i915_gem_execbuffer.c 35.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

	/* blow away mappings if mapped through GTT */
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
		i915_gem_release_mmap(obj);

	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= obj->ring->id;
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= ring->id;
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

268 269
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270
				   struct eb_objects *eb,
271 272 273 274 275 276 277 278
				   struct drm_i915_gem_exec_object2 *entry,
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
	uint32_t target_offset;
	int ret = -EINVAL;

279 280 281
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
		return -ENOENT;

	target_offset = to_intel_bo(target_obj)->gtt_offset;

#if WATCH_RELOC
	DRM_INFO("%s: obj %p offset %08x target %d "
		 "read %08x write %08x gtt %08x "
		 "presumed %08x delta %08x\n",
		 __func__,
		 obj,
		 (int) reloc->offset,
		 (int) reloc->target_handle,
		 (int) reloc->read_domains,
		 (int) reloc->write_domain,
		 (int) target_offset,
		 (int) reloc->presumed_offset,
		 reloc->delta);
#endif

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
304
	if (unlikely(target_offset == 0)) {
305 306
		DRM_ERROR("No GTT space found for object %d\n",
			  reloc->target_handle);
307
		return ret;
308 309 310
	}

	/* Validate that the target is in a valid r/w GPU domain */
311
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
312 313 314 315 316 317 318
		DRM_ERROR("reloc with multiple write domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
319
		return ret;
320
	}
321
	if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
322 323 324 325 326 327 328
		DRM_ERROR("reloc with read/write CPU domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
329
		return ret;
330
	}
331 332
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
333 334 335 336 337 338 339
		DRM_ERROR("Write domain conflict: "
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
340
		return ret;
341 342 343 344 345 346 347 348 349
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
350
		return 0;
351 352

	/* Check that the relocation address is valid... */
353
	if (unlikely(reloc->offset > obj->base.size - 4)) {
354 355 356 357 358
		DRM_ERROR("Relocation beyond object bounds: "
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
359
		return ret;
360
	}
361
	if (unlikely(reloc->offset & 3)) {
362 363 364 365
		DRM_ERROR("Relocation not 4-byte aligned: "
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
366
		return ret;
367 368 369
	}

	/* and points to somewhere within the target object. */
370
	if (unlikely(reloc->delta >= target_obj->size)) {
371 372 373 374 375
		DRM_ERROR("Relocation beyond target object bounds: "
			  "obj %p target %d delta %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->delta,
			  (int) target_obj->size);
376
		return ret;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	}

	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
394
			return ret;
395 396 397 398 399 400 401 402 403 404 405 406 407 408

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

409
	return 0;
410 411 412 413
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
414
				    struct eb_objects *eb,
415 416 417 418 419 420 421 422 423 424 425 426 427 428
				    struct drm_i915_gem_exec_object2 *entry)
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

429
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, entry, &reloc);
430 431 432 433 434 435 436 437 438 439 440 441 442 443
		if (ret)
			return ret;

		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
444
					 struct eb_objects *eb,
445 446 447 448 449 450
					 struct drm_i915_gem_exec_object2 *entry,
					 struct drm_i915_gem_relocation_entry *relocs)
{
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
451
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, entry, &relocs[i]);
452 453 454 455 456 457 458 459 460
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
461
			     struct eb_objects *eb,
462 463
			     struct list_head *objects,
			     struct drm_i915_gem_exec_object2 *exec)
464
{
465 466
	struct drm_i915_gem_object *obj;
	int ret;
467

468
	list_for_each_entry(obj, objects, exec_list) {
469 470
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
471
		ret = i915_gem_execbuffer_relocate_object(obj, eb, exec++);
472 473 474 475 476 477 478 479
		if (ret)
			return ret;
	}

	return 0;
}

static int
480
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
481
			    struct drm_file *file,
482 483
			    struct list_head *objects,
			    struct drm_i915_gem_exec_object2 *exec)
484
{
485 486 487
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_exec_object2 *entry;
	int ret, retry;
488
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
507 508
		entry = exec;
		list_for_each_entry(obj, objects, exec_list) {
509 510
			bool need_fence, need_mappable;

511 512
			if (!obj->gtt_space) {
				entry++;
513
				continue;
514
			}
515 516

			need_fence =
517
				has_fenced_gpu_access &&
518 519 520 521 522 523 524 525 526 527 528 529
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
			need_mappable =
				entry->relocation_count ? true : need_fence;

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
530
			if (ret)
531
				goto err;
532 533

			entry++;
534 535 536
		}

		/* Bind fresh objects */
537 538
		entry = exec;
		list_for_each_entry(obj, objects, exec_list) {
539 540 541
			bool need_fence;

			need_fence =
542
				has_fenced_gpu_access &&
543 544 545 546 547 548 549 550 551 552 553 554 555 556
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

			if (!obj->gtt_space) {
				bool need_mappable =
					entry->relocation_count ? true : need_fence;

