e820.c 36.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Handle the memory map.
 * The functions here do the job until bootmem takes over.
 *
 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
 *     Alex Achenbach <xela@slit.de>, December 2002.
 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 *
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/ioport.h>
#include <linux/string.h>
#include <linux/kexec.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/pfn.h>
21
#include <linux/suspend.h>
22
#include <linux/firmware-map.h>
23 24 25 26

#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/e820.h>
27
#include <asm/proto.h>
28
#include <asm/setup.h>
29
#include <asm/trampoline.h>
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * The e820 map is the map that gets modified e.g. with command line parameters
 * and that is also registered with modifications in the kernel resource tree
 * with the iomem_resource as parent.
 *
 * The e820_saved is directly saved after the BIOS-provided memory map is
 * copied. It doesn't get modified afterwards. It's registered for the
 * /sys/firmware/memmap interface.
 *
 * That memory map is not modified and is used as base for kexec. The kexec'd
 * kernel should get the same memory map as the firmware provides. Then the
 * user can e.g. boot the original kernel with mem=1G while still booting the
 * next kernel with full memory.
 */
45
struct e820map e820;
46
struct e820map e820_saved;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

/* For PCI or other memory-mapped resources */
unsigned long pci_mem_start = 0xaeedbabe;
#ifdef CONFIG_PCI
EXPORT_SYMBOL(pci_mem_start);
#endif

/*
 * This function checks if any part of the range <start,end> is mapped
 * with type.
 */
int
e820_any_mapped(u64 start, u64 end, unsigned type)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (type && ei->type != type)
			continue;
		if (ei->addr >= end || ei->addr + ei->size <= start)
			continue;
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(e820_any_mapped);

/*
 * This function checks if the entire range <start,end> is mapped with type.
 *
 * Note: this function only works correct if the e820 table is sorted and
 * not-overlapping, which is the case
 */
int __init e820_all_mapped(u64 start, u64 end, unsigned type)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (type && ei->type != type)
			continue;
		/* is the region (part) in overlap with the current region ?*/
		if (ei->addr >= end || ei->addr + ei->size <= start)
			continue;

		/* if the region is at the beginning of <start,end> we move
		 * start to the end of the region since it's ok until there
		 */
		if (ei->addr <= start)
			start = ei->addr + ei->size;
		/*
		 * if start is now at or beyond end, we're done, full
		 * coverage
		 */
		if (start >= end)
			return 1;
	}
	return 0;
}

/*
 * Add a memory region to the kernel e820 map.
 */
Y
Yinghai Lu 已提交
113 114
static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
					 int type)
115
{
Y
Yinghai Lu 已提交
116
	int x = e820x->nr_map;
117

118
	if (x >= ARRAY_SIZE(e820x->map)) {
119 120 121 122
		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
		return;
	}

Y
Yinghai Lu 已提交
123 124 125 126 127 128 129 130 131
	e820x->map[x].addr = start;
	e820x->map[x].size = size;
	e820x->map[x].type = type;
	e820x->nr_map++;
}

void __init e820_add_region(u64 start, u64 size, int type)
{
	__e820_add_region(&e820, start, size, type);
132 133
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
static void __init e820_print_type(u32 type)
{
	switch (type) {
	case E820_RAM:
	case E820_RESERVED_KERN:
		printk(KERN_CONT "(usable)");
		break;
	case E820_RESERVED:
		printk(KERN_CONT "(reserved)");
		break;
	case E820_ACPI:
		printk(KERN_CONT "(ACPI data)");
		break;
	case E820_NVS:
		printk(KERN_CONT "(ACPI NVS)");
		break;
	case E820_UNUSABLE:
		printk(KERN_CONT "(unusable)");
		break;
	default:
		printk(KERN_CONT "type %u", type);
		break;
	}
}

159 160 161 162 163 164 165 166 167
void __init e820_print_map(char *who)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
		       (unsigned long long) e820.map[i].addr,
		       (unsigned long long)
		       (e820.map[i].addr + e820.map[i].size));
168 169
		e820_print_type(e820.map[i].type);
		printk(KERN_CONT "\n");
170 171 172 173 174 175 176
	}
}

/*
 * Sanitize the BIOS e820 map.
 *
 * Some e820 responses include overlapping entries. The following
177 178 179
 * replaces the original e820 map with a new one, removing overlaps,
 * and resolving conflicting memory types in favor of highest
 * numbered type.
180
 *
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
 * The input parameter biosmap points to an array of 'struct
 * e820entry' which on entry has elements in the range [0, *pnr_map)
 * valid, and which has space for up to max_nr_map entries.
 * On return, the resulting sanitized e820 map entries will be in
 * overwritten in the same location, starting at biosmap.
 *
 * The integer pointed to by pnr_map must be valid on entry (the
 * current number of valid entries located at biosmap) and will
 * be updated on return, with the new number of valid entries
 * (something no more than max_nr_map.)
 *
 * The return value from sanitize_e820_map() is zero if it
 * successfully 'sanitized' the map entries passed in, and is -1
 * if it did nothing, which can happen if either of (1) it was
 * only passed one map entry, or (2) any of the input map entries
 * were invalid (start + size < start, meaning that the size was
 * so big the described memory range wrapped around through zero.)
 *
 *	Visually we're performing the following
 *	(1,2,3,4 = memory types)...
 *
 *	Sample memory map (w/overlaps):
 *	   ____22__________________
 *	   ______________________4_
 *	   ____1111________________
 *	   _44_____________________
 *	   11111111________________
 *	   ____________________33__
 *	   ___________44___________
 *	   __________33333_________
 *	   ______________22________
 *	   ___________________2222_
 *	   _________111111111______
 *	   _____________________11_
 *	   _________________4______
 *
 *	Sanitized equivalent (no overlap):
 *	   1_______________________
 *	   _44_____________________
 *	   ___1____________________
 *	   ____22__________________
 *	   ______11________________
 *	   _________1______________
 *	   __________3_____________
 *	   ___________44___________
 *	   _____________33_________
 *	   _______________2________
 *	   ________________1_______
 *	   _________________4______
 *	   ___________________2____
 *	   ____________________33__
 *	   ______________________4_
233
 */
234

