time.c 16.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
 * 
 * 1993-09-02    Philip Gladstone
 *      Created file with time related functions from sched.c and adjtimex() 
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

#include <linux/module.h>
#include <linux/timex.h>
32
#include <linux/capability.h>
L
Linus Torvalds 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>

#include <asm/uaccess.h>
#include <asm/unistd.h>

/* 
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
asmlinkage long sys_time(time_t __user * tloc)
{
I
Ingo Molnar 已提交
59
	time_t i = get_seconds();
L
Linus Torvalds 已提交
60 61

	if (tloc) {
L
Linus Torvalds 已提交
62
		if (put_user(i,tloc))
L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
			i = -EFAULT;
	}
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
 
asmlinkage long sys_stime(time_t __user *tptr)
{
	struct timespec tv;
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

	err = security_settime(&tv, NULL);
	if (err)
		return err;

	do_settimeofday(&tv);
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 * 
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be 
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *              				- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
126
static inline void warp_clock(void)
L
Linus Torvalds 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
{
	write_seqlock_irq(&xtime_lock);
	wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
	xtime.tv_sec += sys_tz.tz_minuteswest * 60;
	write_sequnlock_irq(&xtime_lock);
	clock_was_set();
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
{
	static int firsttime = 1;
	int error = 0;

151
	if (tv && !timespec_valid(tv))
152 153
		return -EINVAL;

L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	error = security_settime(tv, tz);
	if (error)
		return error;

	if (tz) {
		/* SMP safe, global irq locking makes it work. */
		sys_tz = *tz;
		if (firsttime) {
			firsttime = 0;
			if (!tv)
				warp_clock();
		}
	}
	if (tv)
	{
		/* SMP safe, again the code in arch/foo/time.c should
		 * globally block out interrupts when it runs.
		 */
		return do_settimeofday(tv);
	}
	return 0;
}

asmlinkage long sys_settimeofday(struct timeval __user *tv,
				struct timezone __user *tz)
{
	struct timeval user_tv;
	struct timespec	new_ts;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}

asmlinkage long sys_adjtimex(struct timex __user *txc_p)
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

/**
 * current_fs_time - Return FS time
 * @sb: Superblock.
 *
217
 * Return the current time truncated to the time granularity supported by
L
Linus Torvalds 已提交
218 219 220 221 222 223 224 225 226
 * the fs.
 */
struct timespec current_fs_time(struct super_block *sb)
{
	struct timespec now = current_kernel_time();
	return timespec_trunc(now, sb->s_time_gran);
}
EXPORT_SYMBOL(current_fs_time);

E
Eric Dumazet 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
unsigned int inline jiffies_to_msecs(const unsigned long j)
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
	return (j * MSEC_PER_SEC) / HZ;
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

unsigned int inline jiffies_to_usecs(const unsigned long j)
{
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
	return (USEC_PER_SEC / HZ) * j;
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
#else
	return (j * USEC_PER_SEC) / HZ;
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
257
/**
258
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
259
 * @t: Timespec
260
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
261
 *
262
 * Truncate a timespec to a granularity. gran must be smaller than a second.
L
Linus Torvalds 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
 * Always rounds down.
 *
 * This function should be only used for timestamps returned by
 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
 * it doesn't handle the better resolution of the later.
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
	/*
	 * Division is pretty slow so avoid it for common cases.
	 * Currently current_kernel_time() never returns better than
	 * jiffies resolution. Exploit that.
	 */
	if (gran <= jiffies_to_usecs(1) * 1000) {
		/* nothing */
	} else if (gran == 1000000000) {
		t.tv_nsec = 0;
	} else {
		t.tv_nsec -= t.tv_nsec % gran;
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

287
#ifndef CONFIG_GENERIC_TIME
L
Linus Torvalds 已提交
288 289 290 291 292 293 294 295 296 297 298 299
/*
 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
 * and therefore only yields usec accuracy
 */
void getnstimeofday(struct timespec *tv)
{
	struct timeval x;

	do_gettimeofday(&x);
	tv->tv_sec = x.tv_sec;
	tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
}
300
EXPORT_SYMBOL_GPL(getnstimeofday);
L
Linus Torvalds 已提交
301 302
#endif

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 *
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
 * machines were long is 32-bit! (However, as time_t is signed, we
 * will already get problems at other places on 2038-01-19 03:14:08)
 */
unsigned long
319 320 321
mktime(const unsigned int year0, const unsigned int mon0,
       const unsigned int day, const unsigned int hour,
       const unsigned int min, const unsigned int sec)
322
{
323 324 325 326 327
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
328 329 330 331 332 333 334 335 336 337 338
		year -= 1;
	}

	return ((((unsigned long)
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
	    )*24 + hour /* now have hours */
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}

339 340
EXPORT_SYMBOL(mktime);

341 342 343 344 345 346 347 348 349 350 351 352 353 354
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
 * 	0 <= tv_nsec < NSEC_PER_SEC
 * For negative values only the tv_sec field is negative !
 */
355
void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
356 357 358 359 360 361 362 363 364 365 366 367 368
{
	while (nsec >= NSEC_PER_SEC) {
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}