				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
				if (ret)
					break;
			}

557 558 559 560 561 562 563 564 565 566 567 568 569
			if (has_fenced_gpu_access) {
				if (need_fence) {
					ret = i915_gem_object_get_fence(obj, ring, 1);
					if (ret)
						break;
				} else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
					   obj->tiling_mode == I915_TILING_NONE) {
					/* XXX pipelined! */
					ret = i915_gem_object_put_fence(obj);
					if (ret)
						break;
				}
				obj->pending_fenced_gpu_access = need_fence;
570 571 572
			}

			entry->offset = obj->gtt_offset;
573
			entry++;
574 575
		}

576 577
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
578 579 580 581 582 583 584 585 586 587
			if (obj->gtt_space)
				i915_gem_object_unpin(obj);
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
588
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
589 590 591 592 593
		if (ret)
			return ret;

		retry++;
	} while (1);
594 595

err:
596 597 598
	obj = list_entry(obj->exec_list.prev,
			 struct drm_i915_gem_object,
			 exec_list);
599 600 601 602 603 604 605 606 607 608
	while (objects != &obj->exec_list) {
		if (obj->gtt_space)
			i915_gem_object_unpin(obj);

		obj = list_entry(obj->exec_list.prev,
				 struct drm_i915_gem_object,
				 exec_list);
	}

	return ret;
609 610 611 612 613
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
614
				  struct intel_ring_buffer *ring,
615
				  struct list_head *objects,
616
				  struct eb_objects *eb,
617
				  struct drm_i915_gem_exec_object2 *exec,
618 619 620
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
621
	struct drm_i915_gem_object *obj;
622 623
	int i, total, ret;

624 625 626 627 628 629 630 631 632
	/* We may process another execbuffer during the unlock... */
	while (list_empty(objects)) {
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

633 634 635 636
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
637
		total += exec[i].relocation_count;
638 639 640 641 642 643 644 645 646 647 648

	reloc = drm_malloc_ab(total, sizeof(*reloc));
	if (reloc == NULL) {
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

649
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
650 651

		if (copy_from_user(reloc+total, user_relocs,
652
				   exec[i].relocation_count * sizeof(*reloc))) {
653 654 655 656 657
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

658
		total += exec[i].relocation_count;
659 660 661 662 663 664 665 666
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	/* reacquire the objects */
	INIT_LIST_HEAD(objects);
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj;

		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
		if (obj == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
		eb_add_object(eb, obj);
	}

687
	ret = i915_gem_execbuffer_reserve(ring, file, objects, exec);
688 689 690 691
	if (ret)
		goto err;

	total = 0;
692
	list_for_each_entry(obj, objects, exec_list) {
693 694
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
695
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
696
							       exec,
697 698 699 700
							       reloc + total);
		if (ret)
			goto err;

701 702
		total += exec->relocation_count;
		exec++;
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
	return ret;
}

static void
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
723
	int i;
724 725 726 727 728

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
729 730 731 732 733
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (flush_rings & (1 << i))
				i915_gem_flush_ring(dev, &dev_priv->ring[i],
						    invalidate_domains,
						    flush_domains);
734 735 736
	}
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
			       struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

	if (INTEL_INFO(obj->base.dev)->gen < 6)
		return i915_gem_object_wait_rendering(obj, true);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(obj->base.dev, NULL, request, from);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}

	from->sync_seqno[idx] = seqno;
	return intel_ring_sync(to, from, seqno - 1);
}
776 777

static int
778 779
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
780
{
781
	struct drm_i915_gem_object *obj;
782
	struct change_domains cd;
783
	int ret;
784 785 786 787

	cd.invalidate_domains = 0;
	cd.flush_domains = 0;
	cd.flush_rings = 0;
788 789
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
790 791 792 793 794 795 796 797

	if (cd.invalidate_domains | cd.flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 cd.invalidate_domains,
			 cd.flush_domains);
#endif
798
		i915_gem_execbuffer_flush(ring->dev,
799 800 801 802 803
					  cd.invalidate_domains,
					  cd.flush_domains,
					  cd.flush_rings);
	}

804
	list_for_each_entry(obj, objects, exec_list) {
805 806 807
		ret = i915_gem_execbuffer_sync_rings(obj, ring);
		if (ret)
			return ret;
808 809 810 811 812
	}

	return 0;
}

813 814
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
815
{
816
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
	}

	return 0;
}

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring,
				   struct list_head *objects)
{
	struct drm_i915_gem_object *obj;
	int flips;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	list_for_each_entry(obj, objects, exec_list) {
		if (obj->base.write_domain)
			flips |= atomic_read(&obj->pending_flip);
	}
	if (flips) {
		int plane, flip_mask, ret;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			ret = intel_ring_begin(ring, 2);
			if (ret)
				return ret;

