e820.c 36.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Handle the memory map.
 * The functions here do the job until bootmem takes over.
 *
 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
 *     Alex Achenbach <xela@slit.de>, December 2002.
 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 *
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/ioport.h>
#include <linux/string.h>
#include <linux/kexec.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/pfn.h>
21
#include <linux/suspend.h>
22
#include <linux/firmware-map.h>
23 24 25 26

#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/e820.h>
27
#include <asm/proto.h>
28
#include <asm/setup.h>
29
#include <asm/trampoline.h>
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * The e820 map is the map that gets modified e.g. with command line parameters
 * and that is also registered with modifications in the kernel resource tree
 * with the iomem_resource as parent.
 *
 * The e820_saved is directly saved after the BIOS-provided memory map is
 * copied. It doesn't get modified afterwards. It's registered for the
 * /sys/firmware/memmap interface.
 *
 * That memory map is not modified and is used as base for kexec. The kexec'd
 * kernel should get the same memory map as the firmware provides. Then the
 * user can e.g. boot the original kernel with mem=1G while still booting the
 * next kernel with full memory.
 */
45
struct e820map e820;
46
struct e820map e820_saved;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

/* For PCI or other memory-mapped resources */
unsigned long pci_mem_start = 0xaeedbabe;
#ifdef CONFIG_PCI
EXPORT_SYMBOL(pci_mem_start);
#endif

/*
 * This function checks if any part of the range <start,end> is mapped
 * with type.
 */
int
e820_any_mapped(u64 start, u64 end, unsigned type)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (type && ei->type != type)
			continue;
		if (ei->addr >= end || ei->addr + ei->size <= start)
			continue;
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(e820_any_mapped);

/*
 * This function checks if the entire range <start,end> is mapped with type.
 *
 * Note: this function only works correct if the e820 table is sorted and
 * not-overlapping, which is the case
 */
int __init e820_all_mapped(u64 start, u64 end, unsigned type)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (type && ei->type != type)
			continue;
		/* is the region (part) in overlap with the current region ?*/
		if (ei->addr >= end || ei->addr + ei->size <= start)
			continue;

		/* if the region is at the beginning of <start,end> we move
		 * start to the end of the region since it's ok until there
		 */
		if (ei->addr <= start)
			start = ei->addr + ei->size;
		/*
		 * if start is now at or beyond end, we're done, full
		 * coverage
		 */
		if (start >= end)
			return 1;
	}
	return 0;
}

/*
 * Add a memory region to the kernel e820 map.
 */
Y
Yinghai Lu 已提交
113 114
static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
					 int type)
115
{
Y
Yinghai Lu 已提交
116
	int x = e820x->nr_map;
117

118
	if (x >= ARRAY_SIZE(e820x->map)) {
119 120 121 122
		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
		return;
	}

Y
Yinghai Lu 已提交
123 124 125 126 127 128 129 130 131
	e820x->map[x].addr = start;
	e820x->map[x].size = size;
	e820x->map[x].type = type;
	e820x->nr_map++;
}

void __init e820_add_region(u64 start, u64 size, int type)
{
	__e820_add_region(&e820, start, size, type);
132 133
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
static void __init e820_print_type(u32 type)
{
	switch (type) {
	case E820_RAM:
	case E820_RESERVED_KERN:
		printk(KERN_CONT "(usable)");
		break;
	case E820_RESERVED:
		printk(KERN_CONT "(reserved)");
		break;
	case E820_ACPI:
		printk(KERN_CONT "(ACPI data)");
		break;
	case E820_NVS:
		printk(KERN_CONT "(ACPI NVS)");
		break;
	case E820_UNUSABLE:
		printk(KERN_CONT "(unusable)");
		break;
	default:
		printk(KERN_CONT "type %u", type);
		break;
	}
}

159 160 161 162 163 164 165 166 167
void __init e820_print_map(char *who)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
		       (unsigned long long) e820.map[i].addr,
		       (unsigned long long)
		       (e820.map[i].addr + e820.map[i].size));
168 169
		e820_print_type(e820.map[i].type);
		printk(KERN_CONT "\n");
170 171 172 173 174 175 176
	}
}

/*
 * Sanitize the BIOS e820 map.
 *
 * Some e820 responses include overlapping entries. The following
177 178 179
 * replaces the original e820 map with a new one, removing overlaps,
 * and resolving conflicting memory types in favor of highest
 * numbered type.
180
 *
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
 * The input parameter biosmap points to an array of 'struct
 * e820entry' which on entry has elements in the range [0, *pnr_map)
 * valid, and which has space for up to max_nr_map entries.
 * On return, the resulting sanitized e820 map entries will be in
 * overwritten in the same location, starting at biosmap.
 *
 * The integer pointed to by pnr_map must be valid on entry (the
 * current number of valid entries located at biosmap) and will
 * be updated on return, with the new number of valid entries
 * (something no more than max_nr_map.)
 *
 * The return value from sanitize_e820_map() is zero if it
 * successfully 'sanitized' the map entries passed in, and is -1
 * if it did nothing, which can happen if either of (1) it was
 * only passed one map entry, or (2) any of the input map entries
 * were invalid (start + size < start, meaning that the size was
 * so big the described memory range wrapped around through zero.)
 *
 *	Visually we're performing the following
 *	(1,2,3,4 = memory types)...
 *
 *	Sample memory map (w/overlaps):
 *	   ____22__________________
 *	   ______________________4_
 *	   ____1111________________
 *	   _44_____________________
 *	   11111111________________
 *	   ____________________33__
 *	   ___________44___________
 *	   __________33333_________
 *	   ______________22________
 *	   ___________________2222_
 *	   _________111111111______
 *	   _____________________11_
 *	   _________________4______
 *
 *	Sanitized equivalent (no overlap):
 *	   1_______________________
 *	   _44_____________________
 *	   ___1____________________
 *	   ____22__________________
 *	   ______11________________
 *	   _________1______________
 *	   __________3_____________
 *	   ___________44___________
 *	   _____________33_________
 *	   _______________2________
 *	   ________________1_______
 *	   _________________4______
 *	   ___________________2____
 *	   ____________________33__
 *	   ______________________4_
233
 */
234

