num of rx descriptors in the rx descriptor ring */
	int size;

	u32 pkts_coal;
	u32 time_coal;

	/* Virtual address of the RX DMA descriptors array */
	struct mvpp2_rx_desc *descs;

	/* DMA address of the RX DMA descriptors array */
1087
	dma_addr_t descs_dma;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	/* Index of the last RX DMA descriptor */
	int last_desc;

	/* Index of the next RX DMA descriptor to process */
	int next_desc_to_proc;

	/* ID of port to which physical RXQ is mapped */
	int port;

	/* Port's logic RXQ number to which physical RXQ is mapped */
	int logic_rxq;
};

union mvpp2_prs_tcam_entry {
	u32 word[MVPP2_PRS_TCAM_WORDS];
	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
};

union mvpp2_prs_sram_entry {
	u32 word[MVPP2_PRS_SRAM_WORDS];
	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
};

struct mvpp2_prs_entry {
	u32 index;
	union mvpp2_prs_tcam_entry tcam;
	union mvpp2_prs_sram_entry sram;
};

struct mvpp2_prs_shadow {
	bool valid;
	bool finish;

	/* Lookup ID */
	int lu;

	/* User defined offset */
	int udf;

	/* Result info */
	u32 ri;
	u32 ri_mask;
};

struct mvpp2_cls_flow_entry {
	u32 index;
	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
};

struct mvpp2_cls_lookup_entry {
	u32 lkpid;
	u32 way;
	u32 data;
};

struct mvpp2_bm_pool {
	/* Pool number in the range 0-7 */
	int id;
	enum mvpp2_bm_type type;

	/* Buffer Pointers Pool External (BPPE) size */
	int size;
1151 1152
	/* BPPE size in bytes */
	int size_bytes;
1153 1154 1155 1156 1157 1158
	/* Number of buffers for this pool */
	int buf_num;
	/* Pool buffer size */
	int buf_size;
	/* Packet size */
	int pkt_size;
1159
	int frag_size;
1160 1161 1162

	/* BPPE virtual base address */
	u32 *virt_addr;
1163 1164
	/* BPPE DMA base address */
	dma_addr_t dma_addr;
1165 1166 1167 1168 1169

	/* Ports using BM pool */
	u32 port_map;
};

1170 1171 1172 1173 1174
#define IS_TSO_HEADER(txq_pcpu, addr) \
	((addr) >= (txq_pcpu)->tso_headers_dma && \
	 (addr) < (txq_pcpu)->tso_headers_dma + \
	 (txq_pcpu)->size * TSO_HEADER_SIZE)

1175 1176 1177 1178 1179 1180 1181 1182 1183
/* Queue modes */
#define MVPP2_QDIST_SINGLE_MODE	0
#define MVPP2_QDIST_MULTI_MODE	1

static int queue_mode = MVPP2_QDIST_SINGLE_MODE;

module_param(queue_mode, int, 0444);
MODULE_PARM_DESC(queue_mode, "Set queue_mode (single=0, multi=1)");

1184 1185 1186 1187 1188 1189 1190
#define MVPP2_DRIVER_NAME "mvpp2"
#define MVPP2_DRIVER_VERSION "1.0"

/* Utility/helper methods */

static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
{
1191
	writel(data, priv->swth_base[0] + offset);
1192 1193 1194 1195
}

static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
{
1196
	return readl(priv->swth_base[0] + offset);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
}

/* These accessors should be used to access:
 *
 * - per-CPU registers, where each CPU has its own copy of the
 *   register.
 *
 *   MVPP2_BM_VIRT_ALLOC_REG
 *   MVPP2_BM_ADDR_HIGH_ALLOC
 *   MVPP22_BM_ADDR_HIGH_RLS_REG
 *   MVPP2_BM_VIRT_RLS_REG
 *   MVPP2_ISR_RX_TX_CAUSE_REG
 *   MVPP2_ISR_RX_TX_MASK_REG
 *   MVPP2_TXQ_NUM_REG
 *   MVPP2_AGGR_TXQ_UPDATE_REG
 *   MVPP2_TXQ_RSVD_REQ_REG
 *   MVPP2_TXQ_RSVD_RSLT_REG
 *   MVPP2_TXQ_SENT_REG
 *   MVPP2_RXQ_NUM_REG
 *
 * - global registers that must be accessed through a specific CPU
 *   window, because they are related to an access to a per-CPU
 *   register
 *
 *   MVPP2_BM_PHY_ALLOC_REG    (related to MVPP2_BM_VIRT_ALLOC_REG)
 *   MVPP2_BM_PHY_RLS_REG      (related to MVPP2_BM_VIRT_RLS_REG)
 *   MVPP2_RXQ_THRESH_REG      (related to MVPP2_RXQ_NUM_REG)
 *   MVPP2_RXQ_DESC_ADDR_REG   (related to MVPP2_RXQ_NUM_REG)
 *   MVPP2_RXQ_DESC_SIZE_REG   (related to MVPP2_RXQ_NUM_REG)
 *   MVPP2_RXQ_INDEX_REG       (related to MVPP2_RXQ_NUM_REG)
 *   MVPP2_TXQ_PENDING_REG     (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_DESC_ADDR_REG   (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_DESC_SIZE_REG   (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_INDEX_REG       (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_PENDING_REG     (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_PREF_BUF_REG    (related to MVPP2_TXQ_NUM_REG)
 *   MVPP2_TXQ_PREF_BUF_REG    (related to MVPP2_TXQ_NUM_REG)
 */
static void mvpp2_percpu_write(struct mvpp2 *priv, int cpu,
			       u32 offset, u32 data)
{
1238
	writel(data, priv->swth_base[cpu] + offset);
1239 1240 1241 1242 1243
}

static u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu,
			     u32 offset)
{
1244
	return readl(priv->swth_base[cpu] + offset);
1245 1246
}

1247 1248 1249
static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
					    struct mvpp2_tx_desc *tx_desc)
{
1250 1251 1252 1253
	if (port->priv->hw_version == MVPP21)
		return tx_desc->pp21.buf_dma_addr;
	else
		return tx_desc->pp22.buf_dma_addr_ptp & GENMASK_ULL(40, 0);
1254 1255 1256 1257 1258 1259
}

static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
				      struct mvpp2_tx_desc *tx_desc,
				      dma_addr_t dma_addr)
{
1260 1261 1262 1263 1264 1265 1266 1267
	if (port->priv->hw_version == MVPP21) {
		tx_desc->pp21.buf_dma_addr = dma_addr;
	} else {
		u64 val = (u64)dma_addr;

		tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
		tx_desc->pp22.buf_dma_addr_ptp |= val;
	}
1268 1269 1270 1271 1272
}

static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
				    struct mvpp2_tx_desc *tx_desc)
{
1273 1274 1275 1276
	if (port->priv->hw_version == MVPP21)
		return tx_desc->pp21.data_size;
	else
		return tx_desc->pp22.data_size;
1277 1278 1279 1280 1281 1282
}

static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
				  struct mvpp2_tx_desc *tx_desc,
				  size_t size)
{
1283 1284 1285 1286
	if (port->priv->hw_version == MVPP21)
		tx_desc->pp21.data_size = size;
	else
		tx_desc->pp22.data_size = size;
1287 1288 1289 1290 1291 1292
}

static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
				 struct mvpp2_tx_desc *tx_desc,
				 unsigned int txq)
{
1293 1294 1295 1296
	if (port->priv->hw_version == MVPP21)
		tx_desc->pp21.phys_txq = txq;
	else
		tx_desc->pp22.phys_txq = txq;
1297 1298 1299 1300 1301 1302
}

static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
				 struct mvpp2_tx_desc *tx_desc,
				 unsigned int command)
{
1303 1304 1305 1306
	if (port->priv->hw_version == MVPP21)
		tx_desc->pp21.command = command;
	else
		tx_desc->pp22.command = command;
1307 1308 1309 1310 1311 1312
}

static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
				    struct mvpp2_tx_desc *tx_desc,
				    unsigned int offset)
{
1313 1314 1315 1316
	if (port->priv->hw_version == MVPP21)
		tx_desc->pp21.packet_offset = offset;
	else
		tx_desc->pp22.packet_offset = offset;
1317 1318 1319 1320 1321
}

static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
					    struct mvpp2_tx_desc *tx_desc)
{
1322 1323 1324 1325
	if (port->priv->hw_version == MVPP21)
		return tx_desc->pp21.packet_offset;
	else
		return tx_desc->pp22.packet_offset;
1326 1327 1328 1329 1330
}

static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
					    struct mvpp2_rx_desc *rx_desc)
{
1331 1332 1333 1334
	if (port->priv->hw_version == MVPP21)
		return rx_desc->pp21.buf_dma_addr;
	else
		return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1335 1336 1337 1338 1339
}

static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
					     struct mvpp2_rx_desc *rx_desc)
{
1340 1341 1342 1343
	if (port->priv->hw_version == MVPP21)
		return rx_desc->pp21.buf_cookie;
	else
		return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1344 1345 1346 1347 1348
}

static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
				    struct mvpp2_rx_desc *rx_desc)
{
1349 1350 1351 1352
	if (port->priv->hw_version == MVPP21)
		return rx_desc->pp21.data_size;
	else
		return rx_desc->pp22.data_size;
1353 1354 1355 1356 1357
}

static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
				   struct mvpp2_rx_desc *rx_desc)
{
1358 1359 1360 1361
	if (port->priv->hw_version == MVPP21)
		return rx_desc->pp21.status;
	else
		return rx_desc->pp22.status;
1362 1363
}

1364 1365 1366 1367 1368 1369 1370
static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
{
	txq_pcpu->txq_get_index++;
	if (txq_pcpu->txq_get_index == txq_pcpu->size)
		txq_pcpu->txq_get_index = 0;
}

1371 1372
static void mvpp2_txq_inc_put(struct mvpp2_port *port,
			      struct mvpp2_txq_pcpu *txq_pcpu,
1373 1374
			      struct sk_buff *skb,
			      struct mvpp2_tx_desc *tx_desc)
1375
{
1376 1377 1378
	struct mvpp2_txq_pcpu_buf *tx_buf =
		txq_pcpu->buffs + txq_pcpu->txq_put_index;
	tx_buf->skb = skb;
1379 1380 1381
	tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
	tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
		mvpp2_txdesc_offset_get(port, tx_desc);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	txq_pcpu->txq_put_index++;
	if (txq_pcpu->txq_put_index == txq_pcpu->size)
		txq_pcpu->txq_put_index = 0;
}

/* Get number of physical egress port */
static inline int mvpp2_egress_port(struct mvpp2_port *port)
{
	return MVPP2_MAX_TCONT + port->id;
}

/* Get number of physical TXQ */
static inline int mvpp2_txq_phys(int port, int txq)
{
	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
}

/* Parser configuration routines */

/* Update parser tcam and sram hw entries */
static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
	int i;

	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
		return -EINVAL;

	/* Clear entry invalidation bit */
	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;

	/* Write tcam index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);

	/* Write sram index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);

	return 0;
}

/* Read tcam entry from hw */
static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
	int i;

	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
		return -EINVAL;

	/* Write tcam index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);

	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
		return MVPP2_PRS_TCAM_ENTRY_INVALID;

	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));

	/* Write sram index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));

	return 0;
}

/* Invalidate tcam hw entry */
static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
{
	/* Write index - indirect access */
	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
		    MVPP2_PRS_TCAM_INV_MASK);
}

/* Enable shadow table entry and set its lookup ID */
static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
{
	priv->prs_shadow[index].valid = true;
	priv->prs_shadow[index].lu = lu;
}

/* Update ri fields in shadow table entry */
static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
				    unsigned int ri, unsigned int ri_mask)
{
	priv->prs_shadow[index].ri_mask = ri_mask;
	priv->prs_shadow[index].ri = ri;
}

/* Update lookup field in tcam sw entry */
static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
{
	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);

	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
}

/* Update mask for single port in tcam sw entry */
static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
				    unsigned int port, bool add)
{
	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);

	if (add)
		pe->tcam.byte[enable_off] &= ~(1 << port);
	else
		pe->tcam.byte[enable_off] |= 1 << port;
}

/* Update port map in tcam sw entry */
static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
					unsigned int ports)
{
	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);

	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
	pe->tcam.byte[enable_off] &= ~port_mask;
	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
}

/* Obtain port map from tcam sw entry */
static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
{
	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);

	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
}

/* Set byte of data and its enable bits in tcam sw entry */
static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
					 unsigned int offs, unsigned char byte,
					 unsigned char enable)
{
	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
}

/* Get byte of data and its enable bits from tcam sw entry */
static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
					 unsigned int offs, unsigned char *byte,
					 unsigned char *enable)
{
	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
}

/* Compare tcam data bytes with a pattern */
static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
				    u16 data)
{
	int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
	u16 tcam_data;

1542
	tcam_data = (pe->tcam.byte[off + 1] << 8) | pe->tcam.byte[off];
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	if (tcam_data != data)
		return false;
	return true;
}

/* Update ai bits in tcam sw entry */
static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
				     unsigned int bits, unsigned int enable)
{
	int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;

	for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {

		if (!(enable & BIT(i)))
			continue;

		if (bits & BIT(i))
			pe->tcam.byte[ai_idx] |= 1 << i;
		else
			pe->tcam.byte[ai_idx] &= ~(1 << i);
	}

	pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
}

/* Get ai bits from tcam sw entry */
static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
{
	return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
}

/* Set ethertype in tcam sw entry */
static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
				  unsigned short ethertype)
{
	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
}

/* Set bits in sram sw entry */
static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
				    int val)
{
	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
}

/* Clear bits in sram sw entry */
static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
				      int val)
{
	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
}

/* Update ri bits in sram sw entry */
static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
				     unsigned int bits, unsigned int mask)
{
	unsigned int i;

	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;

		if (!(mask & BIT(i)))
			continue;

		if (bits & BIT(i))
			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
		else
			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);

		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
	}
}

/* Obtain ri bits from sram sw entry */
static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
{
	return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
}

/* Update ai bits in sram sw entry */
static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
				     unsigned int bits, unsigned int mask)
{
	unsigned int i;
	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;

	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {

		if (!(mask & BIT(i)))
			continue;

		if (bits & BIT(i))
			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
		else
			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);

		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
	}
}

/* Read ai bits from sram sw entry */
static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
{
	u8 bits;
	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
	int ai_en_off = ai_off + 1;
	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;

	bits = (pe->sram.byte[ai_off] >> ai_shift) |
	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));

	return bits;
}

/* In sram sw entry set lookup ID field of the tcam key to be used in the next
 * lookup interation
 */
static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
				       unsigned int lu)
{
	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;

	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
}

/* In the sram sw entry set sign and value of the next lookup offset
 * and the offset value generated to the classifier
 */
static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
				     unsigned int op)
{
	/* Set sign */
	if (shift < 0) {
		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
		shift = 0 - shift;
	} else {
		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
	}

	/* Set value */
	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
							   (unsigned char)shift;

	/* Reset and set operation */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);

	/* Set base offset as current */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}

/* In the sram sw entry set sign and value of the user defined offset
 * generated to the classifier
 */
static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
				      unsigned int type, int offset,
				      unsigned int op)
{
	/* Set sign */
	if (offset < 0) {
		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
		offset = 0 - offset;
	} else {
		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
	}

	/* Set value */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
				  MVPP2_PRS_SRAM_UDF_MASK);
	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
					MVPP2_PRS_SRAM_UDF_BITS)] &=
	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
					MVPP2_PRS_SRAM_UDF_BITS)] |=
				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));

	/* Set offset type */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);

	/* Set offset operation */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);

	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));

	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));

	/* Set base offset as current */
	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}

/* Find parser flow entry */
static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
	if (!pe)
		return NULL;
	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);

	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
		u8 bits;

		if (!priv->prs_shadow[tid].valid ||
		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
			continue;

		pe->index = tid;
		mvpp2_prs_hw_read(priv, pe);
		bits = mvpp2_prs_sram_ai_get(pe);

		/* Sram store classification lookup ID in AI bits [5:0] */
		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
			return pe;
	}
	kfree(pe);

	return NULL;
}

/* Return first free tcam index, seeking from start to end */
static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
				     unsigned char end)
{
	int tid;

	if (start > end)
		swap(start, end);

	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;

	for (tid = start; tid <= end; tid++) {
		if (!priv->prs_shadow[tid].valid)
			return tid;
	}

	return -EINVAL;
}

/* Enable/disable dropping all mac da's */
static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
{
	struct mvpp2_prs_entry pe;

	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
		/* Entry exist - update port only */
		pe.index = MVPP2_PE_DROP_ALL;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
1810
		memset(&pe, 0, sizeof(pe));
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
		pe.index = MVPP2_PE_DROP_ALL;

		/* Non-promiscuous mode for all ports - DROP unknown packets */
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
					 MVPP2_PRS_RI_DROP_MASK);

		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Set port to promiscuous mode */
static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
{
	struct mvpp2_prs_entry pe;

1839
	/* Promiscuous mode - Accept unknown packets */
1840 1841 1842 1843 1844 1845 1846

	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
		/* Entry exist - update port only */
		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
1847
		memset(&pe, 0, sizeof(pe));
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
		pe.index = MVPP2_PE_MAC_PROMISCUOUS;

		/* Continue - set next lookup */
		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);

		/* Set result info bits */
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
					 MVPP2_PRS_RI_L2_CAST_MASK);

		/* Shift to ethertype */
		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Accept multicast */
static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
				    bool add)
{
	struct mvpp2_prs_entry pe;
	unsigned char da_mc;

	/* Ethernet multicast address first byte is
	 * 0x01 for IPv4 and 0x33 for IPv6
	 */
	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;

	if (priv->prs_shadow[index].valid) {
		/* Entry exist - update port only */
		pe.index = index;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
1893
		memset(&pe, 0, sizeof(pe));
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
		pe.index = index;

		/* Continue - set next lookup */
		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);

		/* Set result info bits */
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
					 MVPP2_PRS_RI_L2_CAST_MASK);

		/* Update tcam entry data first byte */
		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);

		/* Shift to ethertype */
		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Set entry for dsa packets */
static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
				  bool tagged, bool extend)
{
	struct mvpp2_prs_entry pe;
	int tid, shift;

	if (extend) {
		tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
		shift = 8;
	} else {
		tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
		shift = 4;
	}

	if (priv->prs_shadow[tid].valid) {
		/* Entry exist - update port only */
		pe.index = tid;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
1945
		memset(&pe, 0, sizeof(pe));
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
		pe.index = tid;

		/* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
		mvpp2_prs_sram_shift_set(&pe, shift,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);

		if (tagged) {
			/* Set tagged bit in DSA tag */
			mvpp2_prs_tcam_data_byte_set(&pe, 0,
						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
			/* Clear all ai bits for next iteration */
			mvpp2_prs_sram_ai_update(&pe, 0,
						 MVPP2_PRS_SRAM_AI_MASK);
			/* If packet is tagged continue check vlans */
			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
		} else {
			/* Set result info bits to 'no vlans' */
			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
						 MVPP2_PRS_RI_VLAN_MASK);
			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
		}

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Set entry for dsa ethertype */
static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
					    bool add, bool tagged, bool extend)
{
	struct mvpp2_prs_entry pe;
	int tid, shift, port_mask;

	if (extend) {
		tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
		      MVPP2_PE_ETYPE_EDSA_UNTAGGED;
		port_mask = 0;
		shift = 8;
	} else {
		tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
		      MVPP2_PE_ETYPE_DSA_UNTAGGED;
		port_mask = MVPP2_PRS_PORT_MASK;
		shift = 4;
	}

	if (priv->prs_shadow[tid].valid) {
		/* Entry exist - update port only */
		pe.index = tid;
		mvpp2_prs_hw_read(priv, &pe);
	} else {
		/* Entry doesn't exist - create new */
2008
		memset(&pe, 0, sizeof(pe));
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
		pe.index = tid;

		/* Set ethertype */
		mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
		mvpp2_prs_match_etype(&pe, 2, 0);

		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
					 MVPP2_PRS_RI_DSA_MASK);
		/* Shift ethertype + 2 byte reserved + tag*/
		mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

		/* Update shadow table */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);

		if (tagged) {
			/* Set tagged bit in DSA tag */
			mvpp2_prs_tcam_data_byte_set(&pe,
						     MVPP2_ETH_TYPE_LEN + 2 + 3,
						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
			/* Clear all ai bits for next iteration */
			mvpp2_prs_sram_ai_update(&pe, 0,
						 MVPP2_PRS_SRAM_AI_MASK);
			/* If packet is tagged continue check vlans */
			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
		} else {
			/* Set result info bits to 'no vlans' */
			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
						 MVPP2_PRS_RI_VLAN_MASK);
			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
		}
		/* Mask/unmask all ports, depending on dsa type */
		mvpp2_prs_tcam_port_map_set(&pe, port_mask);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(&pe, port, add);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Search for existing single/triple vlan entry */
static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
						   unsigned short tpid, int ai)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
	if (!pe)
		return NULL;
	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);

	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
	for (tid = MVPP2_PE_FIRST_FREE_TID;
	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
		unsigned int ri_bits, ai_bits;
		bool match;

		if (!priv->prs_shadow[tid].valid ||
		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
			continue;

		pe->index = tid;

		mvpp2_prs_hw_read(priv, pe);
		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
		if (!match)
			continue;

		/* Get vlan type */
		ri_bits = mvpp2_prs_sram_ri_get(pe);
		ri_bits &= MVPP2_PRS_RI_VLAN_MASK;

		/* Get current ai value from tcam */
		ai_bits = mvpp2_prs_tcam_ai_get(pe);
		/* Clear double vlan bit */
		ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;

		if (ai != ai_bits)
			continue;

		if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
		    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
			return pe;
	}
	kfree(pe);

	return NULL;
}

/* Add/update single/triple vlan entry */
static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
			      unsigned int port_map)
{
	struct mvpp2_prs_entry *pe;
	int tid_aux, tid;
2108
	int ret = 0;
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

	pe = mvpp2_prs_vlan_find(priv, tpid, ai);

	if (!pe) {
		/* Create new tcam entry */
		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
						MVPP2_PE_FIRST_FREE_TID);
		if (tid < 0)
			return tid;