235
int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
236
			     u32 *pnr_map)
237 238 239 240 241
{
	struct change_member {
		struct e820entry *pbios; /* pointer to original bios entry */
		unsigned long long addr; /* address for this change point */
	};
242 243 244 245
	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
	static struct change_member *change_point[2*E820_X_MAX] __initdata;
	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
	static struct e820entry new_bios[E820_X_MAX] __initdata;
246 247 248 249 250 251 252 253 254 255 256 257 258 259
	struct change_member *change_tmp;
	unsigned long current_type, last_type;
	unsigned long long last_addr;
	int chgidx, still_changing;
	int overlap_entries;
	int new_bios_entry;
	int old_nr, new_nr, chg_nr;
	int i;

	/* if there's only one memory region, don't bother */
	if (*pnr_map < 2)
		return -1;

	old_nr = *pnr_map;
260
	BUG_ON(old_nr > max_nr_map);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	/* bail out if we find any unreasonable addresses in bios map */
	for (i = 0; i < old_nr; i++)
		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
			return -1;

	/* create pointers for initial change-point information (for sorting) */
	for (i = 0; i < 2 * old_nr; i++)
		change_point[i] = &change_point_list[i];

	/* record all known change-points (starting and ending addresses),
	   omitting those that are for empty memory regions */
	chgidx = 0;
	for (i = 0; i < old_nr; i++)	{
		if (biosmap[i].size != 0) {
			change_point[chgidx]->addr = biosmap[i].addr;
			change_point[chgidx++]->pbios = &biosmap[i];
			change_point[chgidx]->addr = biosmap[i].addr +
				biosmap[i].size;
			change_point[chgidx++]->pbios = &biosmap[i];
		}
	}
	chg_nr = chgidx;

	/* sort change-point list by memory addresses (low -> high) */
	still_changing = 1;
	while (still_changing)	{
		still_changing = 0;
		for (i = 1; i < chg_nr; i++)  {
			unsigned long long curaddr, lastaddr;
			unsigned long long curpbaddr, lastpbaddr;

			curaddr = change_point[i]->addr;
			lastaddr = change_point[i - 1]->addr;
			curpbaddr = change_point[i]->pbios->addr;
			lastpbaddr = change_point[i - 1]->pbios->addr;

			/*
			 * swap entries, when:
			 *
			 * curaddr > lastaddr or
			 * curaddr == lastaddr and curaddr == curpbaddr and
			 * lastaddr != lastpbaddr
			 */
			if (curaddr < lastaddr ||
			    (curaddr == lastaddr && curaddr == curpbaddr &&
			     lastaddr != lastpbaddr)) {
				change_tmp = change_point[i];
				change_point[i] = change_point[i-1];
				change_point[i-1] = change_tmp;
				still_changing = 1;
			}
		}
	}

	/* create a new bios memory map, removing overlaps */
	overlap_entries = 0;	 /* number of entries in the overlap table */
	new_bios_entry = 0;	 /* index for creating new bios map entries */
	last_type = 0;		 /* start with undefined memory type */
	last_addr = 0;		 /* start with 0 as last starting address */

	/* loop through change-points, determining affect on the new bios map */
	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
		/* keep track of all overlapping bios entries */
		if (change_point[chgidx]->addr ==
		    change_point[chgidx]->pbios->addr) {
			/*
			 * add map entry to overlap list (> 1 entry
			 * implies an overlap)
			 */
			overlap_list[overlap_entries++] =
				change_point[chgidx]->pbios;
		} else {
			/*
			 * remove entry from list (order independent,
			 * so swap with last)
			 */
			for (i = 0; i < overlap_entries; i++) {
				if (overlap_list[i] ==
				    change_point[chgidx]->pbios)
					overlap_list[i] =
						overlap_list[overlap_entries-1];
			}
			overlap_entries--;
		}
		/*
		 * if there are overlapping entries, decide which
		 * "type" to use (larger value takes precedence --
		 * 1=usable, 2,3,4,4+=unusable)
		 */
		current_type = 0;
		for (i = 0; i < overlap_entries; i++)
			if (overlap_list[i]->type > current_type)
				current_type = overlap_list[i]->type;
		/*
		 * continue building up new bios map based on this
		 * information
		 */
		if (current_type != last_type)	{
			if (last_type != 0)	 {
				new_bios[new_bios_entry].size =
					change_point[chgidx]->addr - last_addr;
				/*
				 * move forward only if the new size
				 * was non-zero
				 */
				if (new_bios[new_bios_entry].size != 0)
					/*
					 * no more space left for new
					 * bios entries ?
					 */
372
					if (++new_bios_entry >= max_nr_map)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
						break;
			}
			if (current_type != 0)	{
				new_bios[new_bios_entry].addr =
					change_point[chgidx]->addr;
				new_bios[new_bios_entry].type = current_type;
				last_addr = change_point[chgidx]->addr;
			}
			last_type = current_type;
		}
	}
	/* retain count for new bios entries */
	new_nr = new_bios_entry;

