i915_gem_execbuffer.c 35.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
40
	uint32_t flips;
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

190 191 192
	if (obj->base.pending_write_domain)
		cd->flips |= atomic_read(&obj->pending_flip);

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= obj->ring->id;
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= ring->id;
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

268 269
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270
				   struct eb_objects *eb,
271 272 273 274 275 276 277
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
	uint32_t target_offset;
	int ret = -EINVAL;

278 279 280
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
281 282 283 284 285 286 287
		return -ENOENT;

	target_offset = to_intel_bo(target_obj)->gtt_offset;

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
288
	if (unlikely(target_offset == 0)) {
289 290
		DRM_ERROR("No GTT space found for object %d\n",
			  reloc->target_handle);
291
		return ret;
292 293 294
	}

	/* Validate that the target is in a valid r/w GPU domain */
295
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
296 297 298 299 300 301 302
		DRM_ERROR("reloc with multiple write domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
303
		return ret;
304
	}
305
	if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
306 307 308 309 310 311 312
		DRM_ERROR("reloc with read/write CPU domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
313
		return ret;
314
	}
315 316
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
317 318 319 320 321 322 323
		DRM_ERROR("Write domain conflict: "
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
324
		return ret;
325 326 327 328 329 330 331 332 333
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
334
		return 0;
335 336

	/* Check that the relocation address is valid... */
337
	if (unlikely(reloc->offset > obj->base.size - 4)) {
338 339 340 341 342
		DRM_ERROR("Relocation beyond object bounds: "
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
343
		return ret;
344
	}
345
	if (unlikely(reloc->offset & 3)) {
346 347 348 349
		DRM_ERROR("Relocation not 4-byte aligned: "
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
350
		return ret;
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	}

	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

366 367 368 369
		/* We can't wait for rendering with pagefaults disabled */
		if (obj->active && in_atomic())
			return -EFAULT;

370 371
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
372
			return ret;
373 374 375 376 377 378 379 380 381 382 383 384 385 386

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

387
	return 0;
388 389 390 391
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
392
				    struct eb_objects *eb)
393 394
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
395
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
396 397 398 399 400 401 402 403 404 405 406
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

407
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
408 409 410 411 412 413 414 415 416 417 418 419 420 421
		if (ret)
			return ret;

		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
422
					 struct eb_objects *eb,
423 424
					 struct drm_i915_gem_relocation_entry *relocs)
{
425
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
426 427 428
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
429
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
430 431 432 433 434 435 436 437 438
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
439
			     struct eb_objects *eb,
440
			     struct list_head *objects)
441
{
442
	struct drm_i915_gem_object *obj;
443 444 445 446 447 448 449 450 451 452
	int ret = 0;

	/* This is the fast path and we cannot handle a pagefault whilst
	 * holding the struct mutex lest the user pass in the relocations
	 * contained within a mmaped bo. For in such a case we, the page
	 * fault handler would call i915_gem_fault() and we would try to
	 * acquire the struct mutex again. Obviously this is bad and so
	 * lockdep complains vehemently.
	 */
	pagefault_disable();
453
	list_for_each_entry(obj, objects, exec_list) {
454
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
455
		if (ret)
456
			break;
457
	}
458
	pagefault_enable();
459

460
	return ret;
461 462 463
}

static int
464
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
465
			    struct drm_file *file,
466
			    struct list_head *objects)
467
{
468 469
	struct drm_i915_gem_object *obj;
	int ret, retry;
470
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
		need_mappable =
			entry->relocation_count ? true : need_fence;

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
494 495 496

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
497 498
	}
	list_splice(&ordered_objects, objects);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
517
		list_for_each_entry(obj, objects, exec_list) {
518
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
519
			bool need_fence, need_mappable;
520
			if (!obj->gtt_space)
521 522 523
				continue;

			need_fence =
524
				has_fenced_gpu_access &&
525 526 527 528 529 530 531 532 533 534 535 536
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
			need_mappable =
				entry->relocation_count ? true : need_fence;

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
537
			if (ret)
538
				goto err;
539 540

			entry++;
541 542 543
		}

		/* Bind fresh objects */
544
		list_for_each_entry(obj, objects, exec_list) {
545
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
546 547 548
			bool need_fence;

			need_fence =
549
				has_fenced_gpu_access &&
550 551 552 553 554 555 556 557 558 559 560 561 562 563
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

			if (!obj->gtt_space) {
				bool need_mappable =
					entry->relocation_count ? true : need_fence;

				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
				if (ret)
					break;
			}