		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
		if (!pe)
			return -ENOMEM;

		/* Get last double vlan tid */
		for (tid_aux = MVPP2_PE_LAST_FREE_TID;
		     tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
			unsigned int ri_bits;

			if (!priv->prs_shadow[tid_aux].valid ||
			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
				continue;

			pe->index = tid_aux;
			mvpp2_prs_hw_read(priv, pe);
			ri_bits = mvpp2_prs_sram_ri_get(pe);
			if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
			    MVPP2_PRS_RI_VLAN_DOUBLE)
				break;
		}

2140 2141
		if (tid <= tid_aux) {
			ret = -EINVAL;
2142
			goto free_pe;
2143
		}
2144

2145
		memset(pe, 0, sizeof(*pe));
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
		pe->index = tid;

		mvpp2_prs_match_etype(pe, 0, tpid);

		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
		/* Shift 4 bytes - skip 1 vlan tag */
		mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
		/* Clear all ai bits for next iteration */
		mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);

		if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
						 MVPP2_PRS_RI_VLAN_MASK);
		} else {
			ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
						 MVPP2_PRS_RI_VLAN_MASK);
		}
		mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);

		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
	}
	/* Update ports' mask */
	mvpp2_prs_tcam_port_map_set(pe, port_map);

	mvpp2_prs_hw_write(priv, pe);
2174
free_pe:
2175 2176
	kfree(pe);

2177
	return ret;
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
}

/* Get first free double vlan ai number */
static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
{
	int i;

	for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
		if (!priv->prs_double_vlans[i])
			return i;
	}

	return -EINVAL;
}

/* Search for existing double vlan entry */
static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
							  unsigned short tpid1,
							  unsigned short tpid2)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
	if (!pe)
		return NULL;
	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);

	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
	for (tid = MVPP2_PE_FIRST_FREE_TID;
	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
		unsigned int ri_mask;
		bool match;

		if (!priv->prs_shadow[tid].valid ||
		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
			continue;

		pe->index = tid;
		mvpp2_prs_hw_read(priv, pe);

		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
			&& mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));

		if (!match)
			continue;

		ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
		if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
			return pe;
	}
	kfree(pe);

	return NULL;
}

/* Add or update double vlan entry */
static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
				     unsigned short tpid2,
				     unsigned int port_map)
{
	struct mvpp2_prs_entry *pe;
2240
	int tid_aux, tid, ai, ret = 0;
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

	pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);

	if (!pe) {
		/* Create new tcam entry */
		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
				MVPP2_PE_LAST_FREE_TID);
		if (tid < 0)
			return tid;

		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
		if (!pe)
			return -ENOMEM;

		/* Set ai value for new double vlan entry */
		ai = mvpp2_prs_double_vlan_ai_free_get(priv);
2257 2258
		if (ai < 0) {
			ret = ai;
2259
			goto free_pe;
2260
		}
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

		/* Get first single/triple vlan tid */
		for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
		     tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
			unsigned int ri_bits;

			if (!priv->prs_shadow[tid_aux].valid ||
			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
				continue;

			pe->index = tid_aux;
			mvpp2_prs_hw_read(priv, pe);
			ri_bits = mvpp2_prs_sram_ri_get(pe);
			ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
			if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
			    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
				break;
		}

2280 2281
		if (tid >= tid_aux) {
			ret = -ERANGE;
2282
			goto free_pe;
2283
		}
2284

2285
		memset(pe, 0, sizeof(*pe));
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
		pe->index = tid;

		priv->prs_double_vlans[ai] = true;

		mvpp2_prs_match_etype(pe, 0, tpid1);
		mvpp2_prs_match_etype(pe, 4, tpid2);

		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
		/* Shift 8 bytes - skip 2 vlan tags */
		mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
		mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
					 MVPP2_PRS_RI_VLAN_MASK);
		mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
					 MVPP2_PRS_SRAM_AI_MASK);

		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
	}

	/* Update ports' mask */
	mvpp2_prs_tcam_port_map_set(pe, port_map);
	mvpp2_prs_hw_write(priv, pe);
2309
free_pe:
2310
	kfree(pe);
2311
	return ret;
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
}

/* IPv4 header parsing for fragmentation and L4 offset */
static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
			       unsigned int ri, unsigned int ri_mask)
{
	struct mvpp2_prs_entry pe;
	int tid;

	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
	    (proto != IPPROTO_IGMP))
		return -EINVAL;

2325
	/* Not fragmented packet */
2326 2327 2328 2329 2330
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2331
	memset(&pe, 0, sizeof(pe));
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
	pe.index = tid;

	/* Set next lu to IPv4 */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L4 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
				  sizeof(struct iphdr) - 4,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2344 2345 2346 2347 2348 2349
	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);

	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00,
				     MVPP2_PRS_TCAM_PROTO_MASK_L);
	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00,
				     MVPP2_PRS_TCAM_PROTO_MASK);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

	mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

2360
	/* Fragmented packet */
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	pe.index = tid;
	/* Clear ri before updating */
	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);

2372 2373 2374 2375 2376
	mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_TRUE,
				 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);

	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, 0x0);
	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, 0x0);
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* IPv4 L3 multicast or broadcast */
static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
{
	struct mvpp2_prs_entry pe;
	int mask, tid;

	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2396
	memset(&pe, 0, sizeof(pe));
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
	pe.index = tid;

	switch (l3_cast) {
	case MVPP2_PRS_L3_MULTI_CAST:
		mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
					     MVPP2_PRS_IPV4_MC_MASK);
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
					 MVPP2_PRS_RI_L3_ADDR_MASK);
		break;
	case  MVPP2_PRS_L3_BROAD_CAST:
		mask = MVPP2_PRS_IPV4_BC_MASK;
		mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
		mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
		mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
		mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
					 MVPP2_PRS_RI_L3_ADDR_MASK);
		break;
	default:
		return -EINVAL;
	}

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
				 MVPP2_PRS_IPV4_DIP_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Set entries for protocols over IPv6  */
static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
			       unsigned int ri, unsigned int ri_mask)
{
	struct mvpp2_prs_entry pe;
	int tid;

	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
	    (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
		return -EINVAL;

	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2452
	memset(&pe, 0, sizeof(pe));
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = tid;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
				  sizeof(struct ipv6hdr) - 6,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Write HW */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* IPv6 L3 multicast entry */
static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
{
	struct mvpp2_prs_entry pe;
	int tid;

	if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
		return -EINVAL;

	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2491
	memset(&pe, 0, sizeof(pe));
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = tid;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
				 MVPP2_PRS_RI_L3_ADDR_MASK);
	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Shift back to IPv6 NH */
	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

	mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
				     MVPP2_PRS_IPV6_MC_MASK);
	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Parser per-port initialization */
static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
				   int lu_max, int offset)
{
	u32 val;

	/* Set lookup ID */
	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);

	/* Set maximum number of loops for packet received from port */
	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);

	/* Set initial offset for packet header extraction for the first
	 * searching loop
	 */
	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
}

/* Default flow entries initialization for all ports */
static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int port;

	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2551
		memset(&pe, 0, sizeof(pe));
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(&pe, 0);

		/* Set flow ID*/
		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);

		/* Update shadow table and hw entry */
		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
		mvpp2_prs_hw_write(priv, &pe);
	}
}

/* Set default entry for Marvell Header field */
static void mvpp2_prs_mh_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;

2573
	memset(&pe, 0, sizeof(pe));
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

	pe.index = MVPP2_PE_MH_DEFAULT;
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
	mvpp2_prs_hw_write(priv, &pe);
}

/* Set default entires (place holder) for promiscuous, non-promiscuous and
 * multicast MAC addresses
 */
static void mvpp2_prs_mac_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;

2596
	memset(&pe, 0, sizeof(pe));
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656

	/* Non-promiscuous mode for all ports - DROP unknown packets */
	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);

	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
				 MVPP2_PRS_RI_DROP_MASK);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
	mvpp2_prs_hw_write(priv, &pe);

	/* place holders only - no ports */
	mvpp2_prs_mac_drop_all_set(priv, 0, false);
	mvpp2_prs_mac_promisc_set(priv, 0, false);
	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
}

/* Set default entries for various types of dsa packets */
static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;

	/* None tagged EDSA entry - place holder */
	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
			      MVPP2_PRS_EDSA);

	/* Tagged EDSA entry - place holder */
	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);

	/* None tagged DSA entry - place holder */
	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
			      MVPP2_PRS_DSA);

	/* Tagged DSA entry - place holder */
	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);

	/* None tagged EDSA ethertype entry - place holder*/
	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
					MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);

	/* Tagged EDSA ethertype entry - place holder*/
	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
					MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);

	/* None tagged DSA ethertype entry */
	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
					MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);

	/* Tagged DSA ethertype entry */
	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
					MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);

	/* Set default entry, in case DSA or EDSA tag not found */
2657
	memset(&pe, 0, sizeof(pe));
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
	pe.index = MVPP2_PE_DSA_DEFAULT;
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);

	/* Shift 0 bytes */
	mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);

	/* Clear all sram ai bits for next iteration */
	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	mvpp2_prs_hw_write(priv, &pe);
}

/* Match basic ethertypes */
static int mvpp2_prs_etype_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int tid;

	/* Ethertype: PPPoE */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2687
	memset(&pe, 0, sizeof(pe));
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);

	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
				 MVPP2_PRS_RI_PPPOE_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = false;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
				MVPP2_PRS_RI_PPPOE_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: ARP */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2713
	memset(&pe, 0, sizeof(pe));
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);

	/* Generate flow in the next iteration*/
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = true;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: LBTD */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2743
	memset(&pe, 0, sizeof(pe));
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);

	/* Generate flow in the next iteration*/
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
				 MVPP2_PRS_RI_CPU_CODE_MASK |
				 MVPP2_PRS_RI_UDF3_MASK);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = true;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
				MVPP2_PRS_RI_CPU_CODE_MASK |
				MVPP2_PRS_RI_UDF3_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: IPv4 without options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2777
	memset(&pe, 0, sizeof(pe));
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
				     MVPP2_PRS_IPV4_HEAD_MASK |
				     MVPP2_PRS_IPV4_IHL_MASK);

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Skip eth_type + 4 bytes of IP header */
	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = false;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: IPv4 with options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	pe.index = tid;

	/* Clear tcam data before updating */
	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;

	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
				     MVPP2_PRS_IPV4_HEAD,
				     MVPP2_PRS_IPV4_HEAD_MASK);

	/* Clear ri before updating */
	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
				 MVPP2_PRS_RI_L3_PROTO_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = false;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Ethertype: IPv6 without options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2842
	memset(&pe, 0, sizeof(pe));
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);

	/* Skip DIP of IPV6 header */
	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
				 MVPP2_MAX_L3_ADDR_SIZE,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = false;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
	pe.index = MVPP2_PE_ETH_TYPE_UN;

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Generate flow in the next iteration*/
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Set L3 offset even it's unknown L3 */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
	priv->prs_shadow[pe.index].finish = true;
	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
				MVPP2_PRS_RI_L3_PROTO_MASK);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Configure vlan entries and detect up to 2 successive VLAN tags.
 * Possible options:
 * 0x8100, 0x88A8
 * 0x8100, 0x8100
 * 0x8100
 * 0x88A8
 */
static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int err;

	priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
					      MVPP2_PRS_DBL_VLANS_MAX,
					      GFP_KERNEL);
	if (!priv->prs_double_vlans)
		return -ENOMEM;

	/* Double VLAN: 0x8100, 0x88A8 */
	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
					MVPP2_PRS_PORT_MASK);
	if (err)
		return err;

	/* Double VLAN: 0x8100, 0x8100 */
	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
					MVPP2_PRS_PORT_MASK);
	if (err)
		return err;

	/* Single VLAN: 0x88a8 */
	err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
				 MVPP2_PRS_PORT_MASK);
	if (err)
		return err;

	/* Single VLAN: 0x8100 */
	err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
				 MVPP2_PRS_PORT_MASK);
	if (err)
		return err;

	/* Set default double vlan entry */
2939
	memset(&pe, 0, sizeof(pe));
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
	pe.index = MVPP2_PE_VLAN_DBL;

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
	/* Clear ai for next iterations */
	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
				 MVPP2_PRS_RI_VLAN_MASK);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
				 MVPP2_PRS_DBL_VLAN_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
	mvpp2_prs_hw_write(priv, &pe);

	/* Set default vlan none entry */
2959
	memset(&pe, 0, sizeof(pe));
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
	pe.index = MVPP2_PE_VLAN_NONE;

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
				 MVPP2_PRS_RI_VLAN_MASK);

	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Set entries for PPPoE ethertype */
static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int tid;

	/* IPv4 over PPPoE with options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

2989
	memset(&pe, 0, sizeof(pe));
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, PPP_IP);

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Skip eth_type + 4 bytes of IP header */
	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_hw_write(priv, &pe);

	/* IPv4 over PPPoE without options */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

	pe.index = tid;

	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
				     MVPP2_PRS_IPV4_HEAD_MASK |
				     MVPP2_PRS_IPV4_IHL_MASK);

	/* Clear ri before updating */
	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
				 MVPP2_PRS_RI_L3_PROTO_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_hw_write(priv, &pe);

	/* IPv6 over PPPoE */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

3039
	memset(&pe, 0, sizeof(pe));
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
	pe.index = tid;

	mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);

	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
				 MVPP2_PRS_RI_L3_PROTO_MASK);
	/* Skip eth_type + 4 bytes of IPv6 header */
	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L3 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_hw_write(priv, &pe);

	/* Non-IP over PPPoE */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

3066
	memset(&pe, 0, sizeof(pe));
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
	pe.index = tid;

	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
				 MVPP2_PRS_RI_L3_PROTO_MASK);

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	/* Set L3 offset even if it's unknown L3 */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
				  MVPP2_ETH_TYPE_LEN,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Initialize entries for IPv4 */
static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int err;

	/* Set entries for TCP, UDP and IGMP over IPv4 */
	err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
				  MVPP2_PRS_RI_L4_PROTO_MASK);
	if (err)
		return err;

	err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
				  MVPP2_PRS_RI_L4_PROTO_MASK);
	if (err)
		return err;

	err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
				  MVPP2_PRS_RI_CPU_CODE_MASK |
				  MVPP2_PRS_RI_UDF3_MASK);
	if (err)
		return err;

	/* IPv4 Broadcast */
	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
	if (err)
		return err;

	/* IPv4 Multicast */
	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
	if (err)
		return err;

	/* Default IPv4 entry for unknown protocols */
3124
	memset(&pe, 0, sizeof(pe));
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
	pe.index = MVPP2_PE_IP4_PROTO_UN;

	/* Set next lu to IPv4 */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
	/* Set L4 offset */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
				  sizeof(struct iphdr) - 4,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
				 MVPP2_PRS_IPV4_DIP_AI_BIT);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
				 MVPP2_PRS_RI_L4_PROTO_MASK);

	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default IPv4 entry for unicast address */
3149
	memset(&pe, 0, sizeof(pe));
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
	pe.index = MVPP2_PE_IP4_ADDR_UN;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
				 MVPP2_PRS_RI_L3_ADDR_MASK);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
				 MVPP2_PRS_IPV4_DIP_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Initialize entries for IPv6 */
static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
{
	struct mvpp2_prs_entry pe;
	int tid, err;

	/* Set entries for TCP, UDP and ICMP over IPv6 */
	err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
				  MVPP2_PRS_RI_L4_TCP,
				  MVPP2_PRS_RI_L4_PROTO_MASK);
	if (err)
		return err;

	err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
				  MVPP2_PRS_RI_L4_UDP,
				  MVPP2_PRS_RI_L4_PROTO_MASK);
	if (err)
		return err;

	err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
				  MVPP2_PRS_RI_CPU_CODE_MASK |
				  MVPP2_PRS_RI_UDF3_MASK);
	if (err)
		return err;

	/* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
	/* Result Info: UDF7=1, DS lite */
	err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
				  MVPP2_PRS_RI_UDF7_IP6_LITE,
				  MVPP2_PRS_RI_UDF7_MASK);
	if (err)
		return err;

	/* IPv6 multicast */
	err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
	if (err)
		return err;

	/* Entry for checking hop limit */
	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
					MVPP2_PE_LAST_FREE_TID);
	if (tid < 0)
		return tid;

3217
	memset(&pe, 0, sizeof(pe));
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = tid;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
				 MVPP2_PRS_RI_DROP_MASK,
				 MVPP2_PRS_RI_L3_PROTO_MASK |
				 MVPP2_PRS_RI_DROP_MASK);

	mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default IPv6 entry for unknown protocols */
3238
	memset(&pe, 0, sizeof(pe));
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = MVPP2_PE_IP6_PROTO_UN;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
				 MVPP2_PRS_RI_L4_PROTO_MASK);
	/* Set L4 offset relatively to our current place */
	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
				  sizeof(struct ipv6hdr) - 4,
				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default IPv6 entry for unknown ext protocols */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;

	/* Finished: go to flowid generation */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
				 MVPP2_PRS_RI_L4_PROTO_MASK);

	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
	mvpp2_prs_hw_write(priv, &pe);

	/* Default IPv6 entry for unicast address */
	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
	pe.index = MVPP2_PE_IP6_ADDR_UN;

	/* Finished: go to IPv6 again */
	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
				 MVPP2_PRS_RI_L3_ADDR_MASK);
	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Shift back to IPV6 NH */
	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
	/* Unmask all ports */
	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);

	/* Update shadow table and hw entry */
	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
	mvpp2_prs_hw_write(priv, &pe);

	return 0;
}

/* Parser default initialization */
static int mvpp2_prs_default_init(struct platform_device *pdev,
				  struct mvpp2 *priv)
{
	int err, index, i;

	/* Enable tcam table */
	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);

	/* Clear all tcam and sram entries */
	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);

		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
	}

	/* Invalidate all tcam entries */
	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
		mvpp2_prs_hw_inv(priv, index);

	priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
3331
					sizeof(*priv->prs_shadow),
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
					GFP_KERNEL);
	if (!priv->prs_shadow)
		return -ENOMEM;

	/* Always start from lookup = 0 */
	for (index = 0; index < MVPP2_MAX_PORTS; index++)
		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
				       MVPP2_PRS_PORT_LU_MAX, 0);

	mvpp2_prs_def_flow_init(priv);

	mvpp2_prs_mh_init(priv);

	mvpp2_prs_mac_init(priv);

	mvpp2_prs_dsa_init(priv);

	err = mvpp2_prs_etype_init(priv);
	if (err)
		return err;

	err = mvpp2_prs_vlan_init(pdev, priv);
	if (err)
		return err;

	err = mvpp2_prs_pppoe_init(priv);
	if (err)
		return err;

	err = mvpp2_prs_ip6_init(priv);
	if (err)
		return err;

	err = mvpp2_prs_ip4_init(priv);
	if (err)
		return err;

	return 0;
}

/* Compare MAC DA with tcam entry data */
static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
				       const u8 *da, unsigned char *mask)
{
	unsigned char tcam_byte, tcam_mask;
	int index;

	for (index = 0; index < ETH_ALEN; index++) {
		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
		if (tcam_mask != mask[index])
			return false;

		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
			return false;
	}

	return true;
}

/* Find tcam entry with matched pair <MAC DA, port> */
static struct mvpp2_prs_entry *
mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
			    unsigned char *mask, int udf_type)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
	if (!pe)
		return NULL;
	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);

	/* Go through the all entires with MVPP2_PRS_LU_MAC */
	for (tid = MVPP2_PE_FIRST_FREE_TID;
	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
		unsigned int entry_pmap;

		if (!priv->prs_shadow[tid].valid ||
		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
		    (priv->prs_shadow[tid].udf != udf_type))
			continue;

		pe->index = tid;
		mvpp2_prs_hw_read(priv, pe);
		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);

		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
		    entry_pmap == pmap)
			return pe;
	}
	kfree(pe);

	return NULL;
}

/* Update parser's mac da entry */
static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
				   const u8 *da, bool add)
{
	struct mvpp2_prs_entry *pe;
	unsigned int pmap, len, ri;
	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
	int tid;

	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
					 MVPP2_PRS_UDF_MAC_DEF);

	/* No such entry */
	if (!pe) {
		if (!add)
			return 0;

		/* Create new TCAM entry */
		/* Find first range mac entry*/
		for (tid = MVPP2_PE_FIRST_FREE_TID;
		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
			if (priv->prs_shadow[tid].valid &&
			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
			    (priv->prs_shadow[tid].udf ==
						       MVPP2_PRS_UDF_MAC_RANGE))
				break;

		/* Go through the all entries from first to last */
		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
						tid - 1);
		if (tid < 0)
			return tid;

		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
		if (!pe)
3463
			return -ENOMEM;
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
		pe->index = tid;

		/* Mask all ports */
		mvpp2_prs_tcam_port_map_set(pe, 0);
	}

	/* Update port mask */
	mvpp2_prs_tcam_port_set(pe, port, add);

	/* Invalidate the entry if no ports are left enabled */
	pmap = mvpp2_prs_tcam_port_map_get(pe);
	if (pmap == 0) {
		if (add) {
			kfree(pe);
3479
			return -EINVAL;
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
		}
		mvpp2_prs_hw_inv(priv, pe->index);
		priv->prs_shadow[pe->index].valid = false;
		kfree(pe);
		return 0;
	}

	/* Continue - set next lookup */
	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);

	/* Set match on DA */
	len = ETH_ALEN;
	while (len--)
		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);

	/* Set result info bits */
	if (is_broadcast_ether_addr(da))
		ri = MVPP2_PRS_RI_L2_BCAST;
	else if (is_multicast_ether_addr(da))
		ri = MVPP2_PRS_RI_L2_MCAST;
	else
		ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;

	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
				 MVPP2_PRS_RI_MAC_ME_MASK);
	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
				MVPP2_PRS_RI_MAC_ME_MASK);

	/* Shift to ethertype */
	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);