	/* copy new bios mapping into original location */
	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
	*pnr_map = new_nr;

	return 0;
}

394
static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
{
	while (nr_map) {
		u64 start = biosmap->addr;
		u64 size = biosmap->size;
		u64 end = start + size;
		u32 type = biosmap->type;

		/* Overflow in 64 bits? Ignore the memory map. */
		if (start > end)
			return -1;

		e820_add_region(start, size, type);

		biosmap++;
		nr_map--;
	}
	return 0;
}

414 415 416 417 418 419 420 421 422
/*
 * Copy the BIOS e820 map into a safe place.
 *
 * Sanity-check it while we're at it..
 *
 * If we're lucky and live on a modern system, the setup code
 * will have given us a memory map that we can use to properly
 * set up memory.  If we aren't, we'll fake a memory map.
 */
423
static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
424 425 426 427 428
{
	/* Only one memory region (or negative)? Ignore it */
	if (nr_map < 2)
		return -1;

429
	return __append_e820_map(biosmap, nr_map);
430 431
}

Y
Yinghai Lu 已提交
432
static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
433 434
					u64 size, unsigned old_type,
					unsigned new_type)
435
{
436
	u64 end;
Y
Yinghai Lu 已提交
437
	unsigned int i;
438 439 440 441
	u64 real_updated_size = 0;

	BUG_ON(old_type == new_type);

442 443 444
	if (size > (ULLONG_MAX - start))
		size = ULLONG_MAX - start;

445
	end = start + size;
446 447 448 449 450 451 452 453
	printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ",
		       (unsigned long long) start,
		       (unsigned long long) end);
	e820_print_type(old_type);
	printk(KERN_CONT " ==> ");
	e820_print_type(new_type);
	printk(KERN_CONT "\n");

454
	for (i = 0; i < e820x->nr_map; i++) {
455
		struct e820entry *ei = &e820x->map[i];
456
		u64 final_start, final_end;
457 458
		u64 ei_end;

459 460
		if (ei->type != old_type)
			continue;
461 462 463 464

		ei_end = ei->addr + ei->size;
		/* totally covered by new range? */
		if (ei->addr >= start && ei_end <= end) {
465 466 467 468
			ei->type = new_type;
			real_updated_size += ei->size;
			continue;
		}
469 470 471 472 473 474 475 476 477 478

		/* new range is totally covered? */
		if (ei->addr < start && ei_end > end) {
			__e820_add_region(e820x, start, size, new_type);
			__e820_add_region(e820x, end, ei_end - end, ei->type);
			ei->size = start - ei->addr;
			real_updated_size += size;
			continue;
		}

479 480
		/* partially covered */
		final_start = max(start, ei->addr);
481
		final_end = min(end, ei_end);
482 483
		if (final_start >= final_end)
			continue;
484

Y
Yinghai Lu 已提交
485 486
		__e820_add_region(e820x, final_start, final_end - final_start,
				  new_type);
487

488
		real_updated_size += final_end - final_start;
489

Y
Yinghai Lu 已提交
490 491 492 493 494
		/*
		 * left range could be head or tail, so need to update
		 * size at first.
		 */
		ei->size -= final_end - final_start;
495 496 497
		if (ei->addr < final_start)
			continue;
		ei->addr = final_end;
498 499 500 501
	}
	return real_updated_size;
}

502 503 504
u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
			     unsigned new_type)
{
Y
Yinghai Lu 已提交
505
	return __e820_update_range(&e820, start, size, old_type, new_type);
506 507 508 509 510
}

static u64 __init e820_update_range_saved(u64 start, u64 size,
					  unsigned old_type, unsigned new_type)
{
Y
Yinghai Lu 已提交
511
	return __e820_update_range(&e820_saved, start, size, old_type,
512 513 514
				     new_type);
}

Y
Yinghai Lu 已提交
515 516 517 518 519
/* make e820 not cover the range */
u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
			     int checktype)
{
	int i;
520
	u64 end;
Y
Yinghai Lu 已提交
521 522
	u64 real_removed_size = 0;

523 524 525
	if (size > (ULLONG_MAX - start))
		size = ULLONG_MAX - start;

526 527 528 529 530 531 532
	end = start + size;
	printk(KERN_DEBUG "e820 remove range: %016Lx - %016Lx ",
		       (unsigned long long) start,
		       (unsigned long long) end);
	e820_print_type(old_type);
	printk(KERN_CONT "\n");