564 565
			if (has_fenced_gpu_access) {
				if (need_fence) {
566
					ret = i915_gem_object_get_fence(obj, ring);
567 568 569 570 571 572 573 574 575 576
					if (ret)
						break;
				} else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
					   obj->tiling_mode == I915_TILING_NONE) {
					/* XXX pipelined! */
					ret = i915_gem_object_put_fence(obj);
					if (ret)
						break;
				}
				obj->pending_fenced_gpu_access = need_fence;
577 578 579 580 581
			}

			entry->offset = obj->gtt_offset;
		}

582 583
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
584 585 586 587 588 589 590 591 592 593
			if (obj->gtt_space)
				i915_gem_object_unpin(obj);
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
594
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
595 596 597 598 599
		if (ret)
			return ret;

		retry++;
	} while (1);
600 601

err:
602 603 604
	obj = list_entry(obj->exec_list.prev,
			 struct drm_i915_gem_object,
			 exec_list);
605 606 607 608 609 610 611 612 613 614
	while (objects != &obj->exec_list) {
		if (obj->gtt_space)
			i915_gem_object_unpin(obj);

		obj = list_entry(obj->exec_list.prev,
				 struct drm_i915_gem_object,
				 exec_list);
	}

	return ret;
615 616 617 618 619
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
620
				  struct intel_ring_buffer *ring,
621
				  struct list_head *objects,
622
				  struct eb_objects *eb,
623
				  struct drm_i915_gem_exec_object2 *exec,
624 625 626
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
627
	struct drm_i915_gem_object *obj;
628
	int *reloc_offset;
629 630
	int i, total, ret;

631
	/* We may process another execbuffer during the unlock... */
632
	while (!list_empty(objects)) {
633 634 635 636 637 638 639
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

640 641 642 643
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
644
		total += exec[i].relocation_count;
645

646
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
647
	reloc = drm_malloc_ab(total, sizeof(*reloc));
648 649 650
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
651 652 653 654 655 656 657 658
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

659
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
660 661

		if (copy_from_user(reloc+total, user_relocs,
662
				   exec[i].relocation_count * sizeof(*reloc))) {
663 664 665 666 667
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

668
		reloc_offset[i] = total;
669
		total += exec[i].relocation_count;
670 671 672 673 674 675 676 677
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

678 679 680 681 682
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
683
		if (&obj->base == NULL) {
684 685 686 687 688 689 690 691
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
692
		obj->exec_entry = &exec[i];
693 694 695
		eb_add_object(eb, obj);
	}

696
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
697 698 699
	if (ret)
		goto err;

700
	list_for_each_entry(obj, objects, exec_list) {
701
		int offset = obj->exec_entry - exec;
702
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
703
							       reloc + reloc_offset[offset]);
704 705 706 707 708 709 710 711 712 713 714 715
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
716
	drm_free_large(reloc_offset);
717 718 719
	return ret;
}

720
static int
721 722 723 724 725 726
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
727
	int i, ret;
728 729 730 731

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

732 733 734
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

735
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
736
		for (i = 0; i < I915_NUM_RINGS; i++)
737
			if (flush_rings & (1 << i)) {
C
Chris Wilson 已提交
738
				ret = i915_gem_flush_ring(&dev_priv->ring[i],
739 740 741 742 743
							  invalidate_domains,
							  flush_domains);
				if (ret)
					return ret;
			}
744
	}
745 746

	return 0;
747 748
}

749 750 751 752 753 754 755 756 757 758 759
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
			       struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

760 761
	/* XXX gpu semaphores are implicated in various hard hangs on SNB */
	if (INTEL_INFO(obj->base.dev)->gen < 6 || !i915_semaphores)
762
		return i915_gem_object_wait_rendering(obj);
763 764 765 766 767 768 769 770 771 772 773 774 775 776

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

C
Chris Wilson 已提交
777
		ret = i915_add_request(from, NULL, request);
778 779 780 781 782 783 784 785 786 787 788
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}

	from->sync_seqno[idx] = seqno;
	return intel_ring_sync(to, from, seqno - 1);
}
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
{
	u32 plane, flip_mask;
	int ret;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */

	for (plane = 0; flips >> plane; plane++) {
		if (((flips >> plane) & 1) == 0)
			continue;

		if (plane)
			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
		else
			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
	}

	return 0;
}


823
static int
824 825
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
826
{
827
	struct drm_i915_gem_object *obj;
828
	struct change_domains cd;
829
	int ret;
830

831
	memset(&cd, 0, sizeof(cd));
832 833
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
834 835

	if (cd.invalidate_domains | cd.flush_domains) {
836 837 838 839 840 841
		ret = i915_gem_execbuffer_flush(ring->dev,
						cd.invalidate_domains,
						cd.flush_domains,
						cd.flush_rings);
		if (ret)
			return ret;
842 843
	}

844 845 846 847 848 849
	if (cd.flips) {
		ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
		if (ret)
			return ret;
	}

850
	list_for_each_entry(obj, objects, exec_list) {
851 852 853
		ret = i915_gem_execbuffer_sync_rings(obj, ring);
		if (ret)
			return ret;
854 855 856 857 858
	}

	return 0;
}

859 860
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
861
{
862
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
	}

	return 0;
}

896 897
static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
898 899
				   struct intel_ring_buffer *ring,
				   u32 seqno)
900 901 902 903
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
C
Chris Wilson 已提交
904 905 906 907
		  u32 old_read = obj->base.read_domains;
		  u32 old_write = obj->base.write_domain;