235
int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
236
			     u32 *pnr_map)
237 238 239 240 241
{
	struct change_member {
		struct e820entry *pbios; /* pointer to original bios entry */
		unsigned long long addr; /* address for this change point */
	};
242 243 244 245
	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
	static struct change_member *change_point[2*E820_X_MAX] __initdata;
	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
	static struct e820entry new_bios[E820_X_MAX] __initdata;
246 247 248 249 250 251 252 253 254 255 256 257 258 259
	struct change_member *change_tmp;
	unsigned long current_type, last_type;
	unsigned long long last_addr;
	int chgidx, still_changing;
	int overlap_entries;
	int new_bios_entry;
	int old_nr, new_nr, chg_nr;
	int i;

	/* if there's only one memory region, don't bother */
	if (*pnr_map < 2)
		return -1;

	old_nr = *pnr_map;
260
	BUG_ON(old_nr > max_nr_map);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	/* bail out if we find any unreasonable addresses in bios map */
	for (i = 0; i < old_nr; i++)
		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
			return -1;

	/* create pointers for initial change-point information (for sorting) */
	for (i = 0; i < 2 * old_nr; i++)
		change_point[i] = &change_point_list[i];

	/* record all known change-points (starting and ending addresses),
	   omitting those that are for empty memory regions */
	chgidx = 0;
	for (i = 0; i < old_nr; i++)	{
		if (biosmap[i].size != 0) {
			change_point[chgidx]->addr = biosmap[i].addr;
			change_point[chgidx++]->pbios = &biosmap[i];
			change_point[chgidx]->addr = biosmap[i].addr +
				biosmap[i].size;
			change_point[chgidx++]->pbios = &biosmap[i];
		}
	}
	chg_nr = chgidx;

	/* sort change-point list by memory addresses (low -> high) */
	still_changing = 1;
	while (still_changing)	{
		still_changing = 0;
		for (i = 1; i < chg_nr; i++)  {
			unsigned long long curaddr, lastaddr;
			unsigned long long curpbaddr, lastpbaddr;

			curaddr = change_point[i]->addr;
			lastaddr = change_point[i - 1]->addr;
			curpbaddr = change_point[i]->pbios->addr;
			lastpbaddr = change_point[i - 1]->pbios->addr;

			/*
			 * swap entries, when:
			 *
			 * curaddr > lastaddr or
			 * curaddr == lastaddr and curaddr == curpbaddr and
			 * lastaddr != lastpbaddr
			 */
			if (curaddr < lastaddr ||
			    (curaddr == lastaddr && curaddr == curpbaddr &&
			     lastaddr != lastpbaddr)) {
				change_tmp = change_point[i];
				change_point[i] = change_point[i-1];
				change_point[i-1] = change_tmp;
				still_changing = 1;
			}
		}
	}

	/* create a new bios memory map, removing overlaps */
	overlap_entries = 0;	 /* number of entries in the overlap table */
	new_bios_entry = 0;	 /* index for creating new bios map entries */
	last_type = 0;		 /* start with undefined memory type */
	last_addr = 0;		 /* start with 0 as last starting address */

	/* loop through change-points, determining affect on the new bios map */
	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
		/* keep track of all overlapping bios entries */
		if (change_point[chgidx]->addr ==
		    change_point[chgidx]->pbios->addr) {
			/*
			 * add map entry to overlap list (> 1 entry
			 * implies an overlap)
			 */
			overlap_list[overlap_entries++] =
				change_point[chgidx]->pbios;
		} else {
			/*
			 * remove entry from list (order independent,
			 * so swap with last)
			 */
			for (i = 0; i < overlap_entries; i++) {
				if (overlap_list[i] ==
				    change_point[chgidx]->pbios)
					overlap_list[i] =
						overlap_list[overlap_entries-1];
			}
			overlap_entries--;
		}
		/*
		 * if there are overlapping entries, decide which
		 * "type" to use (larger value takes precedence --
		 * 1=usable, 2,3,4,4+=unusable)
		 */
		current_type = 0;
		for (i = 0; i < overlap_entries; i++)
			if (overlap_list[i]->type > current_type)
				current_type = overlap_list[i]->type;
		/*
		 * continue building up new bios map based on this
		 * information
		 */
		if (current_type != last_type)	{
			if (last_type != 0)	 {
				new_bios[new_bios_entry].size =
					change_point[chgidx]->addr - last_addr;
				/*
				 * move forward only if the new size
				 * was non-zero
				 */
				if (new_bios[new_bios_entry].size != 0)
					/*
					 * no more space left for new
					 * bios entries ?
					 */
372
					if (++new_bios_entry >= max_nr_map)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
						break;
			}
			if (current_type != 0)	{
				new_bios[new_bios_entry].addr =
					change_point[chgidx]->addr;
				new_bios[new_bios_entry].type = current_type;
				last_addr = change_point[chgidx]->addr;
			}
			last_type = current_type;
		}
	}
	/* retain count for new bios entries */
	new_nr = new_bios_entry;