369 370 371 372 373 374
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
375
struct timespec ns_to_timespec(const s64 nsec)
376 377 378
{
	struct timespec ts;

379 380 381 382 383 384
	if (!nsec)
		return (struct timespec) {0, 0};

	ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
	if (unlikely(nsec < 0))
		set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
385 386 387

	return ts;
}
388
EXPORT_SYMBOL(ns_to_timespec);
389 390 391 392 393 394 395

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
396
struct timeval ns_to_timeval(const s64 nsec)
397 398 399 400 401 402 403 404 405
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
406
EXPORT_SYMBOL(ns_to_timeval);
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421
/*
 * When we convert to jiffies then we interpret incoming values
 * the following way:
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
 *   the input value by a factor or dividing it with a factor
 *
 * We must also be careful about 32-bit overflows.
 */
422 423
unsigned long msecs_to_jiffies(const unsigned int m)
{
424 425 426 427
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
428
		return MAX_JIFFY_OFFSET;
429

430
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
431 432 433 434 435
	/*
	 * HZ is equal to or smaller than 1000, and 1000 is a nice
	 * round multiple of HZ, divide with the factor between them,
	 * but round upwards:
	 */
436 437
	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
438 439 440 441 442 443 444 445 446 447
	/*
	 * HZ is larger than 1000, and HZ is a nice round multiple of
	 * 1000 - simply multiply with the factor between them.
	 *
	 * But first make sure the multiplication result cannot
	 * overflow:
	 */
	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;

448 449
	return m * (HZ / MSEC_PER_SEC);
#else
450 451 452 453 454 455 456 457
	/*
	 * Generic case - multiply, round and divide. But first
	 * check that if we are doing a net multiplication, that
	 * we wouldnt overflow:
	 */
	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
#endif
}
EXPORT_SYMBOL(msecs_to_jiffies);

unsigned long usecs_to_jiffies(const unsigned int u)
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
	return u * (HZ / USEC_PER_SEC);
#else
	return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
#endif
}
EXPORT_SYMBOL(usecs_to_jiffies);

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
unsigned long
timespec_to_jiffies(const struct timespec *value)
{
	unsigned long sec = value->tv_sec;
	long nsec = value->tv_nsec + TICK_NSEC - 1;

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
	return (((u64)sec * SEC_CONVERSION) +
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
EXPORT_SYMBOL(timespec_to_jiffies);

void
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
	u64 nsec = (u64)jiffies * TICK_NSEC;
	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
}
EXPORT_SYMBOL(jiffies_to_timespec);

/* Same for "timeval"
 *
 * Well, almost.  The problem here is that the real system resolution is
 * in nanoseconds and the value being converted is in micro seconds.
 * Also for some machines (those that use HZ = 1024, in-particular),
 * there is a LARGE error in the tick size in microseconds.

 * The solution we use is to do the rounding AFTER we convert the
 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
 * Instruction wise, this should cost only an additional add with carry
 * instruction above the way it was done above.
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
	unsigned long sec = value->tv_sec;
	long usec = value->tv_usec;

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		usec = 0;
	}
	return (((u64)sec * SEC_CONVERSION) +
		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
543
EXPORT_SYMBOL(timeval_to_jiffies);
544 545 546 547 548 549 550 551 552 553 554 555 556 557

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
	u64 nsec = (u64)jiffies * TICK_NSEC;
	long tv_usec;

	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
	tv_usec /= NSEC_PER_USEC;
	value->tv_usec = tv_usec;
}
558
EXPORT_SYMBOL(jiffies_to_timeval);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
clock_t jiffies_to_clock_t(long x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
	return x / (HZ / USER_HZ);
#else
	u64 tmp = (u64)x * TICK_NSEC;
	do_div(tmp, (NSEC_PER_SEC / USER_HZ));
	return (long)tmp;
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	u64 jif;

	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
	jif = x * (u64) HZ;
	do_div(jif, USER_HZ);
	return jif;
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
	do_div(x, HZ / USER_HZ);
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
	x *= TICK_NSEC;
	do_div(x, (NSEC_PER_SEC / USER_HZ));
#endif
	return x;
}

EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
	do_div(x, (NSEC_PER_SEC / USER_HZ));
#elif (USER_HZ % 512) == 0
	x *= USER_HZ/512;
	do_div(x, (NSEC_PER_SEC / 512));
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
	x *= 9;
	do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
				  USER_HZ));
#endif
	return x;
}

L
Linus Torvalds 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
#if (BITS_PER_LONG < 64)
u64 get_jiffies_64(void)
{
	unsigned long seq;
	u64 ret;

	do {
		seq = read_seqbegin(&xtime_lock);
		ret = jiffies_64;
	} while (read_seqretry(&xtime_lock, seq));
	return ret;
}

EXPORT_SYMBOL(get_jiffies_64);
#endif

EXPORT_SYMBOL(jiffies);