	/* Update shadow table and hw entry */
	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
	mvpp2_prs_hw_write(priv, pe);

	kfree(pe);

	return 0;
}

static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
{
	struct mvpp2_port *port = netdev_priv(dev);
	int err;

	/* Remove old parser entry */
	err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
				      false);
	if (err)
		return err;

	/* Add new parser entry */
	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
	if (err)
		return err;

	/* Set addr in the device */
	ether_addr_copy(dev->dev_addr, da);

	return 0;
}

/* Delete all port's multicast simple (not range) entries */
static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
{
	struct mvpp2_prs_entry pe;
	int index, tid;

	for (tid = MVPP2_PE_FIRST_FREE_TID;
	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
		unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];

		if (!priv->prs_shadow[tid].valid ||
		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
		    (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
			continue;

		/* Only simple mac entries */
		pe.index = tid;
		mvpp2_prs_hw_read(priv, &pe);

		/* Read mac addr from entry */
		for (index = 0; index < ETH_ALEN; index++)
			mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
						     &da_mask[index]);

		if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
			/* Delete this entry */
			mvpp2_prs_mac_da_accept(priv, port, da, false);
	}
}

static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
{
	switch (type) {
	case MVPP2_TAG_TYPE_EDSA:
		/* Add port to EDSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, true,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
		mvpp2_prs_dsa_tag_set(priv, port, true,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
		/* Remove port from DSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
		break;

	case MVPP2_TAG_TYPE_DSA:
		/* Add port to DSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, true,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
		mvpp2_prs_dsa_tag_set(priv, port, true,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
		/* Remove port from EDSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
		break;

	case MVPP2_TAG_TYPE_MH:
	case MVPP2_TAG_TYPE_NONE:
		/* Remove port form EDSA and DSA entries */
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
		mvpp2_prs_dsa_tag_set(priv, port, false,
				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
		break;

	default:
		if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
			return -EINVAL;
	}

	return 0;
}

/* Set prs flow for the port */
static int mvpp2_prs_def_flow(struct mvpp2_port *port)
{
	struct mvpp2_prs_entry *pe;
	int tid;

	pe = mvpp2_prs_flow_find(port->priv, port->id);

	/* Such entry not exist */
	if (!pe) {
		/* Go through the all entires from last to first */
		tid = mvpp2_prs_tcam_first_free(port->priv,
						MVPP2_PE_LAST_FREE_TID,
					       MVPP2_PE_FIRST_FREE_TID);
		if (tid < 0)
			return tid;

		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
		if (!pe)
			return -ENOMEM;

		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
		pe->index = tid;

		/* Set flow ID*/
		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);

		/* Update shadow table */
		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
	}

	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
	mvpp2_prs_hw_write(port->priv, pe);
	kfree(pe);

	return 0;
}

/* Classifier configuration routines */

/* Update classification flow table registers */
static void mvpp2_cls_flow_write(struct mvpp2 *priv,
				 struct mvpp2_cls_flow_entry *fe)
{
	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
}

/* Update classification lookup table register */
static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
				   struct mvpp2_cls_lookup_entry *le)
{
	u32 val;

	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
}

/* Classifier default initialization */
static void mvpp2_cls_init(struct mvpp2 *priv)
{
	struct mvpp2_cls_lookup_entry le;
	struct mvpp2_cls_flow_entry fe;
	int index;

	/* Enable classifier */
	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);

	/* Clear classifier flow table */
A
Arnd Bergmann 已提交
3697
	memset(&fe.data, 0, sizeof(fe.data));
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
		fe.index = index;
		mvpp2_cls_flow_write(priv, &fe);
	}

	/* Clear classifier lookup table */
	le.data = 0;
	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
		le.lkpid = index;
		le.way = 0;
		mvpp2_cls_lookup_write(priv, &le);

		le.way = 1;
		mvpp2_cls_lookup_write(priv, &le);
	}
}

static void mvpp2_cls_port_config(struct mvpp2_port *port)
{
	struct mvpp2_cls_lookup_entry le;
	u32 val;

	/* Set way for the port */
	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);

	/* Pick the entry to be accessed in lookup ID decoding table
	 * according to the way and lkpid.
	 */
	le.lkpid = port->id;
	le.way = 0;
	le.data = 0;

	/* Set initial CPU queue for receiving packets */
	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
	le.data |= port->first_rxq;

	/* Disable classification engines */
	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;

	/* Update lookup ID table entry */
	mvpp2_cls_lookup_write(port->priv, &le);
}

/* Set CPU queue number for oversize packets */
static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
{
	u32 val;

	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);

	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));

	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
}

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool)
{
	if (likely(pool->frag_size <= PAGE_SIZE))
		return netdev_alloc_frag(pool->frag_size);
	else
		return kmalloc(pool->frag_size, GFP_ATOMIC);
}

static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data)
{
	if (likely(pool->frag_size <= PAGE_SIZE))
		skb_free_frag(data);
	else
		kfree(data);
}

3775 3776 3777 3778 3779 3780 3781 3782 3783
/* Buffer Manager configuration routines */

/* Create pool */
static int mvpp2_bm_pool_create(struct platform_device *pdev,
				struct mvpp2 *priv,
				struct mvpp2_bm_pool *bm_pool, int size)
{
	u32 val;

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
	/* Number of buffer pointers must be a multiple of 16, as per
	 * hardware constraints
	 */
	if (!IS_ALIGNED(size, 16))
		return -EINVAL;

	/* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
	 * bytes per buffer pointer
	 */
	if (priv->hw_version == MVPP21)
		bm_pool->size_bytes = 2 * sizeof(u32) * size;
	else
		bm_pool->size_bytes = 2 * sizeof(u64) * size;

	bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes,
3799
						&bm_pool->dma_addr,
3800 3801 3802 3803
						GFP_KERNEL);
	if (!bm_pool->virt_addr)
		return -ENOMEM;

3804 3805
	if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
			MVPP2_BM_POOL_PTR_ALIGN)) {
3806 3807
		dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
				  bm_pool->virt_addr, bm_pool->dma_addr);
3808 3809 3810 3811 3812 3813
		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
		return -ENOMEM;
	}

	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3814
		    lower_32_bits(bm_pool->dma_addr));
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);

	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
	val |= MVPP2_BM_START_MASK;
	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);

	bm_pool->type = MVPP2_BM_FREE;
	bm_pool->size = size;
	bm_pool->pkt_size = 0;
	bm_pool->buf_num = 0;

	return 0;
}

/* Set pool buffer size */
static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
				      struct mvpp2_bm_pool *bm_pool,
				      int buf_size)
{
	u32 val;

	bm_pool->buf_size = buf_size;

	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
}

3842 3843 3844 3845 3846
static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
				    struct mvpp2_bm_pool *bm_pool,
				    dma_addr_t *dma_addr,
				    phys_addr_t *phys_addr)
{
3847
	int cpu = get_cpu();
3848 3849 3850 3851

	*dma_addr = mvpp2_percpu_read(priv, cpu,
				      MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
	*phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG);
3852 3853 3854 3855 3856

	if (priv->hw_version == MVPP22) {
		u32 val;
		u32 dma_addr_highbits, phys_addr_highbits;

3857
		val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC);
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
		dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
		phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
			MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;

		if (sizeof(dma_addr_t) == 8)
			*dma_addr |= (u64)dma_addr_highbits << 32;

		if (sizeof(phys_addr_t) == 8)
			*phys_addr |= (u64)phys_addr_highbits << 32;
	}
3868 3869

	put_cpu();
3870 3871
}

3872
/* Free all buffers from the pool */
3873 3874
static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
			       struct mvpp2_bm_pool *bm_pool)
3875 3876 3877
{
	int i;

3878
	for (i = 0; i < bm_pool->buf_num; i++) {
3879
		dma_addr_t buf_dma_addr;
3880 3881
		phys_addr_t buf_phys_addr;
		void *data;
3882

3883 3884
		mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
					&buf_dma_addr, &buf_phys_addr);
3885

3886
		dma_unmap_single(dev, buf_dma_addr,
3887 3888
				 bm_pool->buf_size, DMA_FROM_DEVICE);

3889 3890
		data = (void *)phys_to_virt(buf_phys_addr);
		if (!data)
3891
			break;
3892

3893
		mvpp2_frag_free(bm_pool, data);
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
	}

	/* Update BM driver with number of buffers removed from pool */
	bm_pool->buf_num -= i;
}

/* Cleanup pool */
static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
				 struct mvpp2 *priv,
				 struct mvpp2_bm_pool *bm_pool)
{
	u32 val;

3907
	mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3908
	if (bm_pool->buf_num) {
3909 3910 3911 3912 3913 3914 3915 3916
		WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
		return 0;
	}

	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
	val |= MVPP2_BM_STOP_MASK;
	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);

3917
	dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
3918
			  bm_pool->virt_addr,
3919
			  bm_pool->dma_addr);
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	return 0;
}

static int mvpp2_bm_pools_init(struct platform_device *pdev,
			       struct mvpp2 *priv)
{
	int i, err, size;
	struct mvpp2_bm_pool *bm_pool;

	/* Create all pools with maximum size */
	size = MVPP2_BM_POOL_SIZE_MAX;
	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
		bm_pool = &priv->bm_pools[i];
		bm_pool->id = i;
		err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
		if (err)
			goto err_unroll_pools;
		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
	}
	return 0;

err_unroll_pools:
	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
	for (i = i - 1; i >= 0; i--)
		mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
	return err;
}

static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
{
	int i, err;

	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
		/* Mask BM all interrupts */
		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
		/* Clear BM cause register */
		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
	}

	/* Allocate and initialize BM pools */
	priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3961
				      sizeof(*priv->bm_pools), GFP_KERNEL);
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
	if (!priv->bm_pools)
		return -ENOMEM;

	err = mvpp2_bm_pools_init(pdev, priv);
	if (err < 0)
		return err;
	return 0;
}

/* Attach long pool to rxq */
static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
				    int lrxq, int long_pool)
{
3975
	u32 val, mask;
3976 3977 3978 3979 3980
	int prxq;

	/* Get queue physical ID */
	prxq = port->rxqs[lrxq]->id;

3981 3982 3983 3984
	if (port->priv->hw_version == MVPP21)
		mask = MVPP21_RXQ_POOL_LONG_MASK;
	else
		mask = MVPP22_RXQ_POOL_LONG_MASK;
3985

3986 3987 3988
	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
	val &= ~mask;
	val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
3989 3990 3991 3992 3993 3994 3995
	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}

/* Attach short pool to rxq */
static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
				     int lrxq, int short_pool)
{
3996
	u32 val, mask;
3997 3998 3999 4000 4001
	int prxq;

	/* Get queue physical ID */
	prxq = port->rxqs[lrxq]->id;

4002 4003 4004 4005
	if (port->priv->hw_version == MVPP21)
		mask = MVPP21_RXQ_POOL_SHORT_MASK;
	else
		mask = MVPP22_RXQ_POOL_SHORT_MASK;
4006

4007 4008 4009
	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
	val &= ~mask;
	val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
4010 4011 4012
	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}

4013 4014
static void *mvpp2_buf_alloc(struct mvpp2_port *port,
			     struct mvpp2_bm_pool *bm_pool,
4015
			     dma_addr_t *buf_dma_addr,
4016
			     phys_addr_t *buf_phys_addr,
4017
			     gfp_t gfp_mask)
4018
{
4019
	dma_addr_t dma_addr;
4020
	void *data;
4021

4022 4023
	data = mvpp2_frag_alloc(bm_pool);
	if (!data)
4024 4025
		return NULL;

4026 4027 4028 4029
	dma_addr = dma_map_single(port->dev->dev.parent, data,
				  MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
				  DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
4030
		mvpp2_frag_free(bm_pool, data);
4031 4032
		return NULL;
	}
4033
	*buf_dma_addr = dma_addr;
4034
	*buf_phys_addr = virt_to_phys(data);
4035

4036
	return data;
4037 4038 4039 4040
}

/* Release buffer to BM */
static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
4041
				     dma_addr_t buf_dma_addr,
4042
				     phys_addr_t buf_phys_addr)
4043
{
4044
	int cpu = get_cpu();
4045

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	if (port->priv->hw_version == MVPP22) {
		u32 val = 0;

		if (sizeof(dma_addr_t) == 8)
			val |= upper_32_bits(buf_dma_addr) &
				MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;

		if (sizeof(phys_addr_t) == 8)
			val |= (upper_32_bits(buf_phys_addr)
				<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
				MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;

4058 4059
		mvpp2_percpu_write(port->priv, cpu,
				   MVPP22_BM_ADDR_HIGH_RLS_REG, val);
4060 4061
	}

4062 4063 4064 4065 4066
	/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
	 * returned in the "cookie" field of the RX
	 * descriptor. Instead of storing the virtual address, we
	 * store the physical address
	 */
4067 4068 4069 4070
	mvpp2_percpu_write(port->priv, cpu,
			   MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
	mvpp2_percpu_write(port->priv, cpu,
			   MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
4071 4072

	put_cpu();
4073 4074 4075 4076 4077 4078 4079
}

/* Allocate buffers for the pool */
static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
			     struct mvpp2_bm_pool *bm_pool, int buf_num)
{
	int i, buf_size, total_size;
4080
	dma_addr_t dma_addr;
4081
	phys_addr_t phys_addr;
4082
	void *buf;
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

	buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
	total_size = MVPP2_RX_TOTAL_SIZE(buf_size);

	if (buf_num < 0 ||
	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
		netdev_err(port->dev,
			   "cannot allocate %d buffers for pool %d\n",
			   buf_num, bm_pool->id);
		return 0;
	}

	for (i = 0; i < buf_num; i++) {
4096 4097
		buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr,
				      &phys_addr, GFP_KERNEL);
4098
		if (!buf)
4099 4100
			break;

4101
		mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
4102
				  phys_addr);
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	}

	/* Update BM driver with number of buffers added to pool */
	bm_pool->buf_num += i;

	netdev_dbg(port->dev,
		   "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
		   bm_pool->id, bm_pool->pkt_size, buf_size, total_size);

	netdev_dbg(port->dev,
		   "%s pool %d: %d of %d buffers added\n",
		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
		   bm_pool->id, i, buf_num);
	return i;
}

/* Notify the driver that BM pool is being used as specific type and return the
 * pool pointer on success
 */
static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
		  int pkt_size)
{
	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
	int num;

	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
		netdev_err(port->dev, "mixing pool types is forbidden\n");
		return NULL;
	}

	if (new_pool->type == MVPP2_BM_FREE)
		new_pool->type = type;

	/* Allocate buffers in case BM pool is used as long pool, but packet
	 * size doesn't match MTU or BM pool hasn't being used yet
	 */
	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
	    (new_pool->pkt_size == 0)) {
		int pkts_num;

		/* Set default buffer number or free all the buffers in case
		 * the pool is not empty
		 */
		pkts_num = new_pool->buf_num;
		if (pkts_num == 0)
			pkts_num = type == MVPP2_BM_SWF_LONG ?
				   MVPP2_BM_LONG_BUF_NUM :
				   MVPP2_BM_SHORT_BUF_NUM;
		else
4154 4155
			mvpp2_bm_bufs_free(port->dev->dev.parent,
					   port->priv, new_pool);
4156 4157

		new_pool->pkt_size = pkt_size;
4158 4159 4160
		new_pool->frag_size =
			SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
			MVPP2_SKB_SHINFO_SIZE;
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191

		/* Allocate buffers for this pool */
		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
		if (num != pkts_num) {
			WARN(1, "pool %d: %d of %d allocated\n",
			     new_pool->id, num, pkts_num);
			return NULL;
		}
	}

	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));

	return new_pool;
}

/* Initialize pools for swf */
static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
{
	int rxq;

	if (!port->pool_long) {
		port->pool_long =
		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
					 MVPP2_BM_SWF_LONG,
					 port->pkt_size);
		if (!port->pool_long)
			return -ENOMEM;

		port->pool_long->port_map |= (1 << port->id);

4192
		for (rxq = 0; rxq < port->nrxqs; rxq++)
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
	}

	if (!port->pool_short) {
		port->pool_short =
			mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
					  MVPP2_BM_SWF_SHORT,
					  MVPP2_BM_SHORT_PKT_SIZE);
		if (!port->pool_short)
			return -ENOMEM;

		port->pool_short->port_map |= (1 << port->id);

4206
		for (rxq = 0; rxq < port->nrxqs; rxq++)
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
			mvpp2_rxq_short_pool_set(port, rxq,
						 port->pool_short->id);
	}

	return 0;
}

static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
{
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2_bm_pool *port_pool = port->pool_long;
	int num, pkts_num = port_pool->buf_num;
	int pkt_size = MVPP2_RX_PKT_SIZE(mtu);

	/* Update BM pool with new buffer size */
4222
	mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
4223
	if (port_pool->buf_num) {
4224 4225 4226 4227 4228
		WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
		return -EIO;
	}

	port_pool->pkt_size = pkt_size;
4229 4230
	port_pool->frag_size = SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
		MVPP2_SKB_SHINFO_SIZE;
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
	if (num != pkts_num) {
		WARN(1, "pool %d: %d of %d allocated\n",
		     port_pool->id, num, pkts_num);
		return -EIO;
	}

	mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
				  MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
	dev->mtu = mtu;
	netdev_update_features(dev);
	return 0;
}

static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
{
4247 4248 4249 4250
	int i, sw_thread_mask = 0;

	for (i = 0; i < port->nqvecs; i++)
		sw_thread_mask |= port->qvecs[i].sw_thread_mask;
4251 4252

	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
4253
		    MVPP2_ISR_ENABLE_INTERRUPT(sw_thread_mask));
4254 4255 4256 4257
}

static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
{
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
	int i, sw_thread_mask = 0;

	for (i = 0; i < port->nqvecs; i++)
		sw_thread_mask |= port->qvecs[i].sw_thread_mask;

	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
		    MVPP2_ISR_DISABLE_INTERRUPT(sw_thread_mask));
}

static inline void mvpp2_qvec_interrupt_enable(struct mvpp2_queue_vector *qvec)
{
	struct mvpp2_port *port = qvec->port;
4270 4271

	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
4272 4273 4274 4275 4276 4277 4278 4279 4280
		    MVPP2_ISR_ENABLE_INTERRUPT(qvec->sw_thread_mask));
}

static inline void mvpp2_qvec_interrupt_disable(struct mvpp2_queue_vector *qvec)
{
	struct mvpp2_port *port = qvec->port;

	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
		    MVPP2_ISR_DISABLE_INTERRUPT(qvec->sw_thread_mask));
4281 4282
}

4283 4284 4285 4286
/* Mask the current CPU's Rx/Tx interrupts
 * Called by on_each_cpu(), guaranteed to run with migration disabled,
 * using smp_processor_id() is OK.
 */
4287 4288 4289 4290
static void mvpp2_interrupts_mask(void *arg)
{
	struct mvpp2_port *port = arg;

4291 4292
	mvpp2_percpu_write(port->priv, smp_processor_id(),
			   MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
4293 4294
}

4295 4296 4297 4298
/* Unmask the current CPU's Rx/Tx interrupts.
 * Called by on_each_cpu(), guaranteed to run with migration disabled,
 * using smp_processor_id() is OK.
 */
4299 4300 4301
static void mvpp2_interrupts_unmask(void *arg)
{
	struct mvpp2_port *port = arg;
4302 4303 4304 4305 4306 4307
	u32 val;

	val = MVPP2_CAUSE_MISC_SUM_MASK |
		MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
	if (port->has_tx_irqs)
		val |= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
4308

4309
	mvpp2_percpu_write(port->priv, smp_processor_id(),
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
			   MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
}

static void
mvpp2_shared_interrupt_mask_unmask(struct mvpp2_port *port, bool mask)
{
	u32 val;
	int i;

	if (port->priv->hw_version != MVPP22)
		return;

	if (mask)
		val = 0;
	else
		val = MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;

	for (i = 0; i < port->nqvecs; i++) {
		struct mvpp2_queue_vector *v = port->qvecs + i;

		if (v->type != MVPP2_QUEUE_VECTOR_SHARED)
			continue;

		mvpp2_percpu_write(port->priv, v->sw_thread_id,
				   MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
	}
4336 4337 4338 4339
}

/* Port configuration routines */

A
Antoine Ténart 已提交
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
static void mvpp22_gop_init_rgmii(struct mvpp2_port *port)
{
	struct mvpp2 *priv = port->priv;
	u32 val;

	regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
	val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT;
	regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);

	regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
	if (port->gop_id == 2)
		val |= GENCONF_CTRL0_PORT0_RGMII | GENCONF_CTRL0_PORT1_RGMII;
	else if (port->gop_id == 3)
		val |= GENCONF_CTRL0_PORT1_RGMII_MII;
	regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
}

static void mvpp22_gop_init_sgmii(struct mvpp2_port *port)
{
	struct mvpp2 *priv = port->priv;
	u32 val;

	regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
	val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT |
	       GENCONF_PORT_CTRL0_RX_DATA_SAMPLE;
	regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);

	if (port->gop_id > 1) {
		regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
		if (port->gop_id == 2)
			val &= ~GENCONF_CTRL0_PORT0_RGMII;
		else if (port->gop_id == 3)
			val &= ~GENCONF_CTRL0_PORT1_RGMII_MII;
		regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
	}
}

static void mvpp22_gop_init_10gkr(struct mvpp2_port *port)
{
	struct mvpp2 *priv = port->priv;
	void __iomem *mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id);
	void __iomem *xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id);
	u32 val;

	/* XPCS */
	val = readl(xpcs + MVPP22_XPCS_CFG0);
	val &= ~(MVPP22_XPCS_CFG0_PCS_MODE(0x3) |
		 MVPP22_XPCS_CFG0_ACTIVE_LANE(0x3));
	val |= MVPP22_XPCS_CFG0_ACTIVE_LANE(2);
	writel(val, xpcs + MVPP22_XPCS_CFG0);