Y
Yinghai Lu 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];
		u64 final_start, final_end;

		if (checktype && ei->type != old_type)
			continue;
		/* totally covered? */
		if (ei->addr >= start &&
		    (ei->addr + ei->size) <= (start + size)) {
			real_removed_size += ei->size;
			memset(ei, 0, sizeof(struct e820entry));
			continue;
		}
		/* partially covered */
		final_start = max(start, ei->addr);
		final_end = min(start + size, ei->addr + ei->size);
		if (final_start >= final_end)
			continue;
		real_removed_size += final_end - final_start;

		ei->size -= final_end - final_start;
		if (ei->addr < final_start)
			continue;
		ei->addr = final_end;
	}
	return real_removed_size;
}

561 562
void __init update_e820(void)
{
563
	u32 nr_map;
564 565

	nr_map = e820.nr_map;
566
	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
567 568 569 570 571
		return;
	e820.nr_map = nr_map;
	printk(KERN_INFO "modified physical RAM map:\n");
	e820_print_map("modified");
}
572 573
static void __init update_e820_saved(void)
{
574
	u32 nr_map;
575 576 577 578 579 580

	nr_map = e820_saved.nr_map;
	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
		return;
	e820_saved.nr_map = nr_map;
}
A
Alok Kataria 已提交
581
#define MAX_GAP_END 0x100000000ull
582
/*
A
Alok Kataria 已提交
583
 * Search for a gap in the e820 memory space from start_addr to end_addr.
584
 */
585
__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
A
Alok Kataria 已提交
586
		unsigned long start_addr, unsigned long long end_addr)
587
{
A
Alok Kataria 已提交
588
	unsigned long long last;
589
	int i = e820.nr_map;
590 591
	int found = 0;

A
Alok Kataria 已提交
592 593
	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;

594 595 596 597
	while (--i >= 0) {
		unsigned long long start = e820.map[i].addr;
		unsigned long long end = start + e820.map[i].size;

598 599 600
		if (end < start_addr)
			continue;

601 602 603 604 605 606 607
		/*
		 * Since "last" is at most 4GB, we know we'll
		 * fit in 32 bits if this condition is true
		 */
		if (last > end) {
			unsigned long gap = last - end;

608 609 610
			if (gap >= *gapsize) {
				*gapsize = gap;
				*gapstart = end;
611 612 613 614 615 616
				found = 1;
			}
		}
		if (start < last)
			last = start;
	}
617 618 619 620 621 622 623 624 625 626 627
	return found;
}

/*
 * Search for the biggest gap in the low 32 bits of the e820
 * memory space.  We pass this space to PCI to assign MMIO resources
 * for hotplug or unconfigured devices in.
 * Hopefully the BIOS let enough space left.
 */
__init void e820_setup_gap(void)
{
628
	unsigned long gapstart, gapsize;
629 630 631 632
	int found;

	gapstart = 0x10000000;
	gapsize = 0x400000;
A
Alok Kataria 已提交
633
	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
634 635 636

#ifdef CONFIG_X86_64
	if (!found) {
Y
Yinghai Lu 已提交
637
		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
638 639 640
		printk(KERN_ERR
	"PCI: Warning: Cannot find a gap in the 32bit address range\n"
	"PCI: Unassigned devices with 32bit resource registers may break!\n");
641 642 643 644
	}
#endif

	/*
645
	 * e820_reserve_resources_late protect stolen RAM already
646
	 */
647
	pci_mem_start = gapstart;
648 649 650 651 652 653

	printk(KERN_INFO
	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
	       pci_mem_start, gapstart, gapsize);
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
/**
 * Because of the size limitation of struct boot_params, only first
 * 128 E820 memory entries are passed to kernel via
 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
 * linked list of struct setup_data, which is parsed here.
 */
void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
{
	u32 map_len;
	int entries;
	struct e820entry *extmap;

	entries = sdata->len / sizeof(struct e820entry);
	map_len = sdata->len + sizeof(struct setup_data);
	if (map_len > PAGE_SIZE)
		sdata = early_ioremap(pa_data, map_len);
	extmap = (struct e820entry *)(sdata->data);
671
	__append_e820_map(extmap, entries);
672 673 674 675 676 677 678
	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
	if (map_len > PAGE_SIZE)
		early_iounmap(sdata, map_len);
	printk(KERN_INFO "extended physical RAM map:\n");
	e820_print_map("extended");
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
#if defined(CONFIG_X86_64) || \
	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
/**
 * Find the ranges of physical addresses that do not correspond to
 * e820 RAM areas and mark the corresponding pages as nosave for
 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
 *
 * This function requires the e820 map to be sorted and without any
 * overlapping entries and assumes the first e820 area to be RAM.
 */
void __init e820_mark_nosave_regions(unsigned long limit_pfn)
{
	int i;
	unsigned long pfn;

	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
	for (i = 1; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (pfn < PFN_UP(ei->addr))
			register_nosave_region(pfn, PFN_UP(ei->addr));

		pfn = PFN_DOWN(ei->addr + ei->size);
702
		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
703 704 705 706 707 708 709
			register_nosave_region(PFN_UP(ei->addr), pfn);

		if (pfn >= limit_pfn)
			break;
	}
}
#endif
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
#ifdef CONFIG_HIBERNATION
/**
 * Mark ACPI NVS memory region, so that we can save/restore it during
 * hibernation and the subsequent resume.
 */
static int __init e820_mark_nvs_memory(void)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (ei->type == E820_NVS)
			hibernate_nvs_register(ei->addr, ei->size);
	}

	return 0;
}
core_initcall(e820_mark_nvs_memory);
#endif

732 733 734
/*
 * Early reserved memory areas.
 */
735
#define MAX_EARLY_RES 32
736 737 738 739

struct early_res {
	u64 start, end;
	char name[16];
740
	char overlap_ok;
741 742
};
static struct early_res early_res[MAX_EARLY_RES] __initdata = {
743
	{ 0, PAGE_SIZE, "BIOS data page", 1 },	/* BIOS data page */
744
#if defined(CONFIG_X86_32) && defined(CONFIG_X86_TRAMPOLINE)
745 746 747 748 749
	/*
	 * But first pinch a few for the stack/trampoline stuff
	 * FIXME: Don't need the extra page at 4K, but need to fix
	 * trampoline before removing it. (see the GDT stuff)
	 */
750
	{ PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE", 1 },
751 752
#endif