			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
		}
	}

	return 0;
}

static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
893 894
				   struct intel_ring_buffer *ring,
				   u32 seqno)
895 896 897 898 899 900 901 902
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

903
		i915_gem_object_move_to_active(obj, ring, seqno);
904 905
		if (obj->base.write_domain) {
			obj->dirty = 1;
906
			obj->pending_gpu_write = true;
907 908 909 910 911 912 913 914 915 916 917
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

		trace_i915_gem_object_change_domain(obj,
						    obj->base.read_domains,
						    obj->base.write_domain);
	}
}

918 919
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
920
				    struct drm_file *file,
921 922
				    struct intel_ring_buffer *ring)
{
923 924
	struct drm_i915_gem_request *request;
	u32 flush_domains;
925

926 927 928 929 930 931 932
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
	flush_domains = 0;
933 934 935 936 937
	if (INTEL_INFO(dev)->gen >= 4)
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;

	ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);

938 939 940 941 942 943 944
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL || i915_add_request(dev, file, request, ring)) {
		i915_gem_next_request_seqno(dev, ring);
		kfree(request);
	}
}
945 946 947 948 949

static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
950
		       struct drm_i915_gem_exec_object2 *exec)
951 952
{
	drm_i915_private_t *dev_priv = dev->dev_private;
953
	struct list_head objects;
954
	struct eb_objects *eb;
955 956 957
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
958
	u32 exec_start, exec_len;
959
	u32 seqno;
960
	int ret, mode, i;
961

962 963 964 965 966 967
	if (!i915_gem_check_execbuffer(args)) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
968 969 970 971 972 973 974 975 976 977
	if (ret)
		return ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
978
		ring = &dev_priv->ring[RCS];
979 980 981 982 983 984
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
			return -EINVAL;
		}
985
		ring = &dev_priv->ring[VCS];
986 987 988 989 990 991
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
992
		ring = &dev_priv->ring[BCS];
993 994 995 996 997 998 999
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;

			ret = intel_ring_begin(ring, 4);
			if (ret)
				return ret;

			intel_ring_emit(ring, MI_NOOP);
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit(ring, INSTPM);
			intel_ring_emit(ring,
					I915_EXEC_CONSTANTS_MASK << 16 | mode);
			intel_ring_advance(ring);

			dev_priv->relative_constants_mode = mode;
		}
		break;
	default:
		DRM_ERROR("execbuf with unknown constants: %d\n", mode);
		return -EINVAL;
	}

1033 1034 1035 1036 1037 1038
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1039
		if (ring != &dev_priv->ring[RCS]) {
1040 1041 1042 1043
			DRM_ERROR("clip rectangles are only valid with the render ring\n");
			return -EINVAL;
		}

1044
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1045 1046 1047 1048 1049 1050
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1051 1052 1053 1054
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1070 1071 1072 1073 1074 1075 1076
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1077
	/* Look up object handles */
1078
	INIT_LIST_HEAD(&objects);
1079 1080 1081
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1082 1083
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1084 1085
		if (obj == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
1086
				   exec[i].handle, i);
1087 1088 1089 1090 1091
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1092 1093 1094
		if (!list_empty(&obj->exec_list)) {
			DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
				   obj, exec[i].handle, i);
1095 1096 1097
			ret = -EINVAL;
			goto err;
		}
1098 1099

		list_add_tail(&obj->exec_list, &objects);
1100 1101
		obj->exec_handle = exec[i].handle;
		eb_add_object(eb, obj);
1102 1103 1104
	}

	/* Move the objects en-masse into the GTT, evicting if necessary. */
1105
	ret = i915_gem_execbuffer_reserve(ring, file, &objects, exec);
1106 1107 1108 1109
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1110
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects, exec);
1111 1112
	if (ret) {
		if (ret == -EFAULT) {
1113
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1114 1115
								&objects, eb,
								exec,
1116 1117 1118 1119 1120 1121 1122 1123
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
1124 1125 1126
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);
1127 1128 1129 1130 1131 1132 1133
	if (batch_obj->base.pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1134 1135
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1136 1137
		goto err;

1138
	ret = i915_gem_execbuffer_wait_for_flips(ring, &objects);
1139 1140 1141
	if (ret)
		goto err;

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	seqno = i915_gem_next_request_seqno(dev, ring);
	for (i = 0; i < I915_NUM_RINGS-1; i++) {
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
			ret = i915_gpu_idle(dev);
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1176

1177
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1178
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1179 1180

err:
1181
	eb_destroy(eb);
1182 1183 1184 1185 1186 1187 1188 1189
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}