	/* MPCS */
	val = readl(mpcs + MVPP22_MPCS_CTRL);
	val &= ~MVPP22_MPCS_CTRL_FWD_ERR_CONN;
	writel(val, mpcs + MVPP22_MPCS_CTRL);

	val = readl(mpcs + MVPP22_MPCS_CLK_RESET);
	val &= ~(MVPP22_MPCS_CLK_RESET_DIV_RATIO(0x7) | MAC_CLK_RESET_MAC |
		 MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX);
	val |= MVPP22_MPCS_CLK_RESET_DIV_RATIO(1);
	writel(val, mpcs + MVPP22_MPCS_CLK_RESET);

	val &= ~MVPP22_MPCS_CLK_RESET_DIV_SET;
	val |= MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX;
	writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
}

static int mvpp22_gop_init(struct mvpp2_port *port)
{
	struct mvpp2 *priv = port->priv;
	u32 val;

	if (!priv->sysctrl_base)
		return 0;

	switch (port->phy_interface) {
	case PHY_INTERFACE_MODE_RGMII:
	case PHY_INTERFACE_MODE_RGMII_ID:
	case PHY_INTERFACE_MODE_RGMII_RXID:
	case PHY_INTERFACE_MODE_RGMII_TXID:
		if (port->gop_id == 0)
			goto invalid_conf;
		mvpp22_gop_init_rgmii(port);
		break;
	case PHY_INTERFACE_MODE_SGMII:
		mvpp22_gop_init_sgmii(port);
		break;
	case PHY_INTERFACE_MODE_10GKR:
		if (port->gop_id != 0)
			goto invalid_conf;
		mvpp22_gop_init_10gkr(port);
		break;
	default:
		goto unsupported_conf;
	}

	regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL1, &val);
	val |= GENCONF_PORT_CTRL1_RESET(port->gop_id) |
	       GENCONF_PORT_CTRL1_EN(port->gop_id);
	regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL1, val);

	regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
	val |= GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR;
	regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);

	regmap_read(priv->sysctrl_base, GENCONF_SOFT_RESET1, &val);
	val |= GENCONF_SOFT_RESET1_GOP;
	regmap_write(priv->sysctrl_base, GENCONF_SOFT_RESET1, val);

unsupported_conf:
	return 0;

invalid_conf:
	netdev_err(port->dev, "Invalid port configuration\n");
	return -EINVAL;
}

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
static void mvpp22_gop_unmask_irq(struct mvpp2_port *port)
{
	u32 val;

	if (phy_interface_mode_is_rgmii(port->phy_interface) ||
	    port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
		/* Enable the GMAC link status irq for this port */
		val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
		val |= MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
		writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
	}

	if (port->gop_id == 0) {
		/* Enable the XLG/GIG irqs for this port */
		val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
		if (port->phy_interface == PHY_INTERFACE_MODE_10GKR)
			val |= MVPP22_XLG_EXT_INT_MASK_XLG;
		else
			val |= MVPP22_XLG_EXT_INT_MASK_GIG;
		writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
	}
}

static void mvpp22_gop_mask_irq(struct mvpp2_port *port)
{
	u32 val;

	if (port->gop_id == 0) {
		val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
		val &= ~(MVPP22_XLG_EXT_INT_MASK_XLG |
		         MVPP22_XLG_EXT_INT_MASK_GIG);
		writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
	}

	if (phy_interface_mode_is_rgmii(port->phy_interface) ||
	    port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
		val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
		val &= ~MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
		writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
	}
}

static void mvpp22_gop_setup_irq(struct mvpp2_port *port)
{
	u32 val;

	if (phy_interface_mode_is_rgmii(port->phy_interface) ||
	    port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
		val = readl(port->base + MVPP22_GMAC_INT_MASK);
		val |= MVPP22_GMAC_INT_MASK_LINK_STAT;
		writel(val, port->base + MVPP22_GMAC_INT_MASK);
	}

	if (port->gop_id == 0) {
		val = readl(port->base + MVPP22_XLG_INT_MASK);
		val |= MVPP22_XLG_INT_MASK_LINK;
		writel(val, port->base + MVPP22_XLG_INT_MASK);
	}

	mvpp22_gop_unmask_irq(port);
}

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
static int mvpp22_comphy_init(struct mvpp2_port *port)
{
	enum phy_mode mode;
	int ret;

	if (!port->comphy)
		return 0;

	switch (port->phy_interface) {
	case PHY_INTERFACE_MODE_SGMII:
		mode = PHY_MODE_SGMII;
		break;
	case PHY_INTERFACE_MODE_10GKR:
		mode = PHY_MODE_10GKR;
		break;
	default:
		return -EINVAL;
	}

	ret = phy_set_mode(port->comphy, mode);
	if (ret)
		return ret;

	return phy_power_on(port->comphy);
}

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
static void mvpp2_port_mii_gmac_configure_mode(struct mvpp2_port *port)
{
	u32 val;

	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
		val = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
		val |= MVPP22_CTRL4_SYNC_BYPASS_DIS | MVPP22_CTRL4_DP_CLK_SEL |
		       MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
		val &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL;
		writel(val, port->base + MVPP22_GMAC_CTRL_4_REG);

		val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
		val |= MVPP2_GMAC_DISABLE_PADDING;
		val &= ~MVPP2_GMAC_FLOW_CTRL_MASK;
		writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
4560
	} else if (phy_interface_mode_is_rgmii(port->phy_interface)) {
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
		val = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
		val |= MVPP22_CTRL4_EXT_PIN_GMII_SEL |
		       MVPP22_CTRL4_SYNC_BYPASS_DIS |
		       MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
		val &= ~MVPP22_CTRL4_DP_CLK_SEL;
		writel(val, port->base + MVPP22_GMAC_CTRL_4_REG);

		val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
		val &= ~MVPP2_GMAC_DISABLE_PADDING;
		writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
	}

	/* The port is connected to a copper PHY */
	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);

	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
	val |= MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS |
	       MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG |
	       MVPP2_GMAC_AN_DUPLEX_EN;
	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
		val |= MVPP2_GMAC_IN_BAND_AUTONEG;
	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}

static void mvpp2_port_mii_gmac_configure(struct mvpp2_port *port)
{
	u32 val;

	/* Force link down */
	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
	val &= ~MVPP2_GMAC_FORCE_LINK_PASS;
	val |= MVPP2_GMAC_FORCE_LINK_DOWN;
	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);

	/* Set the GMAC in a reset state */
	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
	val |= MVPP2_GMAC_PORT_RESET_MASK;
	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);

	/* Configure the PCS and in-band AN */
	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
	        val |= MVPP2_GMAC_INBAND_AN_MASK | MVPP2_GMAC_PCS_ENABLE_MASK;
4606
	} else if (phy_interface_mode_is_rgmii(port->phy_interface)) {
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
	}
	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);

	mvpp2_port_mii_gmac_configure_mode(port);

	/* Unset the GMAC reset state */
	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
	val &= ~MVPP2_GMAC_PORT_RESET_MASK;
	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);

	/* Stop forcing link down */
	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
	val &= ~MVPP2_GMAC_FORCE_LINK_DOWN;
	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
static void mvpp2_port_mii_xlg_configure(struct mvpp2_port *port)
{
	u32 val;

	if (port->gop_id != 0)
		return;

	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
	val |= MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN;
	writel(val, port->base + MVPP22_XLG_CTRL0_REG);

	val = readl(port->base + MVPP22_XLG_CTRL4_REG);
	val &= ~MVPP22_XLG_CTRL4_MACMODSELECT_GMAC;
	val |= MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC;
	writel(val, port->base + MVPP22_XLG_CTRL4_REG);
}

4641 4642 4643 4644 4645 4646 4647 4648
static void mvpp22_port_mii_set(struct mvpp2_port *port)
{
	u32 val;

	/* Only GOP port 0 has an XLG MAC */
	if (port->gop_id == 0) {
		val = readl(port->base + MVPP22_XLG_CTRL3_REG);
		val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
4649 4650 4651 4652 4653 4654 4655

		if (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
		    port->phy_interface == PHY_INTERFACE_MODE_10GKR)
			val |= MVPP22_XLG_CTRL3_MACMODESELECT_10G;
		else
			val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;

4656 4657 4658 4659
		writel(val, port->base + MVPP22_XLG_CTRL3_REG);
	}
}

4660 4661
static void mvpp2_port_mii_set(struct mvpp2_port *port)
{
4662 4663 4664
	if (port->priv->hw_version == MVPP22)
		mvpp22_port_mii_set(port);

4665
	if (phy_interface_mode_is_rgmii(port->phy_interface) ||
4666 4667
	    port->phy_interface == PHY_INTERFACE_MODE_SGMII)
		mvpp2_port_mii_gmac_configure(port);
4668 4669
	else if (port->phy_interface == PHY_INTERFACE_MODE_10GKR)
		mvpp2_port_mii_xlg_configure(port);
4670
}
4671

4672 4673 4674 4675 4676 4677 4678
static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
	val |= MVPP2_GMAC_FC_ADV_EN;
	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4679 4680 4681 4682 4683 4684
}

static void mvpp2_port_enable(struct mvpp2_port *port)
{
	u32 val;

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	/* Only GOP port 0 has an XLG MAC */
	if (port->gop_id == 0 &&
	    (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
	     port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
		val = readl(port->base + MVPP22_XLG_CTRL0_REG);
		val |= MVPP22_XLG_CTRL0_PORT_EN |
		       MVPP22_XLG_CTRL0_MAC_RESET_DIS;
		val &= ~MVPP22_XLG_CTRL0_MIB_CNT_DIS;
		writel(val, port->base + MVPP22_XLG_CTRL0_REG);
	} else {
		val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
		val |= MVPP2_GMAC_PORT_EN_MASK;
		val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
		writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
	}
4700 4701 4702 4703 4704 4705
}

static void mvpp2_port_disable(struct mvpp2_port *port)
{
	u32 val;

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	/* Only GOP port 0 has an XLG MAC */
	if (port->gop_id == 0 &&
	    (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
	     port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
		val = readl(port->base + MVPP22_XLG_CTRL0_REG);
		val &= ~(MVPP22_XLG_CTRL0_PORT_EN |
			 MVPP22_XLG_CTRL0_MAC_RESET_DIS);
		writel(val, port->base + MVPP22_XLG_CTRL0_REG);
	} else {
		val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
		val &= ~(MVPP2_GMAC_PORT_EN_MASK);
		writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
	}
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
}

/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}

/* Configure loopback port */
static void mvpp2_port_loopback_set(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);

	if (port->speed == 1000)
		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
	else
		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;

	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
	else
		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;

	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}

static void mvpp2_port_reset(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
		    ~MVPP2_GMAC_PORT_RESET_MASK;
	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);

	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
	       MVPP2_GMAC_PORT_RESET_MASK)
		continue;
}

/* Change maximum receive size of the port */
static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
{
	u32 val;

	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}

4776 4777 4778 4779 4780 4781 4782 4783
/* Change maximum receive size of the port */
static inline void mvpp2_xlg_max_rx_size_set(struct mvpp2_port *port)
{
	u32 val;

	val =  readl(port->base + MVPP22_XLG_CTRL1_REG);
	val &= ~MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK;
	val |= ((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
4784
	       MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS;
4785 4786 4787
	writel(val, port->base + MVPP22_XLG_CTRL1_REG);
}

4788 4789 4790 4791 4792
/* Set defaults to the MVPP2 port */
static void mvpp2_defaults_set(struct mvpp2_port *port)
{
	int tx_port_num, val, queue, ptxq, lrxq;

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
	if (port->priv->hw_version == MVPP21) {
		/* Configure port to loopback if needed */
		if (port->flags & MVPP2_F_LOOPBACK)
			mvpp2_port_loopback_set(port);

		/* Update TX FIFO MIN Threshold */
		val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
		val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
		/* Min. TX threshold must be less than minimal packet length */
		val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
		writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
	}
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837

	/* Disable Legacy WRR, Disable EJP, Release from reset */
	tx_port_num = mvpp2_egress_port(port);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
		    tx_port_num);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);

	/* Close bandwidth for all queues */
	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
		ptxq = mvpp2_txq_phys(port->id, queue);
		mvpp2_write(port->priv,
			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
	}

	/* Set refill period to 1 usec, refill tokens
	 * and bucket size to maximum
	 */
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
		    port->priv->tclk / USEC_PER_SEC);
	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
	val = MVPP2_TXP_TOKEN_SIZE_MAX;
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);

	/* Set MaximumLowLatencyPacketSize value to 256 */
	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));

	/* Enable Rx cache snoop */
4838
	for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
		queue = port->rxqs[lrxq]->id;
		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
			   MVPP2_SNOOP_BUF_HDR_MASK;
		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
	}

	/* At default, mask all interrupts to all present cpus */
	mvpp2_interrupts_disable(port);
}

/* Enable/disable receiving packets */
static void mvpp2_ingress_enable(struct mvpp2_port *port)
{
	u32 val;
	int lrxq, queue;

4856
	for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
		queue = port->rxqs[lrxq]->id;
		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
		val &= ~MVPP2_RXQ_DISABLE_MASK;
		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
	}
}

static void mvpp2_ingress_disable(struct mvpp2_port *port)
{
	u32 val;
	int lrxq, queue;

4869
	for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
		queue = port->rxqs[lrxq]->id;
		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
		val |= MVPP2_RXQ_DISABLE_MASK;
		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
	}
}

/* Enable transmit via physical egress queue
 * - HW starts take descriptors from DRAM
 */
static void mvpp2_egress_enable(struct mvpp2_port *port)
{
	u32 qmap;
	int queue;
	int tx_port_num = mvpp2_egress_port(port);

	/* Enable all initialized TXs. */
	qmap = 0;
4888
	for (queue = 0; queue < port->ntxqs; queue++) {
4889 4890
		struct mvpp2_tx_queue *txq = port->txqs[queue];

4891
		if (txq->descs)
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
			qmap |= (1 << queue);
	}

	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
}

/* Disable transmit via physical egress queue
 * - HW doesn't take descriptors from DRAM
 */
static void mvpp2_egress_disable(struct mvpp2_port *port)
{
	u32 reg_data;
	int delay;
	int tx_port_num = mvpp2_egress_port(port);

	/* Issue stop command for active channels only */
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
		    MVPP2_TXP_SCHED_ENQ_MASK;
	if (reg_data != 0)
		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));

	/* Wait for all Tx activity to terminate. */
	delay = 0;
	do {
		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(port->dev,
				    "Tx stop timed out, status=0x%08x\n",
				    reg_data);
			break;
		}
		mdelay(1);
		delay++;

		/* Check port TX Command register that all
		 * Tx queues are stopped
		 */
		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
}

/* Rx descriptors helper methods */

/* Get number of Rx descriptors occupied by received packets */
static inline int
mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
{
	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));

	return val & MVPP2_RXQ_OCCUPIED_MASK;
}

/* Update Rx queue status with the number of occupied and available
 * Rx descriptor slots.
 */
static inline void
mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
			int used_count, int free_count)
{
	/* Decrement the number of used descriptors and increment count
	 * increment the number of free descriptors.
	 */
	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);

	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
}

/* Get pointer to next RX descriptor to be processed by SW */
static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
{
	int rx_desc = rxq->next_desc_to_proc;

	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
	prefetch(rxq->descs + rxq->next_desc_to_proc);
	return rxq->descs + rx_desc;
}

/* Set rx queue offset */
static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
				 int prxq, int offset)
{
	u32 val;

	/* Convert offset from bytes to units of 32 bytes */
	offset = offset >> 5;

	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;

	/* Offset is in */
	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
		    MVPP2_RXQ_PACKET_OFFSET_MASK);

	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}

/* Tx descriptors helper methods */

/* Get pointer to next Tx descriptor to be processed (send) by HW */
static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
{
	int tx_desc = txq->next_desc_to_proc;

	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
	return txq->descs + tx_desc;
}

5003 5004 5005 5006 5007
/* Update HW with number of aggregated Tx descriptors to be sent
 *
 * Called only from mvpp2_tx(), so migration is disabled, using
 * smp_processor_id() is OK.
 */
5008 5009 5010
static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
{
	/* aggregated access - relevant TXQ number is written in TX desc */
5011 5012
	mvpp2_percpu_write(port->priv, smp_processor_id(),
			   MVPP2_AGGR_TXQ_UPDATE_REG, pending);
5013 5014 5015 5016 5017
}


/* Check if there are enough free descriptors in aggregated txq.
 * If not, update the number of occupied descriptors and repeat the check.
5018 5019 5020
 *
 * Called only from mvpp2_tx(), so migration is disabled, using
 * smp_processor_id() is OK.
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
 */
static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
				     struct mvpp2_tx_queue *aggr_txq, int num)
{
	if ((aggr_txq->count + num) > aggr_txq->size) {
		/* Update number of occupied aggregated Tx descriptors */
		int cpu = smp_processor_id();
		u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));

		aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
	}

	if ((aggr_txq->count + num) > aggr_txq->size)
		return -ENOMEM;

	return 0;
}

5039 5040 5041 5042 5043 5044
/* Reserved Tx descriptors allocation request
 *
 * Called only from mvpp2_txq_reserved_desc_num_proc(), itself called
 * only by mvpp2_tx(), so migration is disabled, using
 * smp_processor_id() is OK.
 */
5045 5046 5047 5048
static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
					 struct mvpp2_tx_queue *txq, int num)
{
	u32 val;
5049
	int cpu = smp_processor_id();
5050 5051

	val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
5052
	mvpp2_percpu_write(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val);
5053

5054
	val = mvpp2_percpu_read(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG);
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147

	return val & MVPP2_TXQ_RSVD_RSLT_MASK;
}

/* Check if there are enough reserved descriptors for transmission.
 * If not, request chunk of reserved descriptors and check again.
 */
static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
					    struct mvpp2_tx_queue *txq,
					    struct mvpp2_txq_pcpu *txq_pcpu,
					    int num)
{
	int req, cpu, desc_count;

	if (txq_pcpu->reserved_num >= num)
		return 0;

	/* Not enough descriptors reserved! Update the reserved descriptor
	 * count and check again.
	 */

	desc_count = 0;
	/* Compute total of used descriptors */
	for_each_present_cpu(cpu) {
		struct mvpp2_txq_pcpu *txq_pcpu_aux;

		txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
		desc_count += txq_pcpu_aux->count;
		desc_count += txq_pcpu_aux->reserved_num;
	}

	req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
	desc_count += req;

	if (desc_count >
	   (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
		return -ENOMEM;

	txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);

	/* OK, the descriptor cound has been updated: check again. */
	if (txq_pcpu->reserved_num < num)
		return -ENOMEM;
	return 0;
}

/* Release the last allocated Tx descriptor. Useful to handle DMA
 * mapping failures in the Tx path.
 */
static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
{
	if (txq->next_desc_to_proc == 0)
		txq->next_desc_to_proc = txq->last_desc - 1;
	else
		txq->next_desc_to_proc--;
}

/* Set Tx descriptors fields relevant for CSUM calculation */
static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
			       int ip_hdr_len, int l4_proto)
{
	u32 command;

	/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
	 * G_L4_chk, L4_type required only for checksum calculation
	 */
	command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
	command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
	command |= MVPP2_TXD_IP_CSUM_DISABLE;

	if (l3_proto == swab16(ETH_P_IP)) {
		command &= ~MVPP2_TXD_IP_CSUM_DISABLE;	/* enable IPv4 csum */
		command &= ~MVPP2_TXD_L3_IP6;		/* enable IPv4 */
	} else {
		command |= MVPP2_TXD_L3_IP6;		/* enable IPv6 */
	}

	if (l4_proto == IPPROTO_TCP) {
		command &= ~MVPP2_TXD_L4_UDP;		/* enable TCP */
		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
	} else if (l4_proto == IPPROTO_UDP) {
		command |= MVPP2_TXD_L4_UDP;		/* enable UDP */
		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
	} else {
		command |= MVPP2_TXD_L4_CSUM_NOT;
	}

	return command;
}

/* Get number of sent descriptors and decrement counter.
 * The number of sent descriptors is returned.
 * Per-CPU access
5148 5149 5150 5151
 *
 * Called only from mvpp2_txq_done(), called from mvpp2_tx()
 * (migration disabled) and from the TX completion tasklet (migration
 * disabled) so using smp_processor_id() is OK.
5152 5153 5154 5155 5156 5157 5158
 */
static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
					   struct mvpp2_tx_queue *txq)
{
	u32 val;

	/* Reading status reg resets transmitted descriptor counter */
5159 5160
	val = mvpp2_percpu_read(port->priv, smp_processor_id(),
				MVPP2_TXQ_SENT_REG(txq->id));
5161 5162 5163 5164 5165

	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
		MVPP2_TRANSMITTED_COUNT_OFFSET;
}

5166 5167 5168
/* Called through on_each_cpu(), so runs on all CPUs, with migration
 * disabled, therefore using smp_processor_id() is OK.
 */
5169 5170 5171 5172 5173
static void mvpp2_txq_sent_counter_clear(void *arg)
{
	struct mvpp2_port *port = arg;
	int queue;

5174
	for (queue = 0; queue < port->ntxqs; queue++) {
5175 5176
		int id = port->txqs[queue]->id;

5177 5178
		mvpp2_percpu_read(port->priv, smp_processor_id(),
				  MVPP2_TXQ_SENT_REG(id));
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
	}
}

/* Set max sizes for Tx queues */
static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
{
	u32	val, size, mtu;
	int	txq, tx_port_num;

	mtu = port->pkt_size * 8;
	if (mtu > MVPP2_TXP_MTU_MAX)
		mtu = MVPP2_TXP_MTU_MAX;

	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
	mtu = 3 * mtu;

	/* Indirect access to registers */
	tx_port_num = mvpp2_egress_port(port);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);

	/* Set MTU */
	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
	val &= ~MVPP2_TXP_MTU_MAX;
	val |= mtu;
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);

	/* TXP token size and all TXQs token size must be larger that MTU */
	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
	if (size < mtu) {
		size = mtu;
		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
		val |= size;
		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
	}