753 754 755
	{}
};

756
static int __init find_overlapped_early(u64 start, u64 end)
757 758 759
{
	int i;
	struct early_res *r;
760

761 762 763
	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
		r = &early_res[i];
		if (end > r->start && start < r->end)
764
			break;
765
	}
766 767 768 769

	return i;
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
/*
 * Drop the i-th range from the early reservation map,
 * by copying any higher ranges down one over it, and
 * clearing what had been the last slot.
 */
static void __init drop_range(int i)
{
	int j;

	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
		;

	memmove(&early_res[i], &early_res[i + 1],
	       (j - 1 - i) * sizeof(struct early_res));

	early_res[j - 1].end = 0;
}

/*
 * Split any existing ranges that:
 *  1) are marked 'overlap_ok', and
 *  2) overlap with the stated range [start, end)
 * into whatever portion (if any) of the existing range is entirely
 * below or entirely above the stated range.  Drop the portion
 * of the existing range that overlaps with the stated range,
 * which will allow the caller of this routine to then add that
 * stated range without conflicting with any existing range.
 */
static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
{
	int i;
	struct early_res *r;
	u64 lower_start, lower_end;
	u64 upper_start, upper_end;
	char name[16];

	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
		r = &early_res[i];

		/* Continue past non-overlapping ranges */
		if (end <= r->start || start >= r->end)
			continue;

		/*
		 * Leave non-ok overlaps as is; let caller
		 * panic "Overlapping early reservations"
		 * when it hits this overlap.
		 */
		if (!r->overlap_ok)
			return;

		/*
		 * We have an ok overlap.  We will drop it from the early
		 * reservation map, and add back in any non-overlapping
		 * portions (lower or upper) as separate, overlap_ok,
		 * non-overlapping ranges.
		 */

		/* 1. Note any non-overlapping (lower or upper) ranges. */
		strncpy(name, r->name, sizeof(name) - 1);

		lower_start = lower_end = 0;
		upper_start = upper_end = 0;
		if (r->start < start) {
		 	lower_start = r->start;
			lower_end = start;
		}
		if (r->end > end) {
			upper_start = end;
			upper_end = r->end;
		}

		/* 2. Drop the original ok overlapping range */
		drop_range(i);

		i--;		/* resume for-loop on copied down entry */

		/* 3. Add back in any non-overlapping ranges. */
		if (lower_end)
			reserve_early_overlap_ok(lower_start, lower_end, name);
		if (upper_end)
			reserve_early_overlap_ok(upper_start, upper_end, name);
	}
}

static void __init __reserve_early(u64 start, u64 end, char *name,
						int overlap_ok)
857 858 859 860 861
{
	int i;
	struct early_res *r;

	i = find_overlapped_early(start, end);
862 863 864
	if (i >= MAX_EARLY_RES)
		panic("Too many early reservations");
	r = &early_res[i];
865 866 867 868 869
	if (r->end)
		panic("Overlapping early reservations "
		      "%llx-%llx %s to %llx-%llx %s\n",
		      start, end - 1, name?name:"", r->start,
		      r->end - 1, r->name);
870 871
	r->start = start;
	r->end = end;
872
	r->overlap_ok = overlap_ok;
873 874 875 876
	if (name)
		strncpy(r->name, name, sizeof(r->name) - 1);
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/*
 * A few early reservtations come here.
 *
 * The 'overlap_ok' in the name of this routine does -not- mean it
 * is ok for these reservations to overlap an earlier reservation.
 * Rather it means that it is ok for subsequent reservations to
 * overlap this one.
 *
 * Use this entry point to reserve early ranges when you are doing
 * so out of "Paranoia", reserving perhaps more memory than you need,
 * just in case, and don't mind a subsequent overlapping reservation
 * that is known to be needed.
 *
 * The drop_overlaps_that_are_ok() call here isn't really needed.
 * It would be needed if we had two colliding 'overlap_ok'
 * reservations, so that the second such would not panic on the
 * overlap with the first.  We don't have any such as of this
 * writing, but might as well tolerate such if it happens in
 * the future.
 */
void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
{
	drop_overlaps_that_are_ok(start, end);
	__reserve_early(start, end, name, 1);
}

/*
 * Most early reservations come here.
 *
 * We first have drop_overlaps_that_are_ok() drop any pre-existing
 * 'overlap_ok' ranges, so that we can then reserve this memory
 * range without risk of panic'ing on an overlapping overlap_ok
 * early reservation.
 */
void __init reserve_early(u64 start, u64 end, char *name)
{
Y
Yinghai Lu 已提交
913 914 915
	if (start >= end)
		return;