908 909 910 911
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

912
		i915_gem_object_move_to_active(obj, ring, seqno);
913 914
		if (obj->base.write_domain) {
			obj->dirty = 1;
915
			obj->pending_gpu_write = true;
916 917 918 919 920
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

C
Chris Wilson 已提交
921
		trace_i915_gem_object_change_domain(obj, old_read, old_write);
922 923 924
	}
}

925 926
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
927
				    struct drm_file *file,
928 929
				    struct intel_ring_buffer *ring)
{
930
	struct drm_i915_gem_request *request;
931
	u32 invalidate;
932

933 934 935 936 937 938
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
939
	invalidate = I915_GEM_DOMAIN_COMMAND;
940
	if (INTEL_INFO(dev)->gen >= 4)
941 942
		invalidate |= I915_GEM_DOMAIN_SAMPLER;
	if (ring->flush(ring, invalidate, 0)) {
C
Chris Wilson 已提交
943
		i915_gem_next_request_seqno(ring);
944 945
		return;
	}
946

947 948
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
C
Chris Wilson 已提交
949 950
	if (request == NULL || i915_add_request(ring, file, request)) {
		i915_gem_next_request_seqno(ring);
951 952 953
		kfree(request);
	}
}
954 955 956 957 958

static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
959
		       struct drm_i915_gem_exec_object2 *exec)
960 961
{
	drm_i915_private_t *dev_priv = dev->dev_private;
962
	struct list_head objects;
963
	struct eb_objects *eb;
964 965 966
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
967
	u32 exec_start, exec_len;
968
	u32 seqno;
969
	int ret, mode, i;
970

971 972 973 974 975 976
	if (!i915_gem_check_execbuffer(args)) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
977 978 979 980 981 982
	if (ret)
		return ret;

	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
983
		ring = &dev_priv->ring[RCS];
984 985 986 987 988 989
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
			return -EINVAL;
		}
990
		ring = &dev_priv->ring[VCS];
991 992 993 994 995 996
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
997
		ring = &dev_priv->ring[BCS];
998 999 1000 1001 1002 1003 1004
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;

			ret = intel_ring_begin(ring, 4);
			if (ret)
				return ret;

			intel_ring_emit(ring, MI_NOOP);
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit(ring, INSTPM);
			intel_ring_emit(ring,
					I915_EXEC_CONSTANTS_MASK << 16 | mode);
			intel_ring_advance(ring);

			dev_priv->relative_constants_mode = mode;
		}
		break;
	default:
		DRM_ERROR("execbuf with unknown constants: %d\n", mode);
		return -EINVAL;
	}

1038 1039 1040 1041 1042 1043
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1044
		if (ring != &dev_priv->ring[RCS]) {
1045 1046 1047 1048
			DRM_ERROR("clip rectangles are only valid with the render ring\n");
			return -EINVAL;
		}

1049
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1050 1051 1052 1053 1054 1055
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1056 1057 1058 1059
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1075 1076 1077 1078 1079 1080 1081
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1082
	/* Look up object handles */
1083
	INIT_LIST_HEAD(&objects);
1084 1085 1086
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1087 1088
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1089
		if (&obj->base == NULL) {
1090
			DRM_ERROR("Invalid object handle %d at index %d\n",
1091
				   exec[i].handle, i);
1092 1093 1094 1095 1096
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1097 1098 1099
		if (!list_empty(&obj->exec_list)) {
			DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
				   obj, exec[i].handle, i);
1100 1101 1102
			ret = -EINVAL;
			goto err;
		}
1103 1104

		list_add_tail(&obj->exec_list, &objects);
1105
		obj->exec_handle = exec[i].handle;
1106
		obj->exec_entry = &exec[i];
1107
		eb_add_object(eb, obj);
1108 1109
	}

1110 1111 1112 1113 1114
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1115
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1116
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1117 1118 1119 1120
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1121
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1122 1123
	if (ret) {
		if (ret == -EFAULT) {
1124
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1125 1126
								&objects, eb,
								exec,
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1142 1143
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1144 1145
		goto err;

C
Chris Wilson 已提交
1146
	seqno = i915_gem_next_request_seqno(ring);
1147
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
			ret = i915_gpu_idle(dev);
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

C
Chris Wilson 已提交
1161 1162
	trace_i915_gem_ring_dispatch(ring, seqno);

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1182

1183
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1184
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1185 1186

err:
1187
	eb_destroy(eb);
1188 1189 1190 1191 1192 1193 1194 1195
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

1304 1305 1306 1307 1308
	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (exec2_list == NULL)
		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
					   args->buffer_count);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}