5215
	for (txq = 0; txq < port->ntxqs; txq++) {
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
		val = mvpp2_read(port->priv,
				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;

		if (size < mtu) {
			size = mtu;
			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
			val |= size;
			mvpp2_write(port->priv,
				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
				    val);
		}
	}
}

/* Set the number of packets that will be received before Rx interrupt
 * will be generated by HW.
 */
static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
5235
				   struct mvpp2_rx_queue *rxq)
5236
{
5237
	int cpu = get_cpu();
5238

5239 5240
	if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
		rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
5241

5242 5243 5244
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG,
			   rxq->pkts_coal);
5245 5246

	put_cpu();
5247 5248
}

5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
/* For some reason in the LSP this is done on each CPU. Why ? */
static void mvpp2_tx_pkts_coal_set(struct mvpp2_port *port,
				   struct mvpp2_tx_queue *txq)
{
	int cpu = get_cpu();
	u32 val;

	if (txq->done_pkts_coal > MVPP2_TXQ_THRESH_MASK)
		txq->done_pkts_coal = MVPP2_TXQ_THRESH_MASK;

	val = (txq->done_pkts_coal << MVPP2_TXQ_THRESH_OFFSET);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_THRESH_REG, val);

	put_cpu();
}

5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
{
	u64 tmp = (u64)clk_hz * usec;

	do_div(tmp, USEC_PER_SEC);

	return tmp > U32_MAX ? U32_MAX : tmp;
}

static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
{
	u64 tmp = (u64)cycles * USEC_PER_SEC;

	do_div(tmp, clk_hz);

	return tmp > U32_MAX ? U32_MAX : tmp;
}

5284 5285
/* Set the time delay in usec before Rx interrupt */
static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
5286
				   struct mvpp2_rx_queue *rxq)
5287
{
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	unsigned long freq = port->priv->tclk;
	u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);

	if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
		rxq->time_coal =
			mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);

		/* re-evaluate to get actual register value */
		val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
	}
5298 5299 5300 5301

	mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
}

5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
static void mvpp2_tx_time_coal_set(struct mvpp2_port *port)
{
	unsigned long freq = port->priv->tclk;
	u32 val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);

	if (val > MVPP2_MAX_ISR_TX_THRESHOLD) {
		port->tx_time_coal =
			mvpp2_cycles_to_usec(MVPP2_MAX_ISR_TX_THRESHOLD, freq);

		/* re-evaluate to get actual register value */
		val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
	}

	mvpp2_write(port->priv, MVPP2_ISR_TX_THRESHOLD_REG(port->id), val);
}

5318 5319 5320 5321 5322 5323 5324 5325
/* Free Tx queue skbuffs */
static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
				struct mvpp2_tx_queue *txq,
				struct mvpp2_txq_pcpu *txq_pcpu, int num)
{
	int i;

	for (i = 0; i < num; i++) {
5326 5327
		struct mvpp2_txq_pcpu_buf *tx_buf =
			txq_pcpu->buffs + txq_pcpu->txq_get_index;
5328

5329 5330 5331
		if (!IS_TSO_HEADER(txq_pcpu, tx_buf->dma))
			dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
					 tx_buf->size, DMA_TO_DEVICE);
5332 5333 5334 5335
		if (tx_buf->skb)
			dev_kfree_skb_any(tx_buf->skb);

		mvpp2_txq_inc_get(txq_pcpu);
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	}
}

static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
							u32 cause)
{
	int queue = fls(cause) - 1;

	return port->rxqs[queue];
}

static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
							u32 cause)
{
5350
	int queue = fls(cause) - 1;
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376

	return port->txqs[queue];
}

/* Handle end of transmission */
static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
			   struct mvpp2_txq_pcpu *txq_pcpu)
{
	struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
	int tx_done;

	if (txq_pcpu->cpu != smp_processor_id())
		netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");

	tx_done = mvpp2_txq_sent_desc_proc(port, txq);
	if (!tx_done)
		return;
	mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);

	txq_pcpu->count -= tx_done;

	if (netif_tx_queue_stopped(nq))
		if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
			netif_tx_wake_queue(nq);
}

5377 5378
static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause,
				  int cpu)
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
{
	struct mvpp2_tx_queue *txq;
	struct mvpp2_txq_pcpu *txq_pcpu;
	unsigned int tx_todo = 0;

	while (cause) {
		txq = mvpp2_get_tx_queue(port, cause);
		if (!txq)
			break;

5389
		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400

		if (txq_pcpu->count) {
			mvpp2_txq_done(port, txq, txq_pcpu);
			tx_todo += txq_pcpu->count;
		}

		cause &= ~(1 << txq->log_id);
	}
	return tx_todo;
}

5401 5402 5403 5404
/* Rx/Tx queue initialization/cleanup methods */

/* Allocate and initialize descriptors for aggr TXQ */
static int mvpp2_aggr_txq_init(struct platform_device *pdev,
5405
			       struct mvpp2_tx_queue *aggr_txq, int cpu,
5406 5407
			       struct mvpp2 *priv)
{
5408 5409
	u32 txq_dma;

5410 5411
	/* Allocate memory for TX descriptors */
	aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
5412
				MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
5413
				&aggr_txq->descs_dma, GFP_KERNEL);
5414 5415 5416 5417 5418 5419 5420 5421 5422
	if (!aggr_txq->descs)
		return -ENOMEM;

	aggr_txq->last_desc = aggr_txq->size - 1;

	/* Aggr TXQ no reset WA */
	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));

5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	/* Set Tx descriptors queue starting address indirect
	 * access
	 */
	if (priv->hw_version == MVPP21)
		txq_dma = aggr_txq->descs_dma;
	else
		txq_dma = aggr_txq->descs_dma >>
			MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;

	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
5433 5434
	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu),
		    MVPP2_AGGR_TXQ_SIZE);
5435 5436 5437 5438 5439 5440 5441 5442 5443

	return 0;
}

/* Create a specified Rx queue */
static int mvpp2_rxq_init(struct mvpp2_port *port,
			  struct mvpp2_rx_queue *rxq)

{
5444
	u32 rxq_dma;
5445
	int cpu;
5446

5447 5448 5449 5450 5451
	rxq->size = port->rx_ring_size;

	/* Allocate memory for RX descriptors */
	rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
					rxq->size * MVPP2_DESC_ALIGNED_SIZE,
5452
					&rxq->descs_dma, GFP_KERNEL);
5453 5454 5455 5456 5457 5458 5459 5460 5461
	if (!rxq->descs)
		return -ENOMEM;

	rxq->last_desc = rxq->size - 1;

	/* Zero occupied and non-occupied counters - direct access */
	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);

	/* Set Rx descriptors queue starting address - indirect access */
5462
	cpu = get_cpu();
5463
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
5464 5465 5466 5467
	if (port->priv->hw_version == MVPP21)
		rxq_dma = rxq->descs_dma;
	else
		rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
5468 5469 5470
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0);
5471
	put_cpu();
5472 5473 5474 5475 5476

	/* Set Offset */
	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);

	/* Set coalescing pkts and time */
5477 5478
	mvpp2_rx_pkts_coal_set(port, rxq);
	mvpp2_rx_time_coal_set(port, rxq);
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497

	/* Add number of descriptors ready for receiving packets */
	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);

	return 0;
}

/* Push packets received by the RXQ to BM pool */
static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
				struct mvpp2_rx_queue *rxq)
{
	int rx_received, i;

	rx_received = mvpp2_rxq_received(port, rxq->id);
	if (!rx_received)
		return;

	for (i = 0; i < rx_received; i++) {
		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5498 5499 5500 5501 5502
		u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
		int pool;

		pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >>
			MVPP2_RXD_BM_POOL_ID_OFFS;
5503

5504
		mvpp2_bm_pool_put(port, pool,
5505 5506
				  mvpp2_rxdesc_dma_addr_get(port, rx_desc),
				  mvpp2_rxdesc_cookie_get(port, rx_desc));
5507 5508 5509 5510 5511 5512 5513 5514
	}
	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
}

/* Cleanup Rx queue */
static void mvpp2_rxq_deinit(struct mvpp2_port *port,
			     struct mvpp2_rx_queue *rxq)
{
5515 5516
	int cpu;

5517 5518 5519 5520 5521 5522
	mvpp2_rxq_drop_pkts(port, rxq);

	if (rxq->descs)
		dma_free_coherent(port->dev->dev.parent,
				  rxq->size * MVPP2_DESC_ALIGNED_SIZE,
				  rxq->descs,
5523
				  rxq->descs_dma);
5524 5525 5526 5527

	rxq->descs             = NULL;
	rxq->last_desc         = 0;
	rxq->next_desc_to_proc = 0;
5528
	rxq->descs_dma         = 0;
5529 5530 5531 5532 5533

	/* Clear Rx descriptors queue starting address and size;
	 * free descriptor number
	 */
	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
5534
	cpu = get_cpu();
5535 5536 5537
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0);
5538
	put_cpu();
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
}

/* Create and initialize a Tx queue */
static int mvpp2_txq_init(struct mvpp2_port *port,
			  struct mvpp2_tx_queue *txq)
{
	u32 val;
	int cpu, desc, desc_per_txq, tx_port_num;
	struct mvpp2_txq_pcpu *txq_pcpu;

	txq->size = port->tx_ring_size;

	/* Allocate memory for Tx descriptors */
	txq->descs = dma_alloc_coherent(port->dev->dev.parent,
				txq->size * MVPP2_DESC_ALIGNED_SIZE,
5554
				&txq->descs_dma, GFP_KERNEL);
5555 5556 5557 5558 5559 5560
	if (!txq->descs)
		return -ENOMEM;

	txq->last_desc = txq->size - 1;

	/* Set Tx descriptors queue starting address - indirect access */
5561
	cpu = get_cpu();
5562 5563 5564 5565 5566 5567 5568 5569 5570
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG,
			   txq->descs_dma);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG,
			   txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG,
			   txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
	val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG);
5571
	val &= ~MVPP2_TXQ_PENDING_MASK;
5572
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val);
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582

	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
	 * for each existing TXQ.
	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
	 */
	desc_per_txq = 16;
	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
	       (txq->log_id * desc_per_txq);

5583 5584 5585
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG,
			   MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
			   MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
5586
	put_cpu();
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604

	/* WRR / EJP configuration - indirect access */
	tx_port_num = mvpp2_egress_port(port);
	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);

	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);

	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
		    val);

	for_each_present_cpu(cpu) {
		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
		txq_pcpu->size = txq->size;
5605 5606 5607
		txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
						sizeof(*txq_pcpu->buffs),
						GFP_KERNEL);
5608
		if (!txq_pcpu->buffs)
5609
			goto cleanup;
5610 5611 5612 5613 5614

		txq_pcpu->count = 0;
		txq_pcpu->reserved_num = 0;
		txq_pcpu->txq_put_index = 0;
		txq_pcpu->txq_get_index = 0;
5615 5616 5617

		txq_pcpu->tso_headers =
			dma_alloc_coherent(port->dev->dev.parent,
5618
					   txq_pcpu->size * TSO_HEADER_SIZE,
5619 5620 5621 5622
					   &txq_pcpu->tso_headers_dma,
					   GFP_KERNEL);
		if (!txq_pcpu->tso_headers)
			goto cleanup;
5623 5624 5625
	}

	return 0;
5626
cleanup:
5627 5628
	for_each_present_cpu(cpu) {
		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5629
		kfree(txq_pcpu->buffs);
5630 5631

		dma_free_coherent(port->dev->dev.parent,
5632
				  txq_pcpu->size * TSO_HEADER_SIZE,
5633 5634
				  txq_pcpu->tso_headers,
				  txq_pcpu->tso_headers_dma);
5635 5636 5637 5638
	}

	dma_free_coherent(port->dev->dev.parent,
			  txq->size * MVPP2_DESC_ALIGNED_SIZE,
5639
			  txq->descs, txq->descs_dma);
5640 5641

	return -ENOMEM;
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
}

/* Free allocated TXQ resources */
static void mvpp2_txq_deinit(struct mvpp2_port *port,
			     struct mvpp2_tx_queue *txq)
{
	struct mvpp2_txq_pcpu *txq_pcpu;
	int cpu;

	for_each_present_cpu(cpu) {
		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5653
		kfree(txq_pcpu->buffs);
5654 5655

		dma_free_coherent(port->dev->dev.parent,
5656
				  txq_pcpu->size * TSO_HEADER_SIZE,
5657 5658
				  txq_pcpu->tso_headers,
				  txq_pcpu->tso_headers_dma);
5659 5660 5661 5662 5663
	}

	if (txq->descs)
		dma_free_coherent(port->dev->dev.parent,
				  txq->size * MVPP2_DESC_ALIGNED_SIZE,
5664
				  txq->descs, txq->descs_dma);
5665 5666 5667 5668

	txq->descs             = NULL;
	txq->last_desc         = 0;
	txq->next_desc_to_proc = 0;
5669
	txq->descs_dma         = 0;
5670 5671 5672 5673 5674

	/* Set minimum bandwidth for disabled TXQs */
	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);

	/* Set Tx descriptors queue starting address and size */
5675
	cpu = get_cpu();
5676 5677 5678
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0);
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0);
5679
	put_cpu();
5680 5681 5682 5683 5684 5685 5686 5687 5688
}

/* Cleanup Tx ports */
static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
{
	struct mvpp2_txq_pcpu *txq_pcpu;
	int delay, pending, cpu;
	u32 val;

5689
	cpu = get_cpu();
5690 5691
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
	val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG);
5692
	val |= MVPP2_TXQ_DRAIN_EN_MASK;
5693
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708

	/* The napi queue has been stopped so wait for all packets
	 * to be transmitted.
	 */
	delay = 0;
	do {
		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
			netdev_warn(port->dev,
				    "port %d: cleaning queue %d timed out\n",
				    port->id, txq->log_id);
			break;
		}
		mdelay(1);
		delay++;

5709 5710 5711
		pending = mvpp2_percpu_read(port->priv, cpu,
					    MVPP2_TXQ_PENDING_REG);
		pending &= MVPP2_TXQ_PENDING_MASK;
5712 5713 5714
	} while (pending);

	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
5715
	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
5716
	put_cpu();
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743

	for_each_present_cpu(cpu) {
		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);

		/* Release all packets */
		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);

		/* Reset queue */
		txq_pcpu->count = 0;
		txq_pcpu->txq_put_index = 0;
		txq_pcpu->txq_get_index = 0;
	}
}

/* Cleanup all Tx queues */
static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
{
	struct mvpp2_tx_queue *txq;
	int queue;
	u32 val;

	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);

	/* Reset Tx ports and delete Tx queues */
	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);

5744
	for (queue = 0; queue < port->ntxqs; queue++) {
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
		txq = port->txqs[queue];
		mvpp2_txq_clean(port, txq);
		mvpp2_txq_deinit(port, txq);
	}

	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);

	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
}

/* Cleanup all Rx queues */
static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
{
	int queue;

5761
	for (queue = 0; queue < port->nrxqs; queue++)
5762 5763 5764 5765 5766 5767 5768 5769
		mvpp2_rxq_deinit(port, port->rxqs[queue]);
}

/* Init all Rx queues for port */
static int mvpp2_setup_rxqs(struct mvpp2_port *port)
{
	int queue, err;

5770
	for (queue = 0; queue < port->nrxqs; queue++) {
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
		err = mvpp2_rxq_init(port, port->rxqs[queue]);
		if (err)
			goto err_cleanup;
	}
	return 0;

err_cleanup:
	mvpp2_cleanup_rxqs(port);
	return err;
}

/* Init all tx queues for port */
static int mvpp2_setup_txqs(struct mvpp2_port *port)
{
	struct mvpp2_tx_queue *txq;
	int queue, err;

5788
	for (queue = 0; queue < port->ntxqs; queue++) {
5789 5790 5791 5792 5793 5794
		txq = port->txqs[queue];
		err = mvpp2_txq_init(port, txq);
		if (err)
			goto err_cleanup;
	}

5795 5796 5797 5798 5799 5800 5801 5802
	if (port->has_tx_irqs) {
		mvpp2_tx_time_coal_set(port);
		for (queue = 0; queue < port->ntxqs; queue++) {
			txq = port->txqs[queue];
			mvpp2_tx_pkts_coal_set(port, txq);
		}
	}

5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
	return 0;

err_cleanup:
	mvpp2_cleanup_txqs(port);
	return err;
}

/* The callback for per-port interrupt */
static irqreturn_t mvpp2_isr(int irq, void *dev_id)
{
5814
	struct mvpp2_queue_vector *qv = dev_id;
5815

5816
	mvpp2_qvec_interrupt_disable(qv);
5817

5818
	napi_schedule(&qv->napi);
5819 5820 5821 5822

	return IRQ_HANDLED;
}

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
/* Per-port interrupt for link status changes */
static irqreturn_t mvpp2_link_status_isr(int irq, void *dev_id)
{
	struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
	struct net_device *dev = port->dev;
	bool event = false, link = false;
	u32 val;

	mvpp22_gop_mask_irq(port);

	if (port->gop_id == 0 &&
	    port->phy_interface == PHY_INTERFACE_MODE_10GKR) {
		val = readl(port->base + MVPP22_XLG_INT_STAT);
		if (val & MVPP22_XLG_INT_STAT_LINK) {
			event = true;
			val = readl(port->base + MVPP22_XLG_STATUS);
			if (val & MVPP22_XLG_STATUS_LINK_UP)
				link = true;
		}
	} else if (phy_interface_mode_is_rgmii(port->phy_interface) ||
		   port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
		val = readl(port->base + MVPP22_GMAC_INT_STAT);
		if (val & MVPP22_GMAC_INT_STAT_LINK) {
			event = true;
			val = readl(port->base + MVPP2_GMAC_STATUS0);
			if (val & MVPP2_GMAC_STATUS0_LINK_UP)
				link = true;
		}
	}

	if (!netif_running(dev) || !event)
		goto handled;

	if (link) {
		mvpp2_interrupts_enable(port);

		mvpp2_egress_enable(port);
		mvpp2_ingress_enable(port);
		netif_carrier_on(dev);
		netif_tx_wake_all_queues(dev);
	} else {
		netif_tx_stop_all_queues(dev);
		netif_carrier_off(dev);
		mvpp2_ingress_disable(port);
		mvpp2_egress_disable(port);

		mvpp2_interrupts_disable(port);
	}

handled:
	mvpp22_gop_unmask_irq(port);
	return IRQ_HANDLED;
}

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
static void mvpp2_gmac_set_autoneg(struct mvpp2_port *port,
				   struct phy_device *phydev)
{
	u32 val;

	if (port->phy_interface != PHY_INTERFACE_MODE_RGMII &&
	    port->phy_interface != PHY_INTERFACE_MODE_RGMII_ID &&
	    port->phy_interface != PHY_INTERFACE_MODE_RGMII_RXID &&
	    port->phy_interface != PHY_INTERFACE_MODE_RGMII_TXID &&
	    port->phy_interface != PHY_INTERFACE_MODE_SGMII)
		return;

	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
	val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
		 MVPP2_GMAC_CONFIG_GMII_SPEED |
		 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
		 MVPP2_GMAC_AN_SPEED_EN |
		 MVPP2_GMAC_AN_DUPLEX_EN);

	if (phydev->duplex)
		val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;

	if (phydev->speed == SPEED_1000)
		val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
	else if (phydev->speed == SPEED_100)
		val |= MVPP2_GMAC_CONFIG_MII_SPEED;

	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}

5907 5908 5909 5910
/* Adjust link */
static void mvpp2_link_event(struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
5911
	struct phy_device *phydev = dev->phydev;
5912
	bool link_reconfigured = false;
5913 5914 5915
	u32 val;

	if (phydev->link) {
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
		if (port->phy_interface != phydev->interface && port->comphy) {
	                /* disable current port for reconfiguration */
	                mvpp2_interrupts_disable(port);
	                netif_carrier_off(port->dev);
	                mvpp2_port_disable(port);
			phy_power_off(port->comphy);

	                /* comphy reconfiguration */
	                port->phy_interface = phydev->interface;
	                mvpp22_comphy_init(port);

	                /* gop/mac reconfiguration */
	                mvpp22_gop_init(port);
	                mvpp2_port_mii_set(port);

	                link_reconfigured = true;
		}

5934 5935
		if ((port->speed != phydev->speed) ||
		    (port->duplex != phydev->duplex)) {
5936
			mvpp2_gmac_set_autoneg(port, phydev);
5937 5938 5939 5940 5941 5942

			port->duplex = phydev->duplex;
			port->speed  = phydev->speed;
		}
	}

5943
	if (phydev->link != port->link || link_reconfigured) {
5944 5945 5946
		port->link = phydev->link;

		if (phydev->link) {
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
			if (port->phy_interface == PHY_INTERFACE_MODE_RGMII ||
			    port->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
			    port->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
			    port->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID ||
			    port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
				val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
				val |= (MVPP2_GMAC_FORCE_LINK_PASS |
					MVPP2_GMAC_FORCE_LINK_DOWN);
				writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
			}
5957 5958 5959 5960

			mvpp2_interrupts_enable(port);
			mvpp2_port_enable(port);

5961 5962
			mvpp2_egress_enable(port);
			mvpp2_ingress_enable(port);
5963 5964
			netif_carrier_on(dev);
			netif_tx_wake_all_queues(dev);
5965
		} else {
5966 5967 5968
			port->duplex = -1;
			port->speed = 0;

5969 5970
			netif_tx_stop_all_queues(dev);
			netif_carrier_off(dev);
5971 5972
			mvpp2_ingress_disable(port);
			mvpp2_egress_disable(port);
5973 5974 5975

			mvpp2_port_disable(port);
			mvpp2_interrupts_disable(port);
5976
		}
5977

5978 5979 5980 5981
		phy_print_status(phydev);
	}
}

5982 5983 5984 5985 5986 5987
static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
{
	ktime_t interval;

	if (!port_pcpu->timer_scheduled) {
		port_pcpu->timer_scheduled = true;
T
Thomas Gleixner 已提交
5988
		interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
		hrtimer_start(&port_pcpu->tx_done_timer, interval,
			      HRTIMER_MODE_REL_PINNED);
	}
}

static void mvpp2_tx_proc_cb(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
	unsigned int tx_todo, cause;

	if (!netif_running(dev))
		return;
	port_pcpu->timer_scheduled = false;