	/* copy new bios mapping into original location */
	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
	*pnr_map = new_nr;

	return 0;
}

394
static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
{
	while (nr_map) {
		u64 start = biosmap->addr;
		u64 size = biosmap->size;
		u64 end = start + size;
		u32 type = biosmap->type;

		/* Overflow in 64 bits? Ignore the memory map. */
		if (start > end)
			return -1;

		e820_add_region(start, size, type);

		biosmap++;
		nr_map--;
	}
	return 0;
}

414 415 416 417 418 419 420 421 422
/*
 * Copy the BIOS e820 map into a safe place.
 *
 * Sanity-check it while we're at it..
 *
 * If we're lucky and live on a modern system, the setup code
 * will have given us a memory map that we can use to properly
 * set up memory.  If we aren't, we'll fake a memory map.
 */
423
static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
424 425 426 427 428
{
	/* Only one memory region (or negative)? Ignore it */
	if (nr_map < 2)
		return -1;

429
	return __append_e820_map(biosmap, nr_map);
430 431
}

Y
Yinghai Lu 已提交
432
static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
433 434
					u64 size, unsigned old_type,
					unsigned new_type)
435
{
436
	u64 end;
Y
Yinghai Lu 已提交
437
	unsigned int i;
438 439 440 441
	u64 real_updated_size = 0;

	BUG_ON(old_type == new_type);

442 443 444
	if (size > (ULLONG_MAX - start))
		size = ULLONG_MAX - start;

445
	end = start + size;
446 447 448 449 450 451 452 453
	printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ",
		       (unsigned long long) start,
		       (unsigned long long) end);
	e820_print_type(old_type);
	printk(KERN_CONT " ==> ");
	e820_print_type(new_type);
	printk(KERN_CONT "\n");

454
	for (i = 0; i < e820x->nr_map; i++) {
455
		struct e820entry *ei = &e820x->map[i];
456
		u64 final_start, final_end;
457 458
		u64 ei_end;

459 460
		if (ei->type != old_type)
			continue;
461 462 463 464

		ei_end = ei->addr + ei->size;
		/* totally covered by new range? */
		if (ei->addr >= start && ei_end <= end) {
465 466 467 468
			ei->type = new_type;
			real_updated_size += ei->size;
			continue;
		}
469 470 471 472 473 474 475 476 477 478

		/* new range is totally covered? */
		if (ei->addr < start && ei_end > end) {
			__e820_add_region(e820x, start, size, new_type);
			__e820_add_region(e820x, end, ei_end - end, ei->type);
			ei->size = start - ei->addr;
			real_updated_size += size;
			continue;
		}

479 480
		/* partially covered */
		final_start = max(start, ei->addr);
481
		final_end = min(end, ei_end);
482 483
		if (final_start >= final_end)
			continue;
484

Y
Yinghai Lu 已提交
485 486
		__e820_add_region(e820x, final_start, final_end - final_start,
				  new_type);
487

488
		real_updated_size += final_end - final_start;
489

Y
Yinghai Lu 已提交
490 491 492 493 494
		/*
		 * left range could be head or tail, so need to update
		 * size at first.
		 */
		ei->size -= final_end - final_start;
495 496 497
		if (ei->addr < final_start)
			continue;
		ei->addr = final_end;
498 499 500 501
	}
	return real_updated_size;
}

502 503 504
u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
			     unsigned new_type)
{
Y
Yinghai Lu 已提交
505
	return __e820_update_range(&e820, start, size, old_type, new_type);
506 507 508 509 510
}

static u64 __init e820_update_range_saved(u64 start, u64 size,
					  unsigned old_type, unsigned new_type)
{
Y
Yinghai Lu 已提交
511
	return __e820_update_range(&e820_saved, start, size, old_type,
512 513 514
				     new_type);
}

Y
Yinghai Lu 已提交
515 516 517 518 519 520 521
/* make e820 not cover the range */
u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
			     int checktype)
{
	int i;
	u64 real_removed_size = 0;

522 523 524
	if (size > (ULLONG_MAX - start))
		size = ULLONG_MAX - start;

Y
Yinghai Lu 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];
		u64 final_start, final_end;

		if (checktype && ei->type != old_type)
			continue;
		/* totally covered? */
		if (ei->addr >= start &&
		    (ei->addr + ei->size) <= (start + size)) {
			real_removed_size += ei->size;
			memset(ei, 0, sizeof(struct e820entry));
			continue;
		}
		/* partially covered */
		final_start = max(start, ei->addr);
		final_end = min(start + size, ei->addr + ei->size);
		if (final_start >= final_end)
			continue;
		real_removed_size += final_end - final_start;

		ei->size -= final_end - final_start;
		if (ei->addr < final_start)
			continue;
		ei->addr = final_end;
	}
	return real_removed_size;
}