916 917 918 919
	drop_overlaps_that_are_ok(start, end);
	__reserve_early(start, end, name, 0);
}

920 921 922
void __init free_early(u64 start, u64 end)
{
	struct early_res *r;
923
	int i;
924

925 926 927
	i = find_overlapped_early(start, end);
	r = &early_res[i];
	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
928
		panic("free_early on not reserved area: %llx-%llx!",
929
			 start, end - 1);
930

931
	drop_range(i);
932 933 934 935
}

void __init early_res_to_bootmem(u64 start, u64 end)
{
936
	int i, count;
937
	u64 final_start, final_end;
938 939 940 941 942

	count  = 0;
	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
		count++;

943 944
	printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
			 count, start, end);
945
	for (i = 0; i < count; i++) {
946
		struct early_res *r = &early_res[i];
947
		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
948
			r->start, r->end, r->name);
949 950
		final_start = max(start, r->start);
		final_end = min(end, r->end);
951 952
		if (final_start >= final_end) {
			printk(KERN_CONT "\n");
953
			continue;
954
		}
955
		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
956
			final_start, final_end);
957
		reserve_bootmem_generic(final_start, final_end - final_start,
958 959 960 961 962 963 964 965
				BOOTMEM_DEFAULT);
	}
}

/* Check for already reserved areas */
static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
{
	int i;
966
	u64 addr = *addrp;
967
	int changed = 0;
968
	struct early_res *r;
969
again:
970 971 972 973 974 975
	i = find_overlapped_early(addr, addr + size);
	r = &early_res[i];
	if (i < MAX_EARLY_RES && r->end) {
		*addrp = addr = round_up(r->end, align);
		changed = 1;
		goto again;
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	}
	return changed;
}

/* Check for already reserved areas */
static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
{
	int i;
	u64 addr = *addrp, last;
	u64 size = *sizep;
	int changed = 0;
again:
	last = addr + size;
	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
		struct early_res *r = &early_res[i];
		if (last > r->start && addr < r->start) {
			size = r->start - addr;
			changed = 1;
			goto again;
		}
		if (last > r->end && addr < r->end) {
			addr = round_up(r->end, align);
			size = last - addr;
			changed = 1;
			goto again;
		}
		if (last <= r->end && addr >= r->start) {
			(*sizep)++;
			return 0;
		}
	}
	if (changed) {
		*addrp = addr;
		*sizep = size;
	}
	return changed;
}

/*
 * Find a free area with specified alignment in a specific range.
 */
u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];
		u64 addr, last;
		u64 ei_last;

		if (ei->type != E820_RAM)
			continue;
		addr = round_up(ei->addr, align);
		ei_last = ei->addr + ei->size;
		if (addr < start)
			addr = round_up(start, align);
		if (addr >= ei_last)
			continue;
		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
			;
		last = addr + size;
		if (last > ei_last)
			continue;
		if (last > end)
			continue;
		return addr;
	}
	return -1ULL;
}

/*
 * Find next free range after *start
 */
u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];
		u64 addr, last;
		u64 ei_last;

		if (ei->type != E820_RAM)
			continue;
		addr = round_up(ei->addr, align);
		ei_last = ei->addr + ei->size;
		if (addr < start)
			addr = round_up(start, align);
		if (addr >= ei_last)
			continue;
		*sizep = ei_last - addr;
		while (bad_addr_size(&addr, sizep, align) &&
			addr + *sizep <= ei_last)
			;
		last = addr + *sizep;
		if (last > ei_last)
			continue;
		return addr;
	}

1076
	return -1ULL;
1077
}
Y
Yinghai Lu 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

/*
 * pre allocated 4k and reserved it in e820
 */
u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
{
	u64 size = 0;
	u64 addr;
	u64 start;

1088
	for (start = startt; ; start += size) {
Y
Yinghai Lu 已提交
1089
		start = find_e820_area_size(start, &size, align);
1090 1091 1092 1093 1094
		if (!(start + 1))
			return 0;
		if (size >= sizet)
			break;
	}
Y
Yinghai Lu 已提交
1095

1096 1097 1098 1099 1100 1101 1102
#ifdef CONFIG_X86_32
	if (start >= MAXMEM)
		return 0;
	if (start + size > MAXMEM)
		size = MAXMEM - start;
#endif

Y
Yinghai Lu 已提交
1103
	addr = round_down(start + size - sizet, align);
1104 1105
	if (addr < start)
		return 0;
1106
	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1107
	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
Y
Yinghai Lu 已提交
1108 1109
	printk(KERN_INFO "update e820 for early_reserve_e820\n");
	update_e820();
1110
	update_e820_saved();
Y
Yinghai Lu 已提交
1111 1112 1113 1114

	return addr;
}

1115 1116 1117 1118 1119 1120 1121
#ifdef CONFIG_X86_32
# ifdef CONFIG_X86_PAE
#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
# else
#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
# endif
#else /* CONFIG_X86_32 */
1122
# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1123 1124 1125 1126 1127
#endif

/*
 * Find the highest page frame number we have available
 */
1128
static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1129
{
1130 1131
	int i;
	unsigned long last_pfn = 0;
1132 1133
	unsigned long max_arch_pfn = MAX_ARCH_PFN;