	/* Process all the Tx queues */
6006
	cause = (1 << port->ntxqs) - 1;
6007
	tx_todo = mvpp2_tx_done(port, cause, smp_processor_id());
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024

	/* Set the timer in case not all the packets were processed */
	if (tx_todo)
		mvpp2_timer_set(port_pcpu);
}

static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
{
	struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
							 struct mvpp2_port_pcpu,
							 tx_done_timer);

	tasklet_schedule(&port_pcpu->tx_done_tasklet);

	return HRTIMER_NORESTART;
}

6025 6026 6027 6028 6029 6030
/* Main RX/TX processing routines */

/* Display more error info */
static void mvpp2_rx_error(struct mvpp2_port *port,
			   struct mvpp2_rx_desc *rx_desc)
{
6031 6032
	u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
	size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
6033 6034 6035

	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
	case MVPP2_RXD_ERR_CRC:
6036 6037
		netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
			   status, sz);
6038 6039
		break;
	case MVPP2_RXD_ERR_OVERRUN:
6040 6041
		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
			   status, sz);
6042 6043
		break;
	case MVPP2_RXD_ERR_RESOURCE:
6044 6045
		netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
			   status, sz);
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
		break;
	}
}

/* Handle RX checksum offload */
static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
			  struct sk_buff *skb)
{
	if (((status & MVPP2_RXD_L3_IP4) &&
	     !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
	    (status & MVPP2_RXD_L3_IP6))
		if (((status & MVPP2_RXD_L4_UDP) ||
		     (status & MVPP2_RXD_L4_TCP)) &&
		     (status & MVPP2_RXD_L4_CSUM_OK)) {
			skb->csum = 0;
			skb->ip_summed = CHECKSUM_UNNECESSARY;
			return;
		}

	skb->ip_summed = CHECKSUM_NONE;
}

/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
static int mvpp2_rx_refill(struct mvpp2_port *port,
6070
			   struct mvpp2_bm_pool *bm_pool, int pool)
6071
{
6072
	dma_addr_t dma_addr;
6073
	phys_addr_t phys_addr;
6074
	void *buf;
6075 6076

	/* No recycle or too many buffers are in use, so allocate a new skb */
6077 6078
	buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr,
			      GFP_ATOMIC);
6079
	if (!buf)
6080 6081
		return -ENOMEM;

6082
	mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
6083

6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
	return 0;
}

/* Handle tx checksum */
static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		int ip_hdr_len = 0;
		u8 l4_proto;

		if (skb->protocol == htons(ETH_P_IP)) {
			struct iphdr *ip4h = ip_hdr(skb);

			/* Calculate IPv4 checksum and L4 checksum */
			ip_hdr_len = ip4h->ihl;
			l4_proto = ip4h->protocol;
		} else if (skb->protocol == htons(ETH_P_IPV6)) {
			struct ipv6hdr *ip6h = ipv6_hdr(skb);

			/* Read l4_protocol from one of IPv6 extra headers */
			if (skb_network_header_len(skb) > 0)
				ip_hdr_len = (skb_network_header_len(skb) >> 2);
			l4_proto = ip6h->nexthdr;
		} else {
			return MVPP2_TXD_L4_CSUM_NOT;
		}

		return mvpp2_txq_desc_csum(skb_network_offset(skb),
				skb->protocol, ip_hdr_len, l4_proto);
	}

	return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
}

/* Main rx processing */
6119 6120
static int mvpp2_rx(struct mvpp2_port *port, struct napi_struct *napi,
		    int rx_todo, struct mvpp2_rx_queue *rxq)
6121 6122
{
	struct net_device *dev = port->dev;
6123 6124
	int rx_received;
	int rx_done = 0;
6125 6126 6127 6128 6129 6130 6131 6132
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;

	/* Get number of received packets and clamp the to-do */
	rx_received = mvpp2_rxq_received(port, rxq->id);
	if (rx_todo > rx_received)
		rx_todo = rx_received;

6133
	while (rx_done < rx_todo) {
6134 6135 6136
		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
		struct mvpp2_bm_pool *bm_pool;
		struct sk_buff *skb;
6137
		unsigned int frag_size;
6138
		dma_addr_t dma_addr;
6139
		phys_addr_t phys_addr;
6140
		u32 rx_status;
6141
		int pool, rx_bytes, err;
6142
		void *data;
6143

6144
		rx_done++;
6145 6146 6147 6148 6149 6150 6151
		rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
		rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
		rx_bytes -= MVPP2_MH_SIZE;
		dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
		phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
		data = (void *)phys_to_virt(phys_addr);

6152 6153
		pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
			MVPP2_RXD_BM_POOL_ID_OFFS;
6154 6155 6156 6157 6158 6159 6160 6161
		bm_pool = &port->priv->bm_pools[pool];

		/* In case of an error, release the requested buffer pointer
		 * to the Buffer Manager. This request process is controlled
		 * by the hardware, and the information about the buffer is
		 * comprised by the RX descriptor.
		 */
		if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
6162
err_drop_frame:
6163 6164
			dev->stats.rx_errors++;
			mvpp2_rx_error(port, rx_desc);
6165
			/* Return the buffer to the pool */
6166
			mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
6167 6168 6169
			continue;
		}

6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
		if (bm_pool->frag_size > PAGE_SIZE)
			frag_size = 0;
		else
			frag_size = bm_pool->frag_size;

		skb = build_skb(data, frag_size);
		if (!skb) {
			netdev_warn(port->dev, "skb build failed\n");
			goto err_drop_frame;
		}
6180

6181
		err = mvpp2_rx_refill(port, bm_pool, pool);
6182 6183 6184 6185 6186
		if (err) {
			netdev_err(port->dev, "failed to refill BM pools\n");
			goto err_drop_frame;
		}

6187
		dma_unmap_single(dev->dev.parent, dma_addr,
6188 6189
				 bm_pool->buf_size, DMA_FROM_DEVICE);

6190 6191 6192
		rcvd_pkts++;
		rcvd_bytes += rx_bytes;

6193
		skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD);
6194 6195 6196 6197
		skb_put(skb, rx_bytes);
		skb->protocol = eth_type_trans(skb, dev);
		mvpp2_rx_csum(port, rx_status, skb);

6198
		napi_gro_receive(napi, skb);
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
	}

	if (rcvd_pkts) {
		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
	}

	/* Update Rx queue management counters */
	wmb();
6212
	mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
6213 6214 6215 6216 6217

	return rx_todo;
}

static inline void
6218
tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
6219 6220
		  struct mvpp2_tx_desc *desc)
{
6221 6222
	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);

6223 6224 6225 6226
	dma_addr_t buf_dma_addr =
		mvpp2_txdesc_dma_addr_get(port, desc);
	size_t buf_sz =
		mvpp2_txdesc_size_get(port, desc);
6227 6228 6229
	if (!IS_TSO_HEADER(txq_pcpu, buf_dma_addr))
		dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
				 buf_sz, DMA_TO_DEVICE);
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
	mvpp2_txq_desc_put(txq);
}

/* Handle tx fragmentation processing */
static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
				 struct mvpp2_tx_queue *aggr_txq,
				 struct mvpp2_tx_queue *txq)
{
	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
	struct mvpp2_tx_desc *tx_desc;
	int i;
6241
	dma_addr_t buf_dma_addr;
6242 6243 6244 6245 6246 6247

	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		void *addr = page_address(frag->page.p) + frag->page_offset;

		tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
6248 6249
		mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
		mvpp2_txdesc_size_set(port, tx_desc, frag->size);
6250

6251
		buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
6252 6253
					       frag->size,
					       DMA_TO_DEVICE);
6254
		if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
6255
			mvpp2_txq_desc_put(txq);
6256
			goto cleanup;
6257 6258
		}

6259 6260 6261 6262
		mvpp2_txdesc_offset_set(port, tx_desc,
					buf_dma_addr & MVPP2_TX_DESC_ALIGN);
		mvpp2_txdesc_dma_addr_set(port, tx_desc,
					  buf_dma_addr & ~MVPP2_TX_DESC_ALIGN);
6263 6264 6265

		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
			/* Last descriptor */
6266 6267 6268
			mvpp2_txdesc_cmd_set(port, tx_desc,
					     MVPP2_TXD_L_DESC);
			mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
6269 6270
		} else {
			/* Descriptor in the middle: Not First, Not Last */
6271 6272
			mvpp2_txdesc_cmd_set(port, tx_desc, 0);
			mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
6273 6274 6275 6276
		}
	}

	return 0;
6277
cleanup:
6278 6279 6280 6281 6282
	/* Release all descriptors that were used to map fragments of
	 * this packet, as well as the corresponding DMA mappings
	 */
	for (i = i - 1; i >= 0; i--) {
		tx_desc = txq->descs + i;
6283
		tx_desc_unmap_put(port, txq, tx_desc);
6284 6285 6286 6287 6288
	}

	return -ENOMEM;
}

6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
static inline void mvpp2_tso_put_hdr(struct sk_buff *skb,
				     struct net_device *dev,
				     struct mvpp2_tx_queue *txq,
				     struct mvpp2_tx_queue *aggr_txq,
				     struct mvpp2_txq_pcpu *txq_pcpu,
				     int hdr_sz)
{
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
	dma_addr_t addr;

	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
	mvpp2_txdesc_size_set(port, tx_desc, hdr_sz);

	addr = txq_pcpu->tso_headers_dma +
	       txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
	mvpp2_txdesc_offset_set(port, tx_desc, addr & MVPP2_TX_DESC_ALIGN);
	mvpp2_txdesc_dma_addr_set(port, tx_desc, addr & ~MVPP2_TX_DESC_ALIGN);

	mvpp2_txdesc_cmd_set(port, tx_desc, mvpp2_skb_tx_csum(port, skb) |
					    MVPP2_TXD_F_DESC |
					    MVPP2_TXD_PADDING_DISABLE);
	mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
}

static inline int mvpp2_tso_put_data(struct sk_buff *skb,
				     struct net_device *dev, struct tso_t *tso,
				     struct mvpp2_tx_queue *txq,
				     struct mvpp2_tx_queue *aggr_txq,
				     struct mvpp2_txq_pcpu *txq_pcpu,
				     int sz, bool left, bool last)
{
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
	dma_addr_t buf_dma_addr;

	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
	mvpp2_txdesc_size_set(port, tx_desc, sz);

	buf_dma_addr = dma_map_single(dev->dev.parent, tso->data, sz,
				      DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
		mvpp2_txq_desc_put(txq);
		return -ENOMEM;
	}

	mvpp2_txdesc_offset_set(port, tx_desc,
				buf_dma_addr & MVPP2_TX_DESC_ALIGN);
	mvpp2_txdesc_dma_addr_set(port, tx_desc,
				  buf_dma_addr & ~MVPP2_TX_DESC_ALIGN);

	if (!left) {
		mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L_DESC);
		if (last) {
			mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
			return 0;
		}
	} else {
		mvpp2_txdesc_cmd_set(port, tx_desc, 0);
	}

	mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
	return 0;
}

static int mvpp2_tx_tso(struct sk_buff *skb, struct net_device *dev,
			struct mvpp2_tx_queue *txq,
			struct mvpp2_tx_queue *aggr_txq,
			struct mvpp2_txq_pcpu *txq_pcpu)
{
	struct mvpp2_port *port = netdev_priv(dev);
	struct tso_t tso;
	int hdr_sz = skb_transport_offset(skb) + tcp_hdrlen(skb);
	int i, len, descs = 0;

	/* Check number of available descriptors */
	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq,
				      tso_count_descs(skb)) ||
	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq, txq_pcpu,
					     tso_count_descs(skb)))
		return 0;

	tso_start(skb, &tso);
	len = skb->len - hdr_sz;
	while (len > 0) {
		int left = min_t(int, skb_shinfo(skb)->gso_size, len);
		char *hdr = txq_pcpu->tso_headers +
			    txq_pcpu->txq_put_index * TSO_HEADER_SIZE;

		len -= left;
		descs++;

		tso_build_hdr(skb, hdr, &tso, left, len == 0);
		mvpp2_tso_put_hdr(skb, dev, txq, aggr_txq, txq_pcpu, hdr_sz);

		while (left > 0) {
			int sz = min_t(int, tso.size, left);
			left -= sz;
			descs++;

			if (mvpp2_tso_put_data(skb, dev, &tso, txq, aggr_txq,
					       txq_pcpu, sz, left, len == 0))
				goto release;
			tso_build_data(skb, &tso, sz);
		}
	}

	return descs;

release:
	for (i = descs - 1; i >= 0; i--) {
		struct mvpp2_tx_desc *tx_desc = txq->descs + i;
		tx_desc_unmap_put(port, txq, tx_desc);
	}
	return 0;
}

6406 6407 6408 6409 6410 6411 6412
/* Main tx processing */
static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2_tx_queue *txq, *aggr_txq;
	struct mvpp2_txq_pcpu *txq_pcpu;
	struct mvpp2_tx_desc *tx_desc;
6413
	dma_addr_t buf_dma_addr;
6414 6415 6416 6417 6418 6419 6420 6421 6422
	int frags = 0;
	u16 txq_id;
	u32 tx_cmd;

	txq_id = skb_get_queue_mapping(skb);
	txq = port->txqs[txq_id];
	txq_pcpu = this_cpu_ptr(txq->pcpu);
	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];

6423 6424 6425 6426
	if (skb_is_gso(skb)) {
		frags = mvpp2_tx_tso(skb, dev, txq, aggr_txq, txq_pcpu);
		goto out;
	}
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
	frags = skb_shinfo(skb)->nr_frags + 1;

	/* Check number of available descriptors */
	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
					     txq_pcpu, frags)) {
		frags = 0;
		goto out;
	}

	/* Get a descriptor for the first part of the packet */
	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
6439 6440
	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
	mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
6441

6442
	buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
6443
				      skb_headlen(skb), DMA_TO_DEVICE);
6444
	if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
6445 6446 6447 6448
		mvpp2_txq_desc_put(txq);
		frags = 0;
		goto out;
	}
6449 6450 6451 6452 6453

	mvpp2_txdesc_offset_set(port, tx_desc,
				buf_dma_addr & MVPP2_TX_DESC_ALIGN);
	mvpp2_txdesc_dma_addr_set(port, tx_desc,
				  buf_dma_addr & ~MVPP2_TX_DESC_ALIGN);
6454 6455 6456 6457 6458 6459

	tx_cmd = mvpp2_skb_tx_csum(port, skb);

	if (frags == 1) {
		/* First and Last descriptor */
		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
6460 6461
		mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
		mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
6462 6463 6464
	} else {
		/* First but not Last */
		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
6465 6466
		mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
		mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
6467 6468 6469

		/* Continue with other skb fragments */
		if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
6470
			tx_desc_unmap_put(port, txq, tx_desc);
6471 6472 6473 6474 6475 6476 6477 6478
			frags = 0;
			goto out;
		}
	}

out:
	if (frags > 0) {
		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);

		txq_pcpu->reserved_num -= frags;
		txq_pcpu->count += frags;
		aggr_txq->count += frags;

		/* Enable transmit */
		wmb();
		mvpp2_aggr_txq_pend_desc_add(port, frags);

		if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1)
			netif_tx_stop_queue(nq);
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500

		u64_stats_update_begin(&stats->syncp);
		stats->tx_packets++;
		stats->tx_bytes += skb->len;
		u64_stats_update_end(&stats->syncp);
	} else {
		dev->stats.tx_dropped++;
		dev_kfree_skb_any(skb);
	}

6501
	/* Finalize TX processing */
6502
	if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal)
6503 6504 6505
		mvpp2_txq_done(port, txq, txq_pcpu);

	/* Set the timer in case not all frags were processed */
6506 6507
	if (!port->has_tx_irqs && txq_pcpu->count <= frags &&
	    txq_pcpu->count > 0) {
6508 6509 6510 6511 6512
		struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);

		mvpp2_timer_set(port_pcpu);
	}

6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
	return NETDEV_TX_OK;
}

static inline void mvpp2_cause_error(struct net_device *dev, int cause)
{
	if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
		netdev_err(dev, "FCS error\n");
	if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
		netdev_err(dev, "rx fifo overrun error\n");
	if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
		netdev_err(dev, "tx fifo underrun error\n");
}

6526
static int mvpp2_poll(struct napi_struct *napi, int budget)
6527
{
6528
	u32 cause_rx_tx, cause_rx, cause_tx, cause_misc;
6529 6530
	int rx_done = 0;
	struct mvpp2_port *port = netdev_priv(napi->dev);
6531
	struct mvpp2_queue_vector *qv;
6532
	int cpu = smp_processor_id();
6533

6534 6535
	qv = container_of(napi, struct mvpp2_queue_vector, napi);

6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
	/* Rx/Tx cause register
	 *
	 * Bits 0-15: each bit indicates received packets on the Rx queue
	 * (bit 0 is for Rx queue 0).
	 *
	 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
	 * (bit 16 is for Tx queue 0).
	 *
	 * Each CPU has its own Rx/Tx cause register
	 */
6546
	cause_rx_tx = mvpp2_percpu_read(port->priv, qv->sw_thread_id,
6547
					MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
6548

6549
	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
6550 6551 6552 6553 6554
	if (cause_misc) {
		mvpp2_cause_error(port->dev, cause_misc);

		/* Clear the cause register */
		mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
6555 6556 6557
		mvpp2_percpu_write(port->priv, cpu,
				   MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
				   cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
6558 6559
	}

6560 6561 6562 6563 6564
	cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
	if (cause_tx) {
		cause_tx >>= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET;
		mvpp2_tx_done(port, cause_tx, qv->sw_thread_id);
	}
6565 6566

	/* Process RX packets */
6567 6568
	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
	cause_rx <<= qv->first_rxq;
6569
	cause_rx |= qv->pending_cause_rx;
6570 6571 6572 6573 6574 6575 6576 6577
	while (cause_rx && budget > 0) {
		int count;
		struct mvpp2_rx_queue *rxq;

		rxq = mvpp2_get_rx_queue(port, cause_rx);
		if (!rxq)
			break;

6578
		count = mvpp2_rx(port, napi, budget, rxq);
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
		rx_done += count;
		budget -= count;
		if (budget > 0) {
			/* Clear the bit associated to this Rx queue
			 * so that next iteration will continue from
			 * the next Rx queue.
			 */
			cause_rx &= ~(1 << rxq->logic_rxq);
		}
	}

	if (budget > 0) {
		cause_rx = 0;
6592
		napi_complete_done(napi, rx_done);
6593

6594
		mvpp2_qvec_interrupt_enable(qv);
6595
	}
6596
	qv->pending_cause_rx = cause_rx;
6597 6598 6599 6600 6601 6602
	return rx_done;
}

/* Set hw internals when starting port */
static void mvpp2_start_dev(struct mvpp2_port *port)
{
6603
	struct net_device *ndev = port->dev;
6604
	int i;
6605

6606 6607 6608 6609 6610 6611 6612
	if (port->gop_id == 0 &&
	    (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
	     port->phy_interface == PHY_INTERFACE_MODE_10GKR))
		mvpp2_xlg_max_rx_size_set(port);
	else
		mvpp2_gmac_max_rx_size_set(port);

6613 6614
	mvpp2_txp_max_tx_size_set(port);

6615 6616
	for (i = 0; i < port->nqvecs; i++)
		napi_enable(&port->qvecs[i].napi);
6617 6618 6619 6620

	/* Enable interrupts on all CPUs */
	mvpp2_interrupts_enable(port);

6621 6622
	if (port->priv->hw_version == MVPP22) {
		mvpp22_comphy_init(port);
A
Antoine Ténart 已提交
6623
		mvpp22_gop_init(port);
6624
	}
A
Antoine Ténart 已提交
6625

6626
	mvpp2_port_mii_set(port);
6627
	mvpp2_port_enable(port);
6628 6629
	if (ndev->phydev)
		phy_start(ndev->phydev);
6630 6631 6632 6633 6634 6635
	netif_tx_start_all_queues(port->dev);
}

/* Set hw internals when stopping port */
static void mvpp2_stop_dev(struct mvpp2_port *port)
{
6636
	struct net_device *ndev = port->dev;
6637
	int i;
6638

6639 6640 6641 6642 6643 6644 6645 6646
	/* Stop new packets from arriving to RXQs */
	mvpp2_ingress_disable(port);

	mdelay(10);

	/* Disable interrupts on all CPUs */
	mvpp2_interrupts_disable(port);

6647 6648
	for (i = 0; i < port->nqvecs; i++)
		napi_disable(&port->qvecs[i].napi);
6649 6650 6651 6652 6653 6654

	netif_carrier_off(port->dev);
	netif_tx_stop_all_queues(port->dev);

	mvpp2_egress_disable(port);
	mvpp2_port_disable(port);
6655 6656
	if (ndev->phydev)
		phy_stop(ndev->phydev);
6657
	phy_power_off(port->comphy);
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
}

static int mvpp2_check_ringparam_valid(struct net_device *dev,
				       struct ethtool_ringparam *ring)
{
	u16 new_rx_pending = ring->rx_pending;
	u16 new_tx_pending = ring->tx_pending;

	if (ring->rx_pending == 0 || ring->tx_pending == 0)
		return -EINVAL;

	if (ring->rx_pending > MVPP2_MAX_RXD)
		new_rx_pending = MVPP2_MAX_RXD;
	else if (!IS_ALIGNED(ring->rx_pending, 16))
		new_rx_pending = ALIGN(ring->rx_pending, 16);

	if (ring->tx_pending > MVPP2_MAX_TXD)
		new_tx_pending = MVPP2_MAX_TXD;
	else if (!IS_ALIGNED(ring->tx_pending, 32))
		new_tx_pending = ALIGN(ring->tx_pending, 32);

	if (ring->rx_pending != new_rx_pending) {
		netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
			    ring->rx_pending, new_rx_pending);
		ring->rx_pending = new_rx_pending;
	}

	if (ring->tx_pending != new_tx_pending) {
		netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
			    ring->tx_pending, new_tx_pending);
		ring->tx_pending = new_tx_pending;
	}

	return 0;
}

6694
static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
{
	u32 mac_addr_l, mac_addr_m, mac_addr_h;

	mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
	mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
	mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
	addr[0] = (mac_addr_h >> 24) & 0xFF;
	addr[1] = (mac_addr_h >> 16) & 0xFF;
	addr[2] = (mac_addr_h >> 8) & 0xFF;
	addr[3] = mac_addr_h & 0xFF;
	addr[4] = mac_addr_m & 0xFF;
	addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
}

static int mvpp2_phy_connect(struct mvpp2_port *port)
{
	struct phy_device *phy_dev;

