kprobes.c 39.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  Kernel Probes (KProbes)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 *
 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 *		Probes initial implementation ( includes contributions from
 *		Rusty Russell).
 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 *		interface to access function arguments.
25 26
 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
L
Linus Torvalds 已提交
27 28
 * 2005-Mar	Roland McGrath <roland@redhat.com>
 *		Fixed to handle %rip-relative addressing mode correctly.
29 30 31 32 33 34 35
 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> added function-return probes.
 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
 * 		Added function return probes functionality
 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
 * 		kprobe-booster and kretprobe-booster for i386.
36 37
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
 * 		and kretprobe-booster for x86-64
38 39 40
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
 * 		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
 * 		unified x86 kprobes code.
L
Linus Torvalds 已提交
41 42 43 44 45 46
 */

#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
47
#include <linux/hardirq.h>
L
Linus Torvalds 已提交
48
#include <linux/preempt.h>
49
#include <linux/module.h>
50
#include <linux/kdebug.h>
51
#include <linux/kallsyms.h>
52
#include <linux/ftrace.h>
53

54 55
#include <asm/cacheflush.h>
#include <asm/desc.h>
L
Linus Torvalds 已提交
56
#include <asm/pgtable.h>
57
#include <asm/uaccess.h>
58
#include <asm/alternative.h>
59
#include <asm/insn.h>
60
#include <asm/debugreg.h>
L
Linus Torvalds 已提交
61 62 63

void jprobe_return_end(void);

64 65
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
L
Linus Torvalds 已提交
66

67
#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))
	/*
	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
	 * Groups, and some special opcodes can not boost.
	 */
static const u32 twobyte_is_boostable[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
	/*      ----------------------------------------------          */
	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
	/*      -----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
};
#undef W

103 104 105 106 107 108 109
struct kretprobe_blackpoint kretprobe_blacklist[] = {
	{"__switch_to", }, /* This function switches only current task, but
			      doesn't switch kernel stack.*/
	{NULL, NULL}	/* Terminator */
};
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);

110
static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
111
{
112 113
	struct __arch_relative_insn {
		u8 op;
114
		s32 raddr;
115 116 117 118 119 120 121 122 123 124 125
	} __attribute__((packed)) *insn;

	insn = (struct __arch_relative_insn *)from;
	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
	insn->op = op;
}

/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
static void __kprobes synthesize_reljump(void *from, void *to)
{
	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
126 127
}

128 129 130 131 132 133 134 135 136 137 138 139 140
/*
 * Check for the REX prefix which can only exist on X86_64
 * X86_32 always returns 0
 */
static int __kprobes is_REX_prefix(kprobe_opcode_t *insn)
{
#ifdef CONFIG_X86_64
	if ((*insn & 0xf0) == 0x40)
		return 1;
#endif
	return 0;
}

141
/*
142 143
 * Returns non-zero if opcode is boostable.
 * RIP relative instructions are adjusted at copying time in 64 bits mode
144
 */
H
Harvey Harrison 已提交
145
static int __kprobes can_boost(kprobe_opcode_t *opcodes)
146 147 148 149
{
	kprobe_opcode_t opcode;
	kprobe_opcode_t *orig_opcodes = opcodes;

150
	if (search_exception_tables((unsigned long)opcodes))
151 152
		return 0;	/* Page fault may occur on this address. */

153 154 155 156 157 158 159 160 161
retry:
	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
		return 0;
	opcode = *(opcodes++);

	/* 2nd-byte opcode */
	if (opcode == 0x0f) {
		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
			return 0;
162 163
		return test_bit(*opcodes,
				(unsigned long *)twobyte_is_boostable);
164 165 166
	}

	switch (opcode & 0xf0) {
167
#ifdef CONFIG_X86_64
168 169
	case 0x40:
		goto retry; /* REX prefix is boostable */
170
#endif
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	case 0x60:
		if (0x63 < opcode && opcode < 0x67)
			goto retry; /* prefixes */
		/* can't boost Address-size override and bound */
		return (opcode != 0x62 && opcode != 0x67);
	case 0x70:
		return 0; /* can't boost conditional jump */
	case 0xc0:
		/* can't boost software-interruptions */
		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
	case 0xd0:
		/* can boost AA* and XLAT */
		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
	case 0xe0:
		/* can boost in/out and absolute jmps */
		return ((opcode & 0x04) || opcode == 0xea);
	case 0xf0:
		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
			goto retry; /* lock/rep(ne) prefix */
		/* clear and set flags are boostable */
		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
	default:
		/* segment override prefixes are boostable */
		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
			goto retry; /* prefixes */
		/* CS override prefix and call are not boostable */
		return (opcode != 0x2e && opcode != 0x9a);
	}
}