553 554
void __init update_e820(void)
{
555
	u32 nr_map;
556 557

	nr_map = e820.nr_map;
558
	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
559 560 561 562 563
		return;
	e820.nr_map = nr_map;
	printk(KERN_INFO "modified physical RAM map:\n");
	e820_print_map("modified");
}
564 565
static void __init update_e820_saved(void)
{
566
	u32 nr_map;
567 568 569 570 571 572

	nr_map = e820_saved.nr_map;
	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
		return;
	e820_saved.nr_map = nr_map;
}
A
Alok Kataria 已提交
573
#define MAX_GAP_END 0x100000000ull
574
/*
A
Alok Kataria 已提交
575
 * Search for a gap in the e820 memory space from start_addr to end_addr.
576
 */
577
__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
A
Alok Kataria 已提交
578
		unsigned long start_addr, unsigned long long end_addr)
579
{
A
Alok Kataria 已提交
580
	unsigned long long last;
581
	int i = e820.nr_map;
582 583
	int found = 0;

A
Alok Kataria 已提交
584 585
	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;

586 587 588 589
	while (--i >= 0) {
		unsigned long long start = e820.map[i].addr;
		unsigned long long end = start + e820.map[i].size;

590 591 592
		if (end < start_addr)
			continue;

593 594 595 596 597 598 599
		/*
		 * Since "last" is at most 4GB, we know we'll
		 * fit in 32 bits if this condition is true
		 */
		if (last > end) {
			unsigned long gap = last - end;

600 601 602
			if (gap >= *gapsize) {
				*gapsize = gap;
				*gapstart = end;
603 604 605 606 607 608
				found = 1;
			}
		}
		if (start < last)
			last = start;
	}
609 610 611 612 613 614 615 616 617 618 619
	return found;
}

/*
 * Search for the biggest gap in the low 32 bits of the e820
 * memory space.  We pass this space to PCI to assign MMIO resources
 * for hotplug or unconfigured devices in.
 * Hopefully the BIOS let enough space left.
 */
__init void e820_setup_gap(void)
{
620
	unsigned long gapstart, gapsize;
621 622 623 624
	int found;

	gapstart = 0x10000000;
	gapsize = 0x400000;
A
Alok Kataria 已提交
625
	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
626 627 628

#ifdef CONFIG_X86_64
	if (!found) {
Y
Yinghai Lu 已提交
629
		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
630 631 632
		printk(KERN_ERR
	"PCI: Warning: Cannot find a gap in the 32bit address range\n"
	"PCI: Unassigned devices with 32bit resource registers may break!\n");
633 634 635 636
	}
#endif

	/*
637
	 * e820_reserve_resources_late protect stolen RAM already
638
	 */
639
	pci_mem_start = gapstart;
640 641 642 643 644 645

	printk(KERN_INFO
	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
	       pci_mem_start, gapstart, gapsize);
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
/**
 * Because of the size limitation of struct boot_params, only first
 * 128 E820 memory entries are passed to kernel via
 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
 * linked list of struct setup_data, which is parsed here.
 */
void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
{
	u32 map_len;
	int entries;
	struct e820entry *extmap;

	entries = sdata->len / sizeof(struct e820entry);
	map_len = sdata->len + sizeof(struct setup_data);
	if (map_len > PAGE_SIZE)
		sdata = early_ioremap(pa_data, map_len);
	extmap = (struct e820entry *)(sdata->data);
663
	__append_e820_map(extmap, entries);
664 665 666 667 668 669 670
	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
	if (map_len > PAGE_SIZE)
		early_iounmap(sdata, map_len);
	printk(KERN_INFO "extended physical RAM map:\n");
	e820_print_map("extended");
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
#if defined(CONFIG_X86_64) || \
	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
/**
 * Find the ranges of physical addresses that do not correspond to
 * e820 RAM areas and mark the corresponding pages as nosave for
 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
 *
 * This function requires the e820 map to be sorted and without any
 * overlapping entries and assumes the first e820 area to be RAM.
 */
void __init e820_mark_nosave_regions(unsigned long limit_pfn)
{
	int i;
	unsigned long pfn;

	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
	for (i = 1; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (pfn < PFN_UP(ei->addr))
			register_nosave_region(pfn, PFN_UP(ei->addr));

		pfn = PFN_DOWN(ei->addr + ei->size);
694
		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
695 696 697 698 699 700 701
			register_nosave_region(PFN_UP(ei->addr), pfn);

		if (pfn >= limit_pfn)
			break;
	}
}
#endif
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
#ifdef CONFIG_HIBERNATION
/**
 * Mark ACPI NVS memory region, so that we can save/restore it during
 * hibernation and the subsequent resume.
 */
static int __init e820_mark_nvs_memory(void)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (ei->type == E820_NVS)
			hibernate_nvs_register(ei->addr, ei->size);
	}

	return 0;
}
core_initcall(e820_mark_nvs_memory);
#endif

724 725 726 727 728 729 730 731
/*
 * Early reserved memory areas.
 */
#define MAX_EARLY_RES 20

struct early_res {
	u64 start, end;
	char name[16];
732
	char overlap_ok;
733 734
};
static struct early_res early_res[MAX_EARLY_RES] __initdata = {
735 736 737 738 739 740 741 742 743 744
	{ 0, PAGE_SIZE, "BIOS data page", 1 },	/* BIOS data page */
#ifdef CONFIG_X86_32
	/*
	 * But first pinch a few for the stack/trampoline stuff
	 * FIXME: Don't need the extra page at 4K, but need to fix
	 * trampoline before removing it. (see the GDT stuff)
	 */
	{ PAGE_SIZE, PAGE_SIZE, "EX TRAMPOLINE", 1 },
#endif