1134 1135
	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];
1136
		unsigned long start_pfn;
1137 1138
		unsigned long end_pfn;

1139
		if (ei->type != type)
1140 1141
			continue;

1142
		start_pfn = ei->addr >> PAGE_SHIFT;
1143
		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1144 1145 1146 1147 1148 1149 1150

		if (start_pfn >= limit_pfn)
			continue;
		if (end_pfn > limit_pfn) {
			last_pfn = limit_pfn;
			break;
		}
1151 1152 1153
		if (end_pfn > last_pfn)
			last_pfn = end_pfn;
	}
1154 1155 1156 1157

	if (last_pfn > max_arch_pfn)
		last_pfn = max_arch_pfn;

1158
	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1159 1160 1161
			 last_pfn, max_arch_pfn);
	return last_pfn;
}
1162 1163 1164 1165
unsigned long __init e820_end_of_ram_pfn(void)
{
	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
}
1166

1167 1168 1169 1170
unsigned long __init e820_end_of_low_ram_pfn(void)
{
	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
/*
 * Finds an active region in the address range from start_pfn to last_pfn and
 * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
 */
int __init e820_find_active_region(const struct e820entry *ei,
				  unsigned long start_pfn,
				  unsigned long last_pfn,
				  unsigned long *ei_startpfn,
				  unsigned long *ei_endpfn)
{
	u64 align = PAGE_SIZE;

	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;

	/* Skip map entries smaller than a page */
	if (*ei_startpfn >= *ei_endpfn)
		return 0;

	/* Skip if map is outside the node */
	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
				    *ei_startpfn >= last_pfn)
		return 0;

	/* Check for overlaps */
	if (*ei_startpfn < start_pfn)
		*ei_startpfn = start_pfn;
	if (*ei_endpfn > last_pfn)
		*ei_endpfn = last_pfn;

	return 1;
}

/* Walk the e820 map and register active regions within a node */
void __init e820_register_active_regions(int nid, unsigned long start_pfn,
					 unsigned long last_pfn)
{
	unsigned long ei_startpfn;
	unsigned long ei_endpfn;
	int i;

	for (i = 0; i < e820.nr_map; i++)
		if (e820_find_active_region(&e820.map[i],
					    start_pfn, last_pfn,
					    &ei_startpfn, &ei_endpfn))
			add_active_range(nid, ei_startpfn, ei_endpfn);
}

/*
 * Find the hole size (in bytes) in the memory range.
 * @start: starting address of the memory range to scan
 * @end: ending address of the memory range to scan
 */
u64 __init e820_hole_size(u64 start, u64 end)
{
	unsigned long start_pfn = start >> PAGE_SHIFT;
	unsigned long last_pfn = end >> PAGE_SHIFT;
	unsigned long ei_startpfn, ei_endpfn, ram = 0;
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		if (e820_find_active_region(&e820.map[i],
					    start_pfn, last_pfn,
					    &ei_startpfn, &ei_endpfn))
			ram += ei_endpfn - ei_startpfn;
	}
	return end - start - ((u64)ram << PAGE_SHIFT);
}
1239 1240 1241 1242 1243 1244 1245

static void early_panic(char *msg)
{
	early_printk(msg);
	panic(msg);
}

1246 1247
static int userdef __initdata;

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
/* "mem=nopentium" disables the 4MB page tables. */
static int __init parse_memopt(char *p)
{
	u64 mem_size;

	if (!p)
		return -EINVAL;

#ifdef CONFIG_X86_32
	if (!strcmp(p, "nopentium")) {
		setup_clear_cpu_cap(X86_FEATURE_PSE);
		return 0;
	}
#endif

1263
	userdef = 1;
1264
	mem_size = memparse(p, &p);
1265
	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275
	return 0;
}
early_param("mem", parse_memopt);

static int __init parse_memmap_opt(char *p)
{
	char *oldp;
	u64 start_at, mem_size;

1276 1277 1278
	if (!p)
		return -EINVAL;

1279
	if (!strncmp(p, "exactmap", 8)) {
1280 1281 1282 1283 1284 1285
#ifdef CONFIG_CRASH_DUMP
		/*
		 * If we are doing a crash dump, we still need to know
		 * the real mem size before original memory map is
		 * reset.
		 */
1286
		saved_max_pfn = e820_end_of_ram_pfn();
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
#endif
		e820.nr_map = 0;
		userdef = 1;
		return 0;
	}

	oldp = p;
	mem_size = memparse(p, &p);
	if (p == oldp)
		return -EINVAL;

	userdef = 1;
	if (*p == '@') {
		start_at = memparse(p+1, &p);
1301
		e820_add_region(start_at, mem_size, E820_RAM);
1302 1303
	} else if (*p == '#') {
		start_at = memparse(p+1, &p);
1304
		e820_add_region(start_at, mem_size, E820_ACPI);
1305 1306
	} else if (*p == '$') {
		start_at = memparse(p+1, &p);
1307
		e820_add_region(start_at, mem_size, E820_RESERVED);
Y
Yinghai Lu 已提交
1308
	} else
1309
		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
Y
Yinghai Lu 已提交
1310

1311 1312 1313 1314 1315 1316 1317
	return *p == '\0' ? 0 : -EINVAL;
}
early_param("memmap", parse_memmap_opt);

void __init finish_e820_parsing(void)
{
	if (userdef) {
1318
		u32 nr = e820.nr_map;
1319 1320 1321 1322 1323 1324 1325 1326 1327