201 202 203 204 205 206 207 208 209 210 211
/* Recover the probed instruction at addr for further analysis. */
static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
{
	struct kprobe *kp;
	kp = get_kprobe((void *)addr);
	if (!kp)
		return -EINVAL;

	/*
	 *  Basically, kp->ainsn.insn has an original instruction.
	 *  However, RIP-relative instruction can not do single-stepping
212
	 *  at different place, __copy_instruction() tweaks the displacement of
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	 *  that instruction. In that case, we can't recover the instruction
	 *  from the kp->ainsn.insn.
	 *
	 *  On the other hand, kp->opcode has a copy of the first byte of
	 *  the probed instruction, which is overwritten by int3. And
	 *  the instruction at kp->addr is not modified by kprobes except
	 *  for the first byte, we can recover the original instruction
	 *  from it and kp->opcode.
	 */
	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
	buf[0] = kp->opcode;
	return 0;
}

/* Dummy buffers for kallsyms_lookup */
static char __dummy_buf[KSYM_NAME_LEN];

/* Check if paddr is at an instruction boundary */
static int __kprobes can_probe(unsigned long paddr)
{
	int ret;
	unsigned long addr, offset = 0;
	struct insn insn;
	kprobe_opcode_t buf[MAX_INSN_SIZE];

	if (!kallsyms_lookup(paddr, NULL, &offset, NULL, __dummy_buf))
		return 0;

	/* Decode instructions */
	addr = paddr - offset;
	while (addr < paddr) {
		kernel_insn_init(&insn, (void *)addr);
		insn_get_opcode(&insn);

		/*
		 * Check if the instruction has been modified by another
		 * kprobe, in which case we replace the breakpoint by the
		 * original instruction in our buffer.
		 */
		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
			ret = recover_probed_instruction(buf, addr);
			if (ret)
				/*
				 * Another debugging subsystem might insert
				 * this breakpoint. In that case, we can't
				 * recover it.
				 */
				return 0;
			kernel_insn_init(&insn, buf);
		}
		insn_get_length(&insn);
		addr += insn.length;
	}

	return (addr == paddr);
}

L
Linus Torvalds 已提交
270
/*
271
 * Returns non-zero if opcode modifies the interrupt flag.
L
Linus Torvalds 已提交
272
 */
273
static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
L
Linus Torvalds 已提交
274 275 276 277 278 279 280 281
{
	switch (*insn) {
	case 0xfa:		/* cli */
	case 0xfb:		/* sti */
	case 0xcf:		/* iret/iretd */
	case 0x9d:		/* popf/popfd */
		return 1;
	}
282

283
	/*
284
	 * on X86_64, 0x40-0x4f are REX prefixes so we need to look
285 286
	 * at the next byte instead.. but of course not recurse infinitely
	 */
287
	if (is_REX_prefix(insn))
288
		return is_IF_modifier(++insn);
289

L
Linus Torvalds 已提交
290 291 292 293
	return 0;
}

/*
294 295
 * Copy an instruction and adjust the displacement if the instruction
 * uses the %rip-relative addressing mode.
296
 * If it does, Return the address of the 32-bit displacement word.
L
Linus Torvalds 已提交
297
 * If not, return null.
298
 * Only applicable to 64-bit x86.
L
Linus Torvalds 已提交
299
 */
300
static int __kprobes __copy_instruction(u8 *dest, u8 *src, int recover)
L
Linus Torvalds 已提交
301
{
302
	struct insn insn;
303 304
	int ret;
	kprobe_opcode_t buf[MAX_INSN_SIZE];
L
Linus Torvalds 已提交
305