745 746 747
	{}
};

748
static int __init find_overlapped_early(u64 start, u64 end)
749 750 751
{
	int i;
	struct early_res *r;
752

753 754 755
	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
		r = &early_res[i];
		if (end > r->start && start < r->end)
756
			break;
757
	}
758 759 760 761

	return i;
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/*
 * Drop the i-th range from the early reservation map,
 * by copying any higher ranges down one over it, and
 * clearing what had been the last slot.
 */
static void __init drop_range(int i)
{
	int j;

	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
		;

	memmove(&early_res[i], &early_res[i + 1],
	       (j - 1 - i) * sizeof(struct early_res));

	early_res[j - 1].end = 0;
}

/*
 * Split any existing ranges that:
 *  1) are marked 'overlap_ok', and
 *  2) overlap with the stated range [start, end)
 * into whatever portion (if any) of the existing range is entirely
 * below or entirely above the stated range.  Drop the portion
 * of the existing range that overlaps with the stated range,
 * which will allow the caller of this routine to then add that
 * stated range without conflicting with any existing range.
 */
static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
{
	int i;
	struct early_res *r;
	u64 lower_start, lower_end;
	u64 upper_start, upper_end;
	char name[16];

	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
		r = &early_res[i];

		/* Continue past non-overlapping ranges */
		if (end <= r->start || start >= r->end)
			continue;

		/*
		 * Leave non-ok overlaps as is; let caller
		 * panic "Overlapping early reservations"
		 * when it hits this overlap.
		 */
		if (!r->overlap_ok)
			return;

		/*
		 * We have an ok overlap.  We will drop it from the early
		 * reservation map, and add back in any non-overlapping
		 * portions (lower or upper) as separate, overlap_ok,
		 * non-overlapping ranges.
		 */

		/* 1. Note any non-overlapping (lower or upper) ranges. */
		strncpy(name, r->name, sizeof(name) - 1);

		lower_start = lower_end = 0;
		upper_start = upper_end = 0;
		if (r->start < start) {
		 	lower_start = r->start;
			lower_end = start;
		}
		if (r->end > end) {
			upper_start = end;
			upper_end = r->end;
		}

		/* 2. Drop the original ok overlapping range */
		drop_range(i);

		i--;		/* resume for-loop on copied down entry */

		/* 3. Add back in any non-overlapping ranges. */
		if (lower_end)
			reserve_early_overlap_ok(lower_start, lower_end, name);
		if (upper_end)
			reserve_early_overlap_ok(upper_start, upper_end, name);
	}
}

static void __init __reserve_early(u64 start, u64 end, char *name,
						int overlap_ok)
849 850 851 852 853
{
	int i;
	struct early_res *r;

	i = find_overlapped_early(start, end);
854 855 856
	if (i >= MAX_EARLY_RES)
		panic("Too many early reservations");
	r = &early_res[i];
857 858 859 860 861
	if (r->end)
		panic("Overlapping early reservations "
		      "%llx-%llx %s to %llx-%llx %s\n",
		      start, end - 1, name?name:"", r->start,
		      r->end - 1, r->name);
862 863
	r->start = start;
	r->end = end;
864
	r->overlap_ok = overlap_ok;
865 866 867 868
	if (name)
		strncpy(r->name, name, sizeof(r->name) - 1);
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/*
 * A few early reservtations come here.
 *
 * The 'overlap_ok' in the name of this routine does -not- mean it
 * is ok for these reservations to overlap an earlier reservation.
 * Rather it means that it is ok for subsequent reservations to
 * overlap this one.
 *
 * Use this entry point to reserve early ranges when you are doing
 * so out of "Paranoia", reserving perhaps more memory than you need,
 * just in case, and don't mind a subsequent overlapping reservation
 * that is known to be needed.
 *
 * The drop_overlaps_that_are_ok() call here isn't really needed.
 * It would be needed if we had two colliding 'overlap_ok'
 * reservations, so that the second such would not panic on the
 * overlap with the first.  We don't have any such as of this
 * writing, but might as well tolerate such if it happens in
 * the future.
 */
void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
{
	drop_overlaps_that_are_ok(start, end);
	__reserve_early(start, end, name, 1);
}

/*
 * Most early reservations come here.
 *
 * We first have drop_overlaps_that_are_ok() drop any pre-existing
 * 'overlap_ok' ranges, so that we can then reserve this memory
 * range without risk of panic'ing on an overlapping overlap_ok
 * early reservation.
 */
void __init reserve_early(u64 start, u64 end, char *name)
{
Y
Yinghai Lu 已提交
905 906 907
	if (start >= end)
		return;