		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
			early_panic("Invalid user supplied memory map");
		e820.nr_map = nr;

		printk(KERN_INFO "user-defined physical RAM map:\n");
		e820_print_map("user");
	}
}
1328

1329 1330 1331 1332 1333 1334 1335
static inline const char *e820_type_to_string(int e820_type)
{
	switch (e820_type) {
	case E820_RESERVED_KERN:
	case E820_RAM:	return "System RAM";
	case E820_ACPI:	return "ACPI Tables";
	case E820_NVS:	return "ACPI Non-volatile Storage";
1336
	case E820_UNUSABLE:	return "Unusable memory";
1337 1338 1339 1340
	default:	return "reserved";
	}
}

1341 1342 1343
/*
 * Mark e820 reserved areas as busy for the resource manager.
 */
1344
static struct resource __initdata *e820_res;
1345 1346 1347
void __init e820_reserve_resources(void)
{
	int i;
1348
	struct resource *res;
1349
	u64 end;
1350

1351
	res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
1352
	e820_res = res;
1353
	for (i = 0; i < e820.nr_map; i++) {
1354
		end = e820.map[i].addr + e820.map[i].size - 1;
1355
		if (end != (resource_size_t)end) {
1356 1357 1358
			res++;
			continue;
		}
1359
		res->name = e820_type_to_string(e820.map[i].type);
1360 1361 1362
		res->start = e820.map[i].addr;
		res->end = end;

1363
		res->flags = IORESOURCE_MEM;
1364 1365 1366 1367 1368 1369

		/*
		 * don't register the region that could be conflicted with
		 * pci device BAR resource and insert them later in
		 * pcibios_resource_survey()
		 */
1370 1371
		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
			res->flags |= IORESOURCE_BUSY;
1372
			insert_resource(&iomem_resource, res);
1373
		}
1374 1375
		res++;
	}
1376 1377 1378 1379 1380 1381 1382

	for (i = 0; i < e820_saved.nr_map; i++) {
		struct e820entry *entry = &e820_saved.map[i];
		firmware_map_add_early(entry->addr,
			entry->addr + entry->size - 1,
			e820_type_to_string(entry->type));
	}
1383 1384
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/* How much should we pad RAM ending depending on where it is? */
static unsigned long ram_alignment(resource_size_t pos)
{
	unsigned long mb = pos >> 20;

	/* To 64kB in the first megabyte */
	if (!mb)
		return 64*1024;

	/* To 1MB in the first 16MB */
	if (mb < 16)
		return 1024*1024;

1398 1399
	/* To 64MB for anything above that */
	return 64*1024*1024;
1400 1401
}

1402 1403
#define MAX_RESOURCE_SIZE ((resource_size_t)-1)

1404 1405 1406 1407 1408 1409 1410
void __init e820_reserve_resources_late(void)
{
	int i;
	struct resource *res;

	res = e820_res;
	for (i = 0; i < e820.nr_map; i++) {
1411
		if (!res->parent && res->end)
1412
			insert_resource_expand_to_fit(&iomem_resource, res);
1413 1414
		res++;
	}
1415 1416 1417 1418 1419 1420

	/*
	 * Try to bump up RAM regions to reasonable boundaries to
	 * avoid stolen RAM:
	 */
	for (i = 0; i < e820.nr_map; i++) {
1421 1422
		struct e820entry *entry = &e820.map[i];
		u64 start, end;
1423 1424 1425 1426

		if (entry->type != E820_RAM)
			continue;
		start = entry->addr + entry->size;
1427 1428 1429 1430
		end = round_up(start, ram_alignment(start)) - 1;
		if (end > MAX_RESOURCE_SIZE)
			end = MAX_RESOURCE_SIZE;
		if (start >= end)
1431
			continue;
1432 1433
		reserve_region_with_split(&iomem_resource, start, end,
					  "RAM buffer");
1434
	}
1435 1436
}

1437
char *__init default_machine_specific_memory_setup(void)
1438 1439
{
	char *who = "BIOS-e820";
1440
	u32 new_nr;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	/*
	 * Try to copy the BIOS-supplied E820-map.
	 *
	 * Otherwise fake a memory map; one section from 0k->640k,
	 * the next section from 1mb->appropriate_mem_k
	 */
	new_nr = boot_params.e820_entries;
	sanitize_e820_map(boot_params.e820_map,
			ARRAY_SIZE(boot_params.e820_map),
			&new_nr);
	boot_params.e820_entries = new_nr;
1452 1453
	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
	  < 0) {
1454
		u64 mem_size;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

		/* compare results from other methods and take the greater */
		if (boot_params.alt_mem_k
		    < boot_params.screen_info.ext_mem_k) {
			mem_size = boot_params.screen_info.ext_mem_k;
			who = "BIOS-88";
		} else {
			mem_size = boot_params.alt_mem_k;
			who = "BIOS-e801";
		}

		e820.nr_map = 0;
		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
	}

	/* In case someone cares... */
	return who;
}

void __init setup_memory_map(void)
{
1477 1478
	char *who;

1479
	who = x86_init.resources.memory_setup();
1480
	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1481
	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1482
	e820_print_map(who);
1483
}