6713 6714 6715 6716
	/* No PHY is attached */
	if (!port->phy_node)
		return 0;

6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
	phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
				 port->phy_interface);
	if (!phy_dev) {
		netdev_err(port->dev, "cannot connect to phy\n");
		return -ENODEV;
	}
	phy_dev->supported &= PHY_GBIT_FEATURES;
	phy_dev->advertising = phy_dev->supported;

	port->link    = 0;
	port->duplex  = 0;
	port->speed   = 0;

	return 0;
}

static void mvpp2_phy_disconnect(struct mvpp2_port *port)
{
6735 6736
	struct net_device *ndev = port->dev;

6737 6738 6739
	if (!ndev->phydev)
		return;

6740
	phy_disconnect(ndev->phydev);
6741 6742
}

6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
static int mvpp2_irqs_init(struct mvpp2_port *port)
{
	int err, i;

	for (i = 0; i < port->nqvecs; i++) {
		struct mvpp2_queue_vector *qv = port->qvecs + i;

		err = request_irq(qv->irq, mvpp2_isr, 0, port->dev->name, qv);
		if (err)
			goto err;
6753 6754 6755 6756

		if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
			irq_set_affinity_hint(qv->irq,
					      cpumask_of(qv->sw_thread_id));
6757 6758 6759 6760 6761 6762 6763
	}

	return 0;
err:
	for (i = 0; i < port->nqvecs; i++) {
		struct mvpp2_queue_vector *qv = port->qvecs + i;

6764
		irq_set_affinity_hint(qv->irq, NULL);
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
		free_irq(qv->irq, qv);
	}

	return err;
}

static void mvpp2_irqs_deinit(struct mvpp2_port *port)
{
	int i;

	for (i = 0; i < port->nqvecs; i++) {
		struct mvpp2_queue_vector *qv = port->qvecs + i;

6778
		irq_set_affinity_hint(qv->irq, NULL);
6779 6780 6781 6782
		free_irq(qv->irq, qv);
	}
}

6783 6784 6785
static int mvpp2_open(struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
6786
	struct mvpp2 *priv = port->priv;
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
	unsigned char mac_bcast[ETH_ALEN] = {
			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
	int err;

	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
	if (err) {
		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
		return err;
	}
	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
				      dev->dev_addr, true);
	if (err) {
		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
		return err;
	}
	err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
	if (err) {
		netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
		return err;
	}
	err = mvpp2_prs_def_flow(port);
	if (err) {
		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
		return err;
	}

	/* Allocate the Rx/Tx queues */
	err = mvpp2_setup_rxqs(port);
	if (err) {
		netdev_err(port->dev, "cannot allocate Rx queues\n");
		return err;
	}

	err = mvpp2_setup_txqs(port);
	if (err) {
		netdev_err(port->dev, "cannot allocate Tx queues\n");
		goto err_cleanup_rxqs;
	}

6826
	err = mvpp2_irqs_init(port);
6827
	if (err) {
6828
		netdev_err(port->dev, "cannot init IRQs\n");
6829 6830 6831
		goto err_cleanup_txqs;
	}

6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
	if (priv->hw_version == MVPP22 && !port->phy_node && port->link_irq) {
		err = request_irq(port->link_irq, mvpp2_link_status_isr, 0,
				  dev->name, port);
		if (err) {
			netdev_err(port->dev, "cannot request link IRQ %d\n",
				   port->link_irq);
			goto err_free_irq;
		}

		mvpp22_gop_setup_irq(port);
	}

6844 6845 6846 6847 6848
	/* In default link is down */
	netif_carrier_off(port->dev);

	err = mvpp2_phy_connect(port);
	if (err < 0)
6849
		goto err_free_link_irq;
6850 6851 6852

	/* Unmask interrupts on all CPUs */
	on_each_cpu(mvpp2_interrupts_unmask, port, 1);
6853
	mvpp2_shared_interrupt_mask_unmask(port, false);
6854 6855 6856 6857 6858

	mvpp2_start_dev(port);

	return 0;

6859 6860 6861
err_free_link_irq:
	if (priv->hw_version == MVPP22 && !port->phy_node && port->link_irq)
		free_irq(port->link_irq, port);
6862
err_free_irq:
6863
	mvpp2_irqs_deinit(port);
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
err_cleanup_txqs:
	mvpp2_cleanup_txqs(port);
err_cleanup_rxqs:
	mvpp2_cleanup_rxqs(port);
	return err;
}

static int mvpp2_stop(struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
6874
	struct mvpp2_port_pcpu *port_pcpu;
6875
	struct mvpp2 *priv = port->priv;
6876
	int cpu;
6877 6878 6879 6880 6881 6882

	mvpp2_stop_dev(port);
	mvpp2_phy_disconnect(port);

	/* Mask interrupts on all CPUs */
	on_each_cpu(mvpp2_interrupts_mask, port, 1);
6883
	mvpp2_shared_interrupt_mask_unmask(port, true);
6884

6885 6886 6887
	if (priv->hw_version == MVPP22 && !port->phy_node && port->link_irq)
		free_irq(port->link_irq, port);

6888
	mvpp2_irqs_deinit(port);
6889 6890 6891
	if (!port->has_tx_irqs) {
		for_each_present_cpu(cpu) {
			port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6892

6893 6894 6895 6896
			hrtimer_cancel(&port_pcpu->tx_done_timer);
			port_pcpu->timer_scheduled = false;
			tasklet_kill(&port_pcpu->tx_done_tasklet);
		}
6897
	}
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
	mvpp2_cleanup_rxqs(port);
	mvpp2_cleanup_txqs(port);

	return 0;
}

static void mvpp2_set_rx_mode(struct net_device *dev)
{
	struct mvpp2_port *port = netdev_priv(dev);
	struct mvpp2 *priv = port->priv;
	struct netdev_hw_addr *ha;
	int id = port->id;
	bool allmulti = dev->flags & IFF_ALLMULTI;

	mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);

	/* Remove all port->id's mcast enries */
	mvpp2_prs_mcast_del_all(priv, id);

	if (allmulti && !netdev_mc_empty(dev)) {
		netdev_for_each_mc_addr(ha, dev)
			mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
	}
}

static int mvpp2_set_mac_address(struct net_device *dev, void *p)
{
	struct mvpp2_port *port = netdev_priv(dev);
	const struct sockaddr *addr = p;
	int err;

	if (!is_valid_ether_addr(addr->sa_data)) {
		err = -EADDRNOTAVAIL;
6933
		goto log_error;
6934 6935 6936 6937 6938 6939 6940 6941 6942
	}

	if (!netif_running(dev)) {
		err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
		if (!err)
			return 0;
		/* Reconfigure parser to accept the original MAC address */
		err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
		if (err)
6943
			goto log_error;
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954
	}

	mvpp2_stop_dev(port);

	err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
	if (!err)
		goto out_start;

	/* Reconfigure parser accept the original MAC address */
	err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
	if (err)
6955
		goto log_error;
6956 6957 6958 6959 6960
out_start:
	mvpp2_start_dev(port);
	mvpp2_egress_enable(port);
	mvpp2_ingress_enable(port);
	return 0;
6961
log_error:
6962
	netdev_err(dev, "failed to change MAC address\n");
6963 6964 6965 6966 6967 6968 6969 6970
	return err;
}

static int mvpp2_change_mtu(struct net_device *dev, int mtu)
{
	struct mvpp2_port *port = netdev_priv(dev);
	int err;

6971 6972 6973 6974
	if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
		netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
			    ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
		mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986
	}

	if (!netif_running(dev)) {
		err = mvpp2_bm_update_mtu(dev, mtu);
		if (!err) {
			port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
			return 0;
		}

		/* Reconfigure BM to the original MTU */
		err = mvpp2_bm_update_mtu(dev, dev->mtu);
		if (err)
6987
			goto log_error;
6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
	}

	mvpp2_stop_dev(port);

	err = mvpp2_bm_update_mtu(dev, mtu);
	if (!err) {
		port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
		goto out_start;
	}

	/* Reconfigure BM to the original MTU */
	err = mvpp2_bm_update_mtu(dev, dev->mtu);
	if (err)
7001
		goto log_error;
7002 7003 7004 7005 7006 7007 7008

out_start:
	mvpp2_start_dev(port);
	mvpp2_egress_enable(port);
	mvpp2_ingress_enable(port);

	return 0;
7009
log_error:
7010
	netdev_err(dev, "failed to change MTU\n");
7011 7012 7013
	return err;
}

7014
static void
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
	struct mvpp2_port *port = netdev_priv(dev);
	unsigned int start;
	int cpu;

	for_each_possible_cpu(cpu) {
		struct mvpp2_pcpu_stats *cpu_stats;
		u64 rx_packets;
		u64 rx_bytes;
		u64 tx_packets;
		u64 tx_bytes;

		cpu_stats = per_cpu_ptr(port->stats, cpu);
		do {
			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
			rx_packets = cpu_stats->rx_packets;
			rx_bytes   = cpu_stats->rx_bytes;
			tx_packets = cpu_stats->tx_packets;
			tx_bytes   = cpu_stats->tx_bytes;
		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));

		stats->rx_packets += rx_packets;
		stats->rx_bytes   += rx_bytes;
		stats->tx_packets += tx_packets;
		stats->tx_bytes   += tx_bytes;
	}

	stats->rx_errors	= dev->stats.rx_errors;
	stats->rx_dropped	= dev->stats.rx_dropped;
	stats->tx_dropped	= dev->stats.tx_dropped;
}

7048 7049 7050 7051
static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	int ret;

7052
	if (!dev->phydev)
7053 7054
		return -ENOTSUPP;

7055
	ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
7056 7057 7058 7059 7060 7061
	if (!ret)
		mvpp2_link_event(dev);

	return ret;
}

7062 7063 7064 7065 7066 7067 7068 7069 7070
/* Ethtool methods */

/* Set interrupt coalescing for ethtools */
static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
				      struct ethtool_coalesce *c)
{
	struct mvpp2_port *port = netdev_priv(dev);
	int queue;

7071
	for (queue = 0; queue < port->nrxqs; queue++) {
7072 7073 7074 7075
		struct mvpp2_rx_queue *rxq = port->rxqs[queue];

		rxq->time_coal = c->rx_coalesce_usecs;
		rxq->pkts_coal = c->rx_max_coalesced_frames;
7076 7077
		mvpp2_rx_pkts_coal_set(port, rxq);
		mvpp2_rx_time_coal_set(port, rxq);
7078 7079
	}

7080 7081 7082 7083 7084
	if (port->has_tx_irqs) {
		port->tx_time_coal = c->tx_coalesce_usecs;
		mvpp2_tx_time_coal_set(port);
	}

7085
	for (queue = 0; queue < port->ntxqs; queue++) {
7086 7087 7088
		struct mvpp2_tx_queue *txq = port->txqs[queue];

		txq->done_pkts_coal = c->tx_max_coalesced_frames;
7089 7090 7091

		if (port->has_tx_irqs)
			mvpp2_tx_pkts_coal_set(port, txq);
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
	}

	return 0;
}

/* get coalescing for ethtools */
static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
				      struct ethtool_coalesce *c)
{
	struct mvpp2_port *port = netdev_priv(dev);

	c->rx_coalesce_usecs        = port->rxqs[0]->time_coal;
	c->rx_max_coalesced_frames  = port->rxqs[0]->pkts_coal;
	c->tx_max_coalesced_frames =  port->txqs[0]->done_pkts_coal;
	return 0;
}

static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
				      struct ethtool_drvinfo *drvinfo)
{
	strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
		sizeof(drvinfo->driver));
	strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
		sizeof(drvinfo->version));
	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
		sizeof(drvinfo->bus_info));
}

static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
					struct ethtool_ringparam *ring)
{
	struct mvpp2_port *port = netdev_priv(dev);

	ring->rx_max_pending = MVPP2_MAX_RXD;
	ring->tx_max_pending = MVPP2_MAX_TXD;
	ring->rx_pending = port->rx_ring_size;
	ring->tx_pending = port->tx_ring_size;
}

static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
				       struct ethtool_ringparam *ring)
{
	struct mvpp2_port *port = netdev_priv(dev);
	u16 prev_rx_ring_size = port->rx_ring_size;
	u16 prev_tx_ring_size = port->tx_ring_size;
	int err;

	err = mvpp2_check_ringparam_valid(dev, ring);
	if (err)
		return err;

	if (!netif_running(dev)) {
		port->rx_ring_size = ring->rx_pending;
		port->tx_ring_size = ring->tx_pending;
		return 0;
	}

	/* The interface is running, so we have to force a
	 * reallocation of the queues
	 */
	mvpp2_stop_dev(port);
	mvpp2_cleanup_rxqs(port);
	mvpp2_cleanup_txqs(port);

	port->rx_ring_size = ring->rx_pending;
	port->tx_ring_size = ring->tx_pending;

	err = mvpp2_setup_rxqs(port);
	if (err) {
		/* Reallocate Rx queues with the original ring size */
		port->rx_ring_size = prev_rx_ring_size;
		ring->rx_pending = prev_rx_ring_size;
		err = mvpp2_setup_rxqs(port);
		if (err)
			goto err_out;
	}
	err = mvpp2_setup_txqs(port);
	if (err) {
		/* Reallocate Tx queues with the original ring size */
		port->tx_ring_size = prev_tx_ring_size;
		ring->tx_pending = prev_tx_ring_size;
		err = mvpp2_setup_txqs(port);
		if (err)
			goto err_clean_rxqs;
	}

	mvpp2_start_dev(port);
	mvpp2_egress_enable(port);
	mvpp2_ingress_enable(port);

	return 0;

err_clean_rxqs:
	mvpp2_cleanup_rxqs(port);
err_out:
7187
	netdev_err(dev, "failed to change ring parameters");
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
	return err;
}

/* Device ops */

static const struct net_device_ops mvpp2_netdev_ops = {
	.ndo_open		= mvpp2_open,
	.ndo_stop		= mvpp2_stop,
	.ndo_start_xmit		= mvpp2_tx,
	.ndo_set_rx_mode	= mvpp2_set_rx_mode,
	.ndo_set_mac_address	= mvpp2_set_mac_address,
	.ndo_change_mtu		= mvpp2_change_mtu,
	.ndo_get_stats64	= mvpp2_get_stats64,
7201
	.ndo_do_ioctl		= mvpp2_ioctl,
7202 7203 7204
};

static const struct ethtool_ops mvpp2_eth_tool_ops = {
7205
	.nway_reset	= phy_ethtool_nway_reset,
7206 7207 7208 7209 7210 7211
	.get_link	= ethtool_op_get_link,
	.set_coalesce	= mvpp2_ethtool_set_coalesce,
	.get_coalesce	= mvpp2_ethtool_get_coalesce,
	.get_drvinfo	= mvpp2_ethtool_get_drvinfo,
	.get_ringparam	= mvpp2_ethtool_get_ringparam,
	.set_ringparam	= mvpp2_ethtool_set_ringparam,
7212 7213
	.get_link_ksettings = phy_ethtool_get_link_ksettings,
	.set_link_ksettings = phy_ethtool_set_link_ksettings,
7214 7215
};

7216 7217 7218 7219 7220
/* Used for PPv2.1, or PPv2.2 with the old Device Tree binding that
 * had a single IRQ defined per-port.
 */
static int mvpp2_simple_queue_vectors_init(struct mvpp2_port *port,
					   struct device_node *port_node)
7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
{
	struct mvpp2_queue_vector *v = &port->qvecs[0];

	v->first_rxq = 0;
	v->nrxqs = port->nrxqs;
	v->type = MVPP2_QUEUE_VECTOR_SHARED;
	v->sw_thread_id = 0;
	v->sw_thread_mask = *cpumask_bits(cpu_online_mask);
	v->port = port;
	v->irq = irq_of_parse_and_map(port_node, 0);
	if (v->irq <= 0)
		return -EINVAL;
	netif_napi_add(port->dev, &v->napi, mvpp2_poll,
		       NAPI_POLL_WEIGHT);

	port->nqvecs = 1;

	return 0;
}

7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
static int mvpp2_multi_queue_vectors_init(struct mvpp2_port *port,
					  struct device_node *port_node)
{
	struct mvpp2_queue_vector *v;
	int i, ret;

	port->nqvecs = num_possible_cpus();
	if (queue_mode == MVPP2_QDIST_SINGLE_MODE)
		port->nqvecs += 1;

	for (i = 0; i < port->nqvecs; i++) {
		char irqname[16];

		v = port->qvecs + i;

		v->port = port;
		v->type = MVPP2_QUEUE_VECTOR_PRIVATE;
		v->sw_thread_id = i;
		v->sw_thread_mask = BIT(i);

		snprintf(irqname, sizeof(irqname), "tx-cpu%d", i);

		if (queue_mode == MVPP2_QDIST_MULTI_MODE) {
			v->first_rxq = i * MVPP2_DEFAULT_RXQ;
			v->nrxqs = MVPP2_DEFAULT_RXQ;
		} else if (queue_mode == MVPP2_QDIST_SINGLE_MODE &&
			   i == (port->nqvecs - 1)) {
			v->first_rxq = 0;
			v->nrxqs = port->nrxqs;
			v->type = MVPP2_QUEUE_VECTOR_SHARED;
			strncpy(irqname, "rx-shared", sizeof(irqname));
		}

		v->irq = of_irq_get_byname(port_node, irqname);
		if (v->irq <= 0) {
			ret = -EINVAL;
			goto err;
		}

		netif_napi_add(port->dev, &v->napi, mvpp2_poll,
			       NAPI_POLL_WEIGHT);
	}

	return 0;

err:
	for (i = 0; i < port->nqvecs; i++)
		irq_dispose_mapping(port->qvecs[i].irq);
	return ret;
}

static int mvpp2_queue_vectors_init(struct mvpp2_port *port,
				    struct device_node *port_node)
{
	if (port->has_tx_irqs)
		return mvpp2_multi_queue_vectors_init(port, port_node);
	else
		return mvpp2_simple_queue_vectors_init(port, port_node);
}

7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
static void mvpp2_queue_vectors_deinit(struct mvpp2_port *port)
{
	int i;

	for (i = 0; i < port->nqvecs; i++)
		irq_dispose_mapping(port->qvecs[i].irq);
}

/* Configure Rx queue group interrupt for this port */
static void mvpp2_rx_irqs_setup(struct mvpp2_port *port)
{
	struct mvpp2 *priv = port->priv;
	u32 val;
	int i;

	if (priv->hw_version == MVPP21) {
		mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
			    port->nrxqs);
		return;
	}

	/* Handle the more complicated PPv2.2 case */
	for (i = 0; i < port->nqvecs; i++) {
		struct mvpp2_queue_vector *qv = port->qvecs + i;

		if (!qv->nrxqs)
			continue;

		val = qv->sw_thread_id;
		val |= port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET;
		mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);

		val = qv->first_rxq;
		val |= qv->nrxqs << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET;
		mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
	}
}

7339 7340 7341 7342 7343 7344 7345 7346
/* Initialize port HW */
static int mvpp2_port_init(struct mvpp2_port *port)
{
	struct device *dev = port->dev->dev.parent;
	struct mvpp2 *priv = port->priv;
	struct mvpp2_txq_pcpu *txq_pcpu;
	int queue, cpu, err;

7347 7348
	/* Checks for hardware constraints */
	if (port->first_rxq + port->nrxqs >
7349
	    MVPP2_MAX_PORTS * priv->max_port_rxqs)
7350 7351
		return -EINVAL;

7352 7353 7354 7355
	if (port->nrxqs % 4 || (port->nrxqs > priv->max_port_rxqs) ||
	    (port->ntxqs > MVPP2_MAX_TXQ))
		return -EINVAL;

7356 7357 7358 7359
	/* Disable port */
	mvpp2_egress_disable(port);
	mvpp2_port_disable(port);

7360 7361
	port->tx_time_coal = MVPP2_TXDONE_COAL_USEC;

7362
	port->txqs = devm_kcalloc(dev, port->ntxqs, sizeof(*port->txqs),
7363 7364 7365 7366 7367 7368 7369
				  GFP_KERNEL);
	if (!port->txqs)
		return -ENOMEM;

	/* Associate physical Tx queues to this port and initialize.
	 * The mapping is predefined.
	 */
7370
	for (queue = 0; queue < port->ntxqs; queue++) {
7371 7372 7373 7374
		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
		struct mvpp2_tx_queue *txq;

		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
7375 7376 7377 7378
		if (!txq) {
			err = -ENOMEM;
			goto err_free_percpu;
		}
7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396

		txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
		if (!txq->pcpu) {
			err = -ENOMEM;
			goto err_free_percpu;
		}

		txq->id = queue_phy_id;
		txq->log_id = queue;
		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
		for_each_present_cpu(cpu) {
			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
			txq_pcpu->cpu = cpu;
		}

		port->txqs[queue] = txq;
	}

7397
	port->rxqs = devm_kcalloc(dev, port->nrxqs, sizeof(*port->rxqs),
7398 7399 7400 7401 7402 7403 7404
				  GFP_KERNEL);
	if (!port->rxqs) {
		err = -ENOMEM;
		goto err_free_percpu;
	}