908 909 910 911
	drop_overlaps_that_are_ok(start, end);
	__reserve_early(start, end, name, 0);
}

912 913 914
void __init free_early(u64 start, u64 end)
{
	struct early_res *r;
915
	int i;
916

917 918 919
	i = find_overlapped_early(start, end);
	r = &early_res[i];
	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
920
		panic("free_early on not reserved area: %llx-%llx!",
921
			 start, end - 1);
922

923
	drop_range(i);
924 925 926 927
}

void __init early_res_to_bootmem(u64 start, u64 end)
{
928
	int i, count;
929
	u64 final_start, final_end;
930 931 932 933 934

	count  = 0;
	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
		count++;

935 936
	printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
			 count, start, end);
937
	for (i = 0; i < count; i++) {
938
		struct early_res *r = &early_res[i];
939
		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
940
			r->start, r->end, r->name);
941 942
		final_start = max(start, r->start);
		final_end = min(end, r->end);
943 944
		if (final_start >= final_end) {
			printk(KERN_CONT "\n");
945
			continue;
946
		}
947
		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
948
			final_start, final_end);
949
		reserve_bootmem_generic(final_start, final_end - final_start,
950 951 952 953 954 955 956 957
				BOOTMEM_DEFAULT);
	}
}

/* Check for already reserved areas */
static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
{
	int i;
958
	u64 addr = *addrp;
959
	int changed = 0;
960
	struct early_res *r;
961
again:
962 963 964 965 966 967
	i = find_overlapped_early(addr, addr + size);
	r = &early_res[i];
	if (i < MAX_EARLY_RES && r->end) {
		*addrp = addr = round_up(r->end, align);
		changed = 1;
		goto again;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	}
	return changed;
}

/* Check for already reserved areas */
static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
{
	int i;
	u64 addr = *addrp, last;
	u64 size = *sizep;
	int changed = 0;
again:
	last = addr + size;
	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
		struct early_res *r = &early_res[i];
		if (last > r->start && addr < r->start) {
			size = r->start - addr;
			changed = 1;
			goto again;
		}
		if (last > r->end && addr < r->end) {
			addr = round_up(r->end, align);
			size = last - addr;
			changed = 1;
			goto again;
		}
		if (last <= r->end && addr >= r->start) {
			(*sizep)++;
			return 0;
		}
	}
	if (changed) {
		*addrp = addr;
		*sizep = size;
	}
	return changed;
}

/*
 * Find a free area with specified alignment in a specific range.
 */
u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];
		u64 addr, last;
		u64 ei_last;

		if (ei->type != E820_RAM)
			continue;
		addr = round_up(ei->addr, align);
		ei_last = ei->addr + ei->size;
		if (addr < start)
			addr = round_up(start, align);
		if (addr >= ei_last)
			continue;
		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
			;
		last = addr + size;
		if (last > ei_last)
			continue;
		if (last > end)
			continue;
		return addr;
	}
	return -1ULL;
}

/*
 * Find next free range after *start
 */
u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];
		u64 addr, last;
		u64 ei_last;

		if (ei->type != E820_RAM)
			continue;
		addr = round_up(ei->addr, align);
		ei_last = ei->addr + ei->size;
		if (addr < start)
			addr = round_up(start, align);
		if (addr >= ei_last)
			continue;
		*sizep = ei_last - addr;
		while (bad_addr_size(&addr, sizep, align) &&
			addr + *sizep <= ei_last)
			;
		last = addr + *sizep;
		if (last > ei_last)
			continue;
		return addr;
	}

1068
	return -1ULL;
1069
}
Y
Yinghai Lu 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

/*
 * pre allocated 4k and reserved it in e820
 */
u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
{
	u64 size = 0;
	u64 addr;
	u64 start;

1080
	for (start = startt; ; start += size) {
Y
Yinghai Lu 已提交
1081
		start = find_e820_area_size(start, &size, align);
1082 1083 1084 1085 1086
		if (!(start + 1))
			return 0;
		if (size >= sizet)
			break;
	}
Y
Yinghai Lu 已提交
1087

1088 1089 1090 1091 1092 1093 1094
#ifdef CONFIG_X86_32
	if (start >= MAXMEM)
		return 0;
	if (start + size > MAXMEM)
		size = MAXMEM - start;
#endif

Y
Yinghai Lu 已提交
1095
	addr = round_down(start + size - sizet, align);
1096 1097
	if (addr < start)
		return 0;
1098
	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1099
	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
Y
Yinghai Lu 已提交
1100 1101
	printk(KERN_INFO "update e820 for early_reserve_e820\n");
	update_e820();
1102
	update_e820_saved();
Y
Yinghai Lu 已提交
1103 1104 1105 1106

	return addr;
}

1107 1108 1109 1110 1111 1112 1113
#ifdef CONFIG_X86_32
# ifdef CONFIG_X86_PAE
#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
# else
#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
# endif
#else /* CONFIG_X86_32 */
1114
# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1115 1116 1117 1118 1119
#endif

/*
 * Find the highest page frame number we have available
 */
1120
static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1121
{
1122 1123
	int i;
	unsigned long last_pfn = 0;
1124 1125
	unsigned long max_arch_pfn = MAX_ARCH_PFN;

1126 1127
	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];
1128
		unsigned long start_pfn;
1129 1130
		unsigned long end_pfn;

