time.c 17.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
D
Daniel Walker 已提交
14
 *      Created file with time related functions from sched.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

#include <linux/module.h>
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/clocksource.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
38
#include <linux/slab.h>
R
Roman Zippel 已提交
39
#include <linux/math64.h>
L
Linus Torvalds 已提交
40 41 42 43

#include <asm/uaccess.h>
#include <asm/unistd.h>

44 45
#include "timeconst.h"

D
Daniel Walker 已提交
46
/*
L
Linus Torvalds 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
asmlinkage long sys_time(time_t __user * tloc)
{
I
Ingo Molnar 已提交
64
	time_t i = get_seconds();
L
Linus Torvalds 已提交
65 66

	if (tloc) {
L
Linus Torvalds 已提交
67
		if (put_user(i,tloc))
L
Linus Torvalds 已提交
68 69 70 71 72 73 74 75 76 77 78
			i = -EFAULT;
	}
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
79

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
asmlinkage long sys_stime(time_t __user *tptr)
{
	struct timespec tv;
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

	err = security_settime(&tv, NULL);
	if (err)
		return err;

	do_settimeofday(&tv);
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

100 101
asmlinkage long sys_gettimeofday(struct timeval __user *tv,
				 struct timezone __user *tz)
L
Linus Torvalds 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
D
Daniel Walker 已提交
119
 *
L
Linus Torvalds 已提交
120 121
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
D
Daniel Walker 已提交
122
 * confusion if the program gets run more than once; it would also be
L
Linus Torvalds 已提交
123 124 125
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
126
 *						- TYT, 1992-01-01
L
Linus Torvalds 已提交
127 128 129 130 131
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
132
static inline void warp_clock(void)
L
Linus Torvalds 已提交
133 134 135 136
{
	write_seqlock_irq(&xtime_lock);
	wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
	xtime.tv_sec += sys_tz.tz_minuteswest * 60;
137
	update_xtime_cache(0);
L
Linus Torvalds 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	write_sequnlock_irq(&xtime_lock);
	clock_was_set();
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
{
	static int firsttime = 1;
	int error = 0;

158
	if (tv && !timespec_valid(tv))
159 160
		return -EINVAL;

L
Linus Torvalds 已提交
161 162 163 164 165 166 167
	error = security_settime(tv, tz);
	if (error)
		return error;

	if (tz) {
		/* SMP safe, global irq locking makes it work. */
		sys_tz = *tz;
168
		update_vsyscall_tz();
L
Linus Torvalds 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
		if (firsttime) {
			firsttime = 0;
			if (!tv)
				warp_clock();
		}
	}
	if (tv)
	{
		/* SMP safe, again the code in arch/foo/time.c should
		 * globally block out interrupts when it runs.
		 */
		return do_settimeofday(tv);
	}
	return 0;
}

asmlinkage long sys_settimeofday(struct timeval __user *tv,
				struct timezone __user *tz)
{
	struct timeval user_tv;
	struct timespec	new_ts;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}

asmlinkage long sys_adjtimex(struct timex __user *txc_p)
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

/**
 * current_fs_time - Return FS time
 * @sb: Superblock.
 *
225
 * Return the current time truncated to the time granularity supported by
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234
 * the fs.
 */
struct timespec current_fs_time(struct super_block *sb)
{
	struct timespec now = current_kernel_time();
	return timespec_trunc(now, sb->s_time_gran);
}
EXPORT_SYMBOL(current_fs_time);

E
Eric Dumazet 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
unsigned int inline jiffies_to_msecs(const unsigned long j)
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
248
# if BITS_PER_LONG == 32
249
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
250 251 252
# else
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
# endif
E
Eric Dumazet 已提交
253 254 255 256 257 258 259 260 261 262 263
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

unsigned int inline jiffies_to_usecs(const unsigned long j)
{
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
	return (USEC_PER_SEC / HZ) * j;
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
#else
264
# if BITS_PER_LONG == 32
265
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
266 267 268
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
269 270 271 272
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
273
/**
274
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
275
 * @t: Timespec
276
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
277
 *
278
 * Truncate a timespec to a granularity. gran must be smaller than a second.
L
Linus Torvalds 已提交
279 280 281 282
 * Always rounds down.
 *
 * This function should be only used for timestamps returned by
 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
L
Li Zefan 已提交
283
 * it doesn't handle the better resolution of the latter.
L
Linus Torvalds 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
	/*
	 * Division is pretty slow so avoid it for common cases.
	 * Currently current_kernel_time() never returns better than
	 * jiffies resolution. Exploit that.
	 */
	if (gran <= jiffies_to_usecs(1) * 1000) {
		/* nothing */
	} else if (gran == 1000000000) {
		t.tv_nsec = 0;
	} else {
		t.tv_nsec -= t.tv_nsec % gran;
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

303
#ifndef CONFIG_GENERIC_TIME
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311 312 313 314 315
/*
 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
 * and therefore only yields usec accuracy
 */
void getnstimeofday(struct timespec *tv)
{
	struct timeval x;

	do_gettimeofday(&x);
	tv->tv_sec = x.tv_sec;
	tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
}
316
EXPORT_SYMBOL_GPL(getnstimeofday);
L
Linus Torvalds 已提交
317 318
#endif

319 320 321 322 323 324 325 326 327 328 329 330
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 *
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
L
Li Zefan 已提交
331
 * machines where long is 32-bit! (However, as time_t is signed, we
332 333 334
 * will already get problems at other places on 2038-01-19 03:14:08)
 */
unsigned long
335 336 337
mktime(const unsigned int year0, const unsigned int mon0,
       const unsigned int day, const unsigned int hour,
       const unsigned int min, const unsigned int sec)
338
{
339 340 341 342 343
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
344 345 346 347 348 349 350 351 352 353 354
		year -= 1;
	}

	return ((((unsigned long)
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
	    )*24 + hour /* now have hours */
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}