	/* Allocate and initialize Rx queue for this port */
7405
	for (queue = 0; queue < port->nrxqs; queue++) {
7406 7407 7408 7409
		struct mvpp2_rx_queue *rxq;

		/* Map physical Rx queue to port's logical Rx queue */
		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
7410 7411
		if (!rxq) {
			err = -ENOMEM;
7412
			goto err_free_percpu;
7413
		}
7414 7415 7416 7417 7418 7419 7420 7421
		/* Map this Rx queue to a physical queue */
		rxq->id = port->first_rxq + queue;
		rxq->port = port->id;
		rxq->logic_rxq = queue;

		port->rxqs[queue] = rxq;
	}

7422
	mvpp2_rx_irqs_setup(port);
7423 7424

	/* Create Rx descriptor rings */
7425
	for (queue = 0; queue < port->nrxqs; queue++) {
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
		struct mvpp2_rx_queue *rxq = port->rxqs[queue];

		rxq->size = port->rx_ring_size;
		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
		rxq->time_coal = MVPP2_RX_COAL_USEC;
	}

	mvpp2_ingress_disable(port);

	/* Port default configuration */
	mvpp2_defaults_set(port);

	/* Port's classifier configuration */
	mvpp2_cls_oversize_rxq_set(port);
	mvpp2_cls_port_config(port);

	/* Provide an initial Rx packet size */
	port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);

	/* Initialize pools for swf */
	err = mvpp2_swf_bm_pool_init(port);
	if (err)
		goto err_free_percpu;

	return 0;

err_free_percpu:
7453
	for (queue = 0; queue < port->ntxqs; queue++) {
7454 7455 7456 7457 7458 7459 7460
		if (!port->txqs[queue])
			continue;
		free_percpu(port->txqs[queue]->pcpu);
	}
	return err;
}

7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
/* Checks if the port DT description has the TX interrupts
 * described. On PPv2.1, there are no such interrupts. On PPv2.2,
 * there are available, but we need to keep support for old DTs.
 */
static bool mvpp2_port_has_tx_irqs(struct mvpp2 *priv,
				   struct device_node *port_node)
{
	char *irqs[5] = { "rx-shared", "tx-cpu0", "tx-cpu1",
			  "tx-cpu2", "tx-cpu3" };
	int ret, i;

	if (priv->hw_version == MVPP21)
		return false;

	for (i = 0; i < 5; i++) {
		ret = of_property_match_string(port_node, "interrupt-names",
					       irqs[i]);
		if (ret < 0)
			return false;
	}

	return true;
}

7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
static void mvpp2_port_copy_mac_addr(struct net_device *dev, struct mvpp2 *priv,
				     struct device_node *port_node,
				     char **mac_from)
{
	struct mvpp2_port *port = netdev_priv(dev);
	char hw_mac_addr[ETH_ALEN] = {0};
	const char *dt_mac_addr;

	dt_mac_addr = of_get_mac_address(port_node);
	if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
		*mac_from = "device tree";
		ether_addr_copy(dev->dev_addr, dt_mac_addr);
7497 7498
		return;
	}
7499

7500 7501 7502 7503 7504 7505 7506
	if (priv->hw_version == MVPP21) {
		mvpp21_get_mac_address(port, hw_mac_addr);
		if (is_valid_ether_addr(hw_mac_addr)) {
			*mac_from = "hardware";
			ether_addr_copy(dev->dev_addr, hw_mac_addr);
			return;
		}
7507
	}
7508 7509 7510

	*mac_from = "random";
	eth_hw_addr_random(dev);
7511 7512
}

7513 7514 7515
/* Ports initialization */
static int mvpp2_port_probe(struct platform_device *pdev,
			    struct device_node *port_node,
Y
Yan Markman 已提交
7516
			    struct mvpp2 *priv, int index)
7517 7518
{
	struct device_node *phy_node;
7519
	struct phy *comphy;
7520
	struct mvpp2_port *port;
7521
	struct mvpp2_port_pcpu *port_pcpu;
7522 7523
	struct net_device *dev;
	struct resource *res;
7524
	char *mac_from = "";
7525
	unsigned int ntxqs, nrxqs;
7526
	bool has_tx_irqs;
7527 7528 7529
	u32 id;
	int features;
	int phy_mode;
7530
	int err, i, cpu;
7531

7532 7533 7534 7535 7536
	has_tx_irqs = mvpp2_port_has_tx_irqs(priv, port_node);

	if (!has_tx_irqs)
		queue_mode = MVPP2_QDIST_SINGLE_MODE;

7537
	ntxqs = MVPP2_MAX_TXQ;
7538 7539 7540 7541
	if (priv->hw_version == MVPP22 && queue_mode == MVPP2_QDIST_MULTI_MODE)
		nrxqs = MVPP2_DEFAULT_RXQ * num_possible_cpus();
	else
		nrxqs = MVPP2_DEFAULT_RXQ;
7542 7543

	dev = alloc_etherdev_mqs(sizeof(*port), ntxqs, nrxqs);
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554
	if (!dev)
		return -ENOMEM;

	phy_node = of_parse_phandle(port_node, "phy", 0);
	phy_mode = of_get_phy_mode(port_node);
	if (phy_mode < 0) {
		dev_err(&pdev->dev, "incorrect phy mode\n");
		err = phy_mode;
		goto err_free_netdev;
	}

7555 7556 7557 7558 7559 7560 7561 7562 7563
	comphy = devm_of_phy_get(&pdev->dev, port_node, NULL);
	if (IS_ERR(comphy)) {
		if (PTR_ERR(comphy) == -EPROBE_DEFER) {
			err = -EPROBE_DEFER;
			goto err_free_netdev;
		}
		comphy = NULL;
	}

7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575
	if (of_property_read_u32(port_node, "port-id", &id)) {
		err = -EINVAL;
		dev_err(&pdev->dev, "missing port-id value\n");
		goto err_free_netdev;
	}

	dev->tx_queue_len = MVPP2_MAX_TXD;
	dev->watchdog_timeo = 5 * HZ;
	dev->netdev_ops = &mvpp2_netdev_ops;
	dev->ethtool_ops = &mvpp2_eth_tool_ops;

	port = netdev_priv(dev);
7576
	port->dev = dev;
7577 7578
	port->ntxqs = ntxqs;
	port->nrxqs = nrxqs;
7579 7580
	port->priv = priv;
	port->has_tx_irqs = has_tx_irqs;
7581

7582 7583
	err = mvpp2_queue_vectors_init(port, port_node);
	if (err)
7584 7585
		goto err_free_netdev;

7586 7587 7588 7589 7590 7591 7592 7593 7594
	port->link_irq = of_irq_get_byname(port_node, "link");
	if (port->link_irq == -EPROBE_DEFER) {
		err = -EPROBE_DEFER;
		goto err_deinit_qvecs;
	}
	if (port->link_irq <= 0)
		/* the link irq is optional */
		port->link_irq = 0;

7595 7596 7597 7598
	if (of_property_read_bool(port_node, "marvell,loopback"))
		port->flags |= MVPP2_F_LOOPBACK;

	port->id = id;
7599
	if (priv->hw_version == MVPP21)
7600
		port->first_rxq = port->id * port->nrxqs;
7601 7602 7603
	else
		port->first_rxq = port->id * priv->max_port_rxqs;

7604 7605
	port->phy_node = phy_node;
	port->phy_interface = phy_mode;
7606
	port->comphy = comphy;
7607

7608 7609 7610 7611 7612
	if (priv->hw_version == MVPP21) {
		res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id);
		port->base = devm_ioremap_resource(&pdev->dev, res);
		if (IS_ERR(port->base)) {
			err = PTR_ERR(port->base);
7613
			goto err_free_irq;
7614 7615 7616 7617 7618 7619
		}
	} else {
		if (of_property_read_u32(port_node, "gop-port-id",
					 &port->gop_id)) {
			err = -EINVAL;
			dev_err(&pdev->dev, "missing gop-port-id value\n");
7620
			goto err_deinit_qvecs;
7621 7622 7623
		}

		port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
7624 7625 7626 7627 7628 7629
	}

	/* Alloc per-cpu stats */
	port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
	if (!port->stats) {
		err = -ENOMEM;
7630
		goto err_free_irq;
7631 7632
	}

7633
	mvpp2_port_copy_mac_addr(dev, priv, port_node, &mac_from);
7634 7635 7636 7637 7638 7639 7640 7641 7642 7643

	port->tx_ring_size = MVPP2_MAX_TXD;
	port->rx_ring_size = MVPP2_MAX_RXD;
	SET_NETDEV_DEV(dev, &pdev->dev);

	err = mvpp2_port_init(port);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to init port %d\n", id);
		goto err_free_stats;
	}
7644 7645 7646 7647 7648 7649 7650

	mvpp2_port_periodic_xon_disable(port);

	if (priv->hw_version == MVPP21)
		mvpp2_port_fc_adv_enable(port);

	mvpp2_port_reset(port);
7651

7652 7653 7654 7655 7656 7657
	port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
	if (!port->pcpu) {
		err = -ENOMEM;
		goto err_free_txq_pcpu;
	}

7658 7659 7660
	if (!port->has_tx_irqs) {
		for_each_present_cpu(cpu) {
			port_pcpu = per_cpu_ptr(port->pcpu, cpu);
7661

7662 7663 7664 7665
			hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
				     HRTIMER_MODE_REL_PINNED);
			port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
			port_pcpu->timer_scheduled = false;
7666

7667 7668 7669 7670
			tasklet_init(&port_pcpu->tx_done_tasklet,
				     mvpp2_tx_proc_cb,
				     (unsigned long)dev);
		}
7671 7672
	}

7673
	features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
7674 7675 7676 7677
	dev->features = features | NETIF_F_RXCSUM;
	dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
	dev->vlan_features |= features;

7678 7679 7680 7681 7682
	/* MTU range: 68 - 9676 */
	dev->min_mtu = ETH_MIN_MTU;
	/* 9676 == 9700 - 20 and rounding to 8 */
	dev->max_mtu = 9676;

7683 7684 7685
	err = register_netdev(dev);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to register netdev\n");
7686
		goto err_free_port_pcpu;
7687 7688 7689
	}
	netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);

Y
Yan Markman 已提交
7690
	priv->port_list[index] = port;
7691 7692
	return 0;

7693 7694
err_free_port_pcpu:
	free_percpu(port->pcpu);
7695
err_free_txq_pcpu:
7696
	for (i = 0; i < port->ntxqs; i++)
7697 7698 7699
		free_percpu(port->txqs[i]->pcpu);
err_free_stats:
	free_percpu(port->stats);
7700 7701 7702
err_free_irq:
	if (port->link_irq)
		irq_dispose_mapping(port->link_irq);
7703 7704
err_deinit_qvecs:
	mvpp2_queue_vectors_deinit(port);
7705
err_free_netdev:
7706
	of_node_put(phy_node);
7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
	free_netdev(dev);
	return err;
}

/* Ports removal routine */
static void mvpp2_port_remove(struct mvpp2_port *port)
{
	int i;

	unregister_netdev(port->dev);
7717
	of_node_put(port->phy_node);
7718
	free_percpu(port->pcpu);
7719
	free_percpu(port->stats);
7720
	for (i = 0; i < port->ntxqs; i++)
7721
		free_percpu(port->txqs[i]->pcpu);
7722
	mvpp2_queue_vectors_deinit(port);
7723 7724
	if (port->link_irq)
		irq_dispose_mapping(port->link_irq);
7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777
	free_netdev(port->dev);
}

/* Initialize decoding windows */
static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
				    struct mvpp2 *priv)
{
	u32 win_enable;
	int i;

	for (i = 0; i < 6; i++) {
		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);

		if (i < 4)
			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
	}

	win_enable = 0;

	for (i = 0; i < dram->num_cs; i++) {
		const struct mbus_dram_window *cs = dram->cs + i;

		mvpp2_write(priv, MVPP2_WIN_BASE(i),
			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
			    dram->mbus_dram_target_id);

		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
			    (cs->size - 1) & 0xffff0000);

		win_enable |= (1 << i);
	}

	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
}

/* Initialize Rx FIFO's */
static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
{
	int port;

	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
			    MVPP2_RX_FIFO_PORT_DATA_SIZE);
		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
			    MVPP2_RX_FIFO_PORT_ATTR_SIZE);
	}

	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
		    MVPP2_RX_FIFO_PORT_MIN_PKT);
	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
}

7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831
static void mvpp2_axi_init(struct mvpp2 *priv)
{
	u32 val, rdval, wrval;

	mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);

	/* AXI Bridge Configuration */

	rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
		<< MVPP22_AXI_ATTR_CACHE_OFFS;
	rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;

	wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
		<< MVPP22_AXI_ATTR_CACHE_OFFS;
	wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;

	/* BM */
	mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
	mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);

	/* Descriptors */
	mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
	mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);

	/* Buffer Data */
	mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
	mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);

	val = MVPP22_AXI_CODE_CACHE_NON_CACHE
		<< MVPP22_AXI_CODE_CACHE_OFFS;
	val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
	mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
	mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);

	val = MVPP22_AXI_CODE_CACHE_RD_CACHE
		<< MVPP22_AXI_CODE_CACHE_OFFS;
	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
		<< MVPP22_AXI_CODE_DOMAIN_OFFS;

	mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);

	val = MVPP22_AXI_CODE_CACHE_WR_CACHE
		<< MVPP22_AXI_CODE_CACHE_OFFS;
	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
		<< MVPP22_AXI_CODE_DOMAIN_OFFS;

	mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
}

7832 7833 7834 7835 7836
/* Initialize network controller common part HW */
static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
{
	const struct mbus_dram_target_info *dram_target_info;
	int err, i;
7837
	u32 val;
7838 7839 7840 7841 7842 7843

	/* MBUS windows configuration */
	dram_target_info = mv_mbus_dram_info();
	if (dram_target_info)
		mvpp2_conf_mbus_windows(dram_target_info, priv);

7844 7845 7846
	if (priv->hw_version == MVPP22)
		mvpp2_axi_init(priv);

7847
	/* Disable HW PHY polling */
7848 7849 7850 7851 7852 7853 7854 7855 7856
	if (priv->hw_version == MVPP21) {
		val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
		val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
		writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
	} else {
		val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
		val &= ~MVPP22_SMI_POLLING_EN;
		writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
	}
7857

7858 7859
	/* Allocate and initialize aggregated TXQs */
	priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
7860
				       sizeof(*priv->aggr_txqs),
7861 7862 7863 7864 7865 7866 7867
				       GFP_KERNEL);
	if (!priv->aggr_txqs)
		return -ENOMEM;

	for_each_present_cpu(i) {
		priv->aggr_txqs[i].id = i;
		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
7868
		err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], i, priv);
7869 7870 7871 7872 7873 7874 7875
		if (err < 0)
			return err;
	}

	/* Rx Fifo Init */
	mvpp2_rx_fifo_init(priv);

7876 7877 7878
	if (priv->hw_version == MVPP21)
		writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
		       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904

	/* Allow cache snoop when transmiting packets */
	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);

	/* Buffer Manager initialization */
	err = mvpp2_bm_init(pdev, priv);
	if (err < 0)
		return err;

	/* Parser default initialization */
	err = mvpp2_prs_default_init(pdev, priv);
	if (err < 0)
		return err;

	/* Classifier default initialization */
	mvpp2_cls_init(priv);

	return 0;
}

static int mvpp2_probe(struct platform_device *pdev)
{
	struct device_node *dn = pdev->dev.of_node;
	struct device_node *port_node;
	struct mvpp2 *priv;
	struct resource *res;
7905
	void __iomem *base;
7906
	int port_count, i;
7907 7908
	int err;

7909
	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
7910 7911 7912
	if (!priv)
		return -ENOMEM;

7913 7914 7915
	priv->hw_version =
		(unsigned long)of_device_get_match_data(&pdev->dev);

7916
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	if (priv->hw_version == MVPP21) {
		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
		priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
		if (IS_ERR(priv->lms_base))
			return PTR_ERR(priv->lms_base);
	} else {
		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
		priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
		if (IS_ERR(priv->iface_base))
			return PTR_ERR(priv->iface_base);
A
Antoine Ténart 已提交
7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941

		priv->sysctrl_base =
			syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
							"marvell,system-controller");
		if (IS_ERR(priv->sysctrl_base))
			/* The system controller regmap is optional for dt
			 * compatibility reasons. When not provided, the
			 * configuration of the GoP relies on the
			 * firmware/bootloader.
			 */
			priv->sysctrl_base = NULL;
7942 7943
	}

7944
	for (i = 0; i < MVPP2_MAX_THREADS; i++) {
7945 7946 7947 7948
		u32 addr_space_sz;

		addr_space_sz = (priv->hw_version == MVPP21 ?
				 MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
7949
		priv->swth_base[i] = base + i * addr_space_sz;
7950
	}
7951

7952 7953 7954 7955 7956
	if (priv->hw_version == MVPP21)
		priv->max_port_rxqs = 8;
	else
		priv->max_port_rxqs = 32;

7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972
	priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
	if (IS_ERR(priv->pp_clk))
		return PTR_ERR(priv->pp_clk);
	err = clk_prepare_enable(priv->pp_clk);
	if (err < 0)
		return err;

	priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
	if (IS_ERR(priv->gop_clk)) {
		err = PTR_ERR(priv->gop_clk);
		goto err_pp_clk;
	}
	err = clk_prepare_enable(priv->gop_clk);
	if (err < 0)
		goto err_pp_clk;

7973 7974 7975 7976 7977 7978 7979 7980 7981 7982
	if (priv->hw_version == MVPP22) {
		priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
		if (IS_ERR(priv->mg_clk)) {
			err = PTR_ERR(priv->mg_clk);
			goto err_gop_clk;
		}

		err = clk_prepare_enable(priv->mg_clk);
		if (err < 0)
			goto err_gop_clk;
7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994

		priv->axi_clk = devm_clk_get(&pdev->dev, "axi_clk");
		if (IS_ERR(priv->axi_clk)) {
			err = PTR_ERR(priv->axi_clk);
			if (err == -EPROBE_DEFER)
				goto err_gop_clk;
			priv->axi_clk = NULL;
		} else {
			err = clk_prepare_enable(priv->axi_clk);
			if (err < 0)
				goto err_gop_clk;
		}
7995 7996
	}

7997 7998 7999
	/* Get system's tclk rate */
	priv->tclk = clk_get_rate(priv->pp_clk);

8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
	if (priv->hw_version == MVPP22) {
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(40));
		if (err)
			goto err_mg_clk;
		/* Sadly, the BM pools all share the same register to
		 * store the high 32 bits of their address. So they
		 * must all have the same high 32 bits, which forces
		 * us to restrict coherent memory to DMA_BIT_MASK(32).
		 */
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
		if (err)
			goto err_mg_clk;
	}

8014 8015 8016 8017
	/* Initialize network controller */
	err = mvpp2_init(pdev, priv);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to initialize controller\n");
8018
		goto err_mg_clk;
8019 8020 8021 8022 8023
	}

	port_count = of_get_available_child_count(dn);
	if (port_count == 0) {
		dev_err(&pdev->dev, "no ports enabled\n");
8024
		err = -ENODEV;
8025
		goto err_mg_clk;
8026 8027 8028
	}

	priv->port_list = devm_kcalloc(&pdev->dev, port_count,
8029 8030
				       sizeof(*priv->port_list),
				       GFP_KERNEL);
8031 8032
	if (!priv->port_list) {
		err = -ENOMEM;
8033
		goto err_mg_clk;
8034 8035 8036
	}

	/* Initialize ports */
Y
Yan Markman 已提交
8037
	i = 0;
8038
	for_each_available_child_of_node(dn, port_node) {
Y
Yan Markman 已提交
8039
		err = mvpp2_port_probe(pdev, port_node, priv, i);
8040
		if (err < 0)
8041
			goto err_mg_clk;
Y
Yan Markman 已提交
8042
		i++;
8043 8044 8045 8046 8047
	}

	platform_set_drvdata(pdev, priv);
	return 0;

8048
err_mg_clk:
8049
	clk_disable_unprepare(priv->axi_clk);
8050 8051
	if (priv->hw_version == MVPP22)
		clk_disable_unprepare(priv->mg_clk);
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083
err_gop_clk:
	clk_disable_unprepare(priv->gop_clk);
err_pp_clk:
	clk_disable_unprepare(priv->pp_clk);
	return err;
}

static int mvpp2_remove(struct platform_device *pdev)
{
	struct mvpp2 *priv = platform_get_drvdata(pdev);
	struct device_node *dn = pdev->dev.of_node;
	struct device_node *port_node;
	int i = 0;

	for_each_available_child_of_node(dn, port_node) {
		if (priv->port_list[i])
			mvpp2_port_remove(priv->port_list[i]);
		i++;
	}

	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
		struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];

		mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
	}

	for_each_present_cpu(i) {
		struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];

		dma_free_coherent(&pdev->dev,
				  MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
				  aggr_txq->descs,
8084
				  aggr_txq->descs_dma);
8085 8086
	}

8087
	clk_disable_unprepare(priv->axi_clk);
8088
	clk_disable_unprepare(priv->mg_clk);
8089 8090 8091 8092 8093 8094 8095
	clk_disable_unprepare(priv->pp_clk);
	clk_disable_unprepare(priv->gop_clk);

	return 0;
}

static const struct of_device_id mvpp2_match[] = {
8096 8097 8098 8099
	{
		.compatible = "marvell,armada-375-pp2",
		.data = (void *)MVPP21,
	},
8100 8101 8102 8103
	{
		.compatible = "marvell,armada-7k-pp22",
		.data = (void *)MVPP22,
	},
8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120
	{ }
};
MODULE_DEVICE_TABLE(of, mvpp2_match);

static struct platform_driver mvpp2_driver = {
	.probe = mvpp2_probe,
	.remove = mvpp2_remove,
	.driver = {
		.name = MVPP2_DRIVER_NAME,
		.of_match_table = mvpp2_match,
	},
};

module_platform_driver(mvpp2_driver);

MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
8121
MODULE_LICENSE("GPL v2");