1131
		if (ei->type != type)
1132 1133
			continue;

1134
		start_pfn = ei->addr >> PAGE_SHIFT;
1135
		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1136 1137 1138 1139 1140 1141 1142

		if (start_pfn >= limit_pfn)
			continue;
		if (end_pfn > limit_pfn) {
			last_pfn = limit_pfn;
			break;
		}
1143 1144 1145
		if (end_pfn > last_pfn)
			last_pfn = end_pfn;
	}
1146 1147 1148 1149

	if (last_pfn > max_arch_pfn)
		last_pfn = max_arch_pfn;

1150
	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1151 1152 1153
			 last_pfn, max_arch_pfn);
	return last_pfn;
}
1154 1155 1156 1157
unsigned long __init e820_end_of_ram_pfn(void)
{
	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
}
1158

1159 1160 1161 1162
unsigned long __init e820_end_of_low_ram_pfn(void)
{
	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
}
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/*
 * Finds an active region in the address range from start_pfn to last_pfn and
 * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
 */
int __init e820_find_active_region(const struct e820entry *ei,
				  unsigned long start_pfn,
				  unsigned long last_pfn,
				  unsigned long *ei_startpfn,
				  unsigned long *ei_endpfn)
{
	u64 align = PAGE_SIZE;

	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;

	/* Skip map entries smaller than a page */
	if (*ei_startpfn >= *ei_endpfn)
		return 0;

	/* Skip if map is outside the node */
	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
				    *ei_startpfn >= last_pfn)
		return 0;

	/* Check for overlaps */
	if (*ei_startpfn < start_pfn)
		*ei_startpfn = start_pfn;
	if (*ei_endpfn > last_pfn)
		*ei_endpfn = last_pfn;

	return 1;
}

/* Walk the e820 map and register active regions within a node */
void __init e820_register_active_regions(int nid, unsigned long start_pfn,
					 unsigned long last_pfn)
{
	unsigned long ei_startpfn;
	unsigned long ei_endpfn;
	int i;

	for (i = 0; i < e820.nr_map; i++)
		if (e820_find_active_region(&e820.map[i],
					    start_pfn, last_pfn,
					    &ei_startpfn, &ei_endpfn))
			add_active_range(nid, ei_startpfn, ei_endpfn);
}

/*
 * Find the hole size (in bytes) in the memory range.
 * @start: starting address of the memory range to scan
 * @end: ending address of the memory range to scan
 */
u64 __init e820_hole_size(u64 start, u64 end)
{
	unsigned long start_pfn = start >> PAGE_SHIFT;
	unsigned long last_pfn = end >> PAGE_SHIFT;
	unsigned long ei_startpfn, ei_endpfn, ram = 0;
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		if (e820_find_active_region(&e820.map[i],
					    start_pfn, last_pfn,
					    &ei_startpfn, &ei_endpfn))
			ram += ei_endpfn - ei_startpfn;
	}
	return end - start - ((u64)ram << PAGE_SHIFT);
}
1231 1232 1233 1234 1235 1236 1237

static void early_panic(char *msg)
{
	early_printk(msg);
	panic(msg);
}

1238 1239
static int userdef __initdata;

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/* "mem=nopentium" disables the 4MB page tables. */
static int __init parse_memopt(char *p)
{
	u64 mem_size;

	if (!p)
		return -EINVAL;

#ifdef CONFIG_X86_32
	if (!strcmp(p, "nopentium")) {
		setup_clear_cpu_cap(X86_FEATURE_PSE);
		return 0;
	}
#endif

1255
	userdef = 1;
1256
	mem_size = memparse(p, &p);
1257
	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267
	return 0;
}
early_param("mem", parse_memopt);

static int __init parse_memmap_opt(char *p)
{
	char *oldp;
	u64 start_at, mem_size;

1268 1269 1270
	if (!p)
		return -EINVAL;

1271
	if (!strncmp(p, "exactmap", 8)) {
1272 1273 1274 1275 1276 1277
#ifdef CONFIG_CRASH_DUMP
		/*
		 * If we are doing a crash dump, we still need to know
		 * the real mem size before original memory map is
		 * reset.
		 */
1278
		saved_max_pfn = e820_end_of_ram_pfn();
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
#endif
		e820.nr_map = 0;
		userdef = 1;
		return 0;
	}

	oldp = p;
	mem_size = memparse(p, &p);
	if (p == oldp)
		return -EINVAL;

	userdef = 1;
	if (*p == '@') {
		start_at = memparse(p+1, &p);
1293
		e820_add_region(start_at, mem_size, E820_RAM);
1294 1295
	} else if (*p == '#') {
		start_at = memparse(p+1, &p);
1296
		e820_add_region(start_at, mem_size, E820_ACPI);
1297 1298
	} else if (*p == '$') {
		start_at = memparse(p+1, &p);
1299
		e820_add_region(start_at, mem_size, E820_RESERVED);
Y
Yinghai Lu 已提交
1300
	} else
1301
		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
Y
Yinghai Lu 已提交
1302

1303 1304 1305 1306 1307 1308 1309
	return *p == '\0' ? 0 : -EINVAL;
}
early_param("memmap", parse_memmap_opt);

void __init finish_e820_parsing(void)
{
	if (userdef) {
1310
		u32 nr = e820.nr_map;
1311 1312 1313 1314 1315 1316 1317 1318 1319