355 356
EXPORT_SYMBOL(mktime);

357 358 359 360 361 362 363 364 365 366 367
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
368
 *	0 <= tv_nsec < NSEC_PER_SEC
369 370
 * For negative values only the tv_sec field is negative !
 */
371
void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
372 373 374 375 376 377 378 379 380 381 382 383
{
	while (nsec >= NSEC_PER_SEC) {
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
384
EXPORT_SYMBOL(set_normalized_timespec);
385

386 387 388 389 390 391
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
392
struct timespec ns_to_timespec(const s64 nsec)
393 394
{
	struct timespec ts;
R
Roman Zippel 已提交
395
	s32 rem;
396

397 398 399
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
400 401 402 403 404 405
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
406 407 408

	return ts;
}
409
EXPORT_SYMBOL(ns_to_timespec);
410 411 412 413 414 415 416

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
417
struct timeval ns_to_timeval(const s64 nsec)
418 419 420 421 422 423 424 425 426
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
427
EXPORT_SYMBOL(ns_to_timeval);
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * When we convert to jiffies then we interpret incoming values
 * the following way:
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
 *   the input value by a factor or dividing it with a factor
 *
 * We must also be careful about 32-bit overflows.
 */
443 444
unsigned long msecs_to_jiffies(const unsigned int m)
{
445 446 447 448
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
449
		return MAX_JIFFY_OFFSET;
450

451
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
452 453 454 455 456
	/*
	 * HZ is equal to or smaller than 1000, and 1000 is a nice
	 * round multiple of HZ, divide with the factor between them,
	 * but round upwards:
	 */
457 458
	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
459 460 461 462 463 464 465 466 467 468
	/*
	 * HZ is larger than 1000, and HZ is a nice round multiple of
	 * 1000 - simply multiply with the factor between them.
	 *
	 * But first make sure the multiplication result cannot
	 * overflow:
	 */
	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;

469 470
	return m * (HZ / MSEC_PER_SEC);
#else
471 472 473
	/*
	 * Generic case - multiply, round and divide. But first
	 * check that if we are doing a net multiplication, that
474
	 * we wouldn't overflow:
475 476 477 478
	 */
	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;

479
	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
480
		>> MSEC_TO_HZ_SHR32;
481 482 483 484 485 486 487 488 489 490 491 492 493
#endif
}
EXPORT_SYMBOL(msecs_to_jiffies);

unsigned long usecs_to_jiffies(const unsigned int u)
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
	return u * (HZ / USEC_PER_SEC);
#else
494
	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
495
		>> USEC_TO_HZ_SHR32;
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
#endif
}
EXPORT_SYMBOL(usecs_to_jiffies);

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
unsigned long
timespec_to_jiffies(const struct timespec *value)
{
	unsigned long sec = value->tv_sec;
	long nsec = value->tv_nsec + TICK_NSEC - 1;

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
	return (((u64)sec * SEC_CONVERSION) +
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
EXPORT_SYMBOL(timespec_to_jiffies);

void
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
535 536 537 538
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
}
EXPORT_SYMBOL(jiffies_to_timespec);

/* Same for "timeval"
 *
 * Well, almost.  The problem here is that the real system resolution is
 * in nanoseconds and the value being converted is in micro seconds.
 * Also for some machines (those that use HZ = 1024, in-particular),
 * there is a LARGE error in the tick size in microseconds.

 * The solution we use is to do the rounding AFTER we convert the
 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
 * Instruction wise, this should cost only an additional add with carry
 * instruction above the way it was done above.
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
	unsigned long sec = value->tv_sec;
	long usec = value->tv_usec;

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		usec = 0;
	}
	return (((u64)sec * SEC_CONVERSION) +
		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
568
EXPORT_SYMBOL(timeval_to_jiffies);
569 570 571 572 573 574 575

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
576
	u32 rem;
577

R
Roman Zippel 已提交
578 579 580
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
581
}
582
EXPORT_SYMBOL(jiffies_to_timeval);
583 584 585 586 587 588 589

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
clock_t jiffies_to_clock_t(long x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
590 591 592
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
593
	return x / (HZ / USER_HZ);
594
# endif
595
#else
R
Roman Zippel 已提交
596
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
613
	return div_u64((u64)x * HZ, USER_HZ);
614 615 616 617 618 619 620
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
621
# if HZ < USER_HZ
R
Roman Zippel 已提交
622
	x = div_u64(x * USER_HZ, HZ);
623
# elif HZ > USER_HZ
R
Roman Zippel 已提交
624
	x = div_u64(x, HZ / USER_HZ);
625 626
# else
	/* Nothing to do */
627
# endif
628 629 630 631 632 633
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
634
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
635 636 637 638 639 640 641 642
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
643
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
644
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
645
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
646 647 648 649 650 651
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
652
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
653 654 655
#endif
}

L
Linus Torvalds 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
#if (BITS_PER_LONG < 64)
u64 get_jiffies_64(void)
{
	unsigned long seq;
	u64 ret;

	do {
		seq = read_seqbegin(&xtime_lock);
		ret = jiffies_64;
	} while (read_seqretry(&xtime_lock, seq));
	return ret;
}
EXPORT_SYMBOL(get_jiffies_64);
#endif

EXPORT_SYMBOL(jiffies);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

/*
 * Add two timespec values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0)
 */
struct timespec timespec_add_safe(const struct timespec lhs,
				  const struct timespec rhs)
{
	struct timespec res;

	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
				lhs.tv_nsec + rhs.tv_nsec);

	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
		res.tv_sec = TIME_T_MAX;

	return res;
}