		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
			early_panic("Invalid user supplied memory map");
		e820.nr_map = nr;

		printk(KERN_INFO "user-defined physical RAM map:\n");
		e820_print_map("user");
	}
}
1320

1321 1322 1323 1324 1325 1326 1327
static inline const char *e820_type_to_string(int e820_type)
{
	switch (e820_type) {
	case E820_RESERVED_KERN:
	case E820_RAM:	return "System RAM";
	case E820_ACPI:	return "ACPI Tables";
	case E820_NVS:	return "ACPI Non-volatile Storage";
1328
	case E820_UNUSABLE:	return "Unusable memory";
1329 1330 1331 1332
	default:	return "reserved";
	}
}

1333 1334 1335
/*
 * Mark e820 reserved areas as busy for the resource manager.
 */
1336
static struct resource __initdata *e820_res;
1337 1338 1339
void __init e820_reserve_resources(void)
{
	int i;
1340
	struct resource *res;
1341
	u64 end;
1342

1343
	res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
1344
	e820_res = res;
1345
	for (i = 0; i < e820.nr_map; i++) {
1346
		end = e820.map[i].addr + e820.map[i].size - 1;
1347
		if (end != (resource_size_t)end) {
1348 1349 1350
			res++;
			continue;
		}
1351
		res->name = e820_type_to_string(e820.map[i].type);
1352 1353 1354
		res->start = e820.map[i].addr;
		res->end = end;

1355
		res->flags = IORESOURCE_MEM;
1356 1357 1358 1359 1360 1361

		/*
		 * don't register the region that could be conflicted with
		 * pci device BAR resource and insert them later in
		 * pcibios_resource_survey()
		 */
1362 1363
		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
			res->flags |= IORESOURCE_BUSY;
1364
			insert_resource(&iomem_resource, res);
1365
		}
1366 1367
		res++;
	}
1368 1369 1370 1371 1372 1373 1374

	for (i = 0; i < e820_saved.nr_map; i++) {
		struct e820entry *entry = &e820_saved.map[i];
		firmware_map_add_early(entry->addr,
			entry->addr + entry->size - 1,
			e820_type_to_string(entry->type));
	}
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/* How much should we pad RAM ending depending on where it is? */
static unsigned long ram_alignment(resource_size_t pos)
{
	unsigned long mb = pos >> 20;

	/* To 64kB in the first megabyte */
	if (!mb)
		return 64*1024;

	/* To 1MB in the first 16MB */
	if (mb < 16)
		return 1024*1024;

1390 1391
	/* To 64MB for anything above that */
	return 64*1024*1024;
1392 1393
}

1394 1395
#define MAX_RESOURCE_SIZE ((resource_size_t)-1)

1396 1397 1398 1399 1400 1401 1402
void __init e820_reserve_resources_late(void)
{
	int i;
	struct resource *res;

	res = e820_res;
	for (i = 0; i < e820.nr_map; i++) {
1403
		if (!res->parent && res->end)
1404
			insert_resource_expand_to_fit(&iomem_resource, res);
1405 1406
		res++;
	}
1407 1408 1409 1410 1411 1412

	/*
	 * Try to bump up RAM regions to reasonable boundaries to
	 * avoid stolen RAM:
	 */
	for (i = 0; i < e820.nr_map; i++) {
1413 1414
		struct e820entry *entry = &e820.map[i];
		u64 start, end;
1415 1416 1417 1418

		if (entry->type != E820_RAM)
			continue;
		start = entry->addr + entry->size;
1419 1420 1421 1422
		end = round_up(start, ram_alignment(start)) - 1;
		if (end > MAX_RESOURCE_SIZE)
			end = MAX_RESOURCE_SIZE;
		if (start >= end)
1423
			continue;
1424 1425
		reserve_region_with_split(&iomem_resource, start, end,
					  "RAM buffer");
1426
	}
1427 1428
}

1429
char *__init default_machine_specific_memory_setup(void)
1430 1431
{
	char *who = "BIOS-e820";
1432
	u32 new_nr;
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	/*
	 * Try to copy the BIOS-supplied E820-map.
	 *
	 * Otherwise fake a memory map; one section from 0k->640k,
	 * the next section from 1mb->appropriate_mem_k
	 */
	new_nr = boot_params.e820_entries;
	sanitize_e820_map(boot_params.e820_map,
			ARRAY_SIZE(boot_params.e820_map),
			&new_nr);
	boot_params.e820_entries = new_nr;
1444 1445
	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
	  < 0) {
1446
		u64 mem_size;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

		/* compare results from other methods and take the greater */
		if (boot_params.alt_mem_k
		    < boot_params.screen_info.ext_mem_k) {
			mem_size = boot_params.screen_info.ext_mem_k;
			who = "BIOS-88";
		} else {
			mem_size = boot_params.alt_mem_k;
			who = "BIOS-e801";
		}

		e820.nr_map = 0;
		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
	}

	/* In case someone cares... */
	return who;
}

void __init setup_memory_map(void)
{
1469 1470
	char *who;

1471
	who = x86_init.resources.memory_setup();
1472
	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1473
	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1474
	e820_print_map(who);
1475
}