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	kernel_insn_init(&insn, src);
	if (recover) {
		insn_get_opcode(&insn);
		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
			ret = recover_probed_instruction(buf,
							 (unsigned long)src);
			if (ret)
				return 0;
			kernel_insn_init(&insn, buf);
		}
	}
	insn_get_length(&insn);
	memcpy(dest, insn.kaddr, insn.length);

#ifdef CONFIG_X86_64
321 322 323
	if (insn_rip_relative(&insn)) {
		s64 newdisp;
		u8 *disp;
324
		kernel_insn_init(&insn, dest);
325 326 327 328 329 330 331 332 333 334 335 336 337
		insn_get_displacement(&insn);
		/*
		 * The copied instruction uses the %rip-relative addressing
		 * mode.  Adjust the displacement for the difference between
		 * the original location of this instruction and the location
		 * of the copy that will actually be run.  The tricky bit here
		 * is making sure that the sign extension happens correctly in
		 * this calculation, since we need a signed 32-bit result to
		 * be sign-extended to 64 bits when it's added to the %rip
		 * value and yield the same 64-bit result that the sign-
		 * extension of the original signed 32-bit displacement would
		 * have given.
		 */
338 339
		newdisp = (u8 *) src + (s64) insn.displacement.value -
			  (u8 *) dest;
340
		BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */
341
		disp = (u8 *) dest + insn_offset_displacement(&insn);
342
		*(s32 *) disp = (s32) newdisp;
L
Linus Torvalds 已提交
343
	}
344
#endif
345
	return insn.length;
346
}
L
Linus Torvalds 已提交
347

348
static void __kprobes arch_copy_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
349
{
350 351 352 353 354
	/*
	 * Copy an instruction without recovering int3, because it will be
	 * put by another subsystem.
	 */
	__copy_instruction(p->ainsn.insn, p->addr, 0);
355

356
	if (can_boost(p->addr))
357
		p->ainsn.boostable = 0;
358
	else
359
		p->ainsn.boostable = -1;
360

361
	p->opcode = *p->addr;
L
Linus Torvalds 已提交
362 363
}

364 365
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
366 367 368
	if (alternatives_text_reserved(p->addr, p->addr))
		return -EINVAL;

369 370
	if (!can_probe((unsigned long)p->addr))
		return -EILSEQ;
371 372 373 374 375 376 377 378
	/* insn: must be on special executable page on x86. */
	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;
	arch_copy_kprobe(p);
	return 0;
}

379
void __kprobes arch_arm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
380
{
381
	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
L
Linus Torvalds 已提交
382 383
}

384
void __kprobes arch_disarm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
385
{
386
	text_poke(p->addr, &p->opcode, 1);
387 388
}

389
void __kprobes arch_remove_kprobe(struct kprobe *p)
390
{
391 392 393 394
	if (p->ainsn.insn) {
		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
		p->ainsn.insn = NULL;
	}
L
Linus Torvalds 已提交
395 396
}

397
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
398
{
399 400
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
401 402
	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
403 404
}

405
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
406
{
407 408
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
	kcb->kprobe_status = kcb->prev_kprobe.status;
409 410
	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
411 412
}

413
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
414
				struct kprobe_ctlblk *kcb)
415
{
416
	__get_cpu_var(current_kprobe) = p;
417
	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
418
		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
419
	if (is_IF_modifier(p->ainsn.insn))
420
		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
421 422
}

H
Harvey Harrison 已提交
423
static void __kprobes clear_btf(void)
R
Roland McGrath 已提交
424 425
{
	if (test_thread_flag(TIF_DEBUGCTLMSR))
426
		update_debugctlmsr(0);
R
Roland McGrath 已提交
427 428
}

H
Harvey Harrison 已提交
429
static void __kprobes restore_btf(void)
R
Roland McGrath 已提交
430 431
{
	if (test_thread_flag(TIF_DEBUGCTLMSR))
432
		update_debugctlmsr(current->thread.debugctlmsr);
R
Roland McGrath 已提交
433 434
}

435
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
436
				      struct pt_regs *regs)
437
{
438
	unsigned long *sara = stack_addr(regs);
439

440
	ri->ret_addr = (kprobe_opcode_t *) *sara;
441

442 443
	/* Replace the return addr with trampoline addr */
	*sara = (unsigned long) &kretprobe_trampoline;
444
}
445

446 447 448 449 450 451 452 453
#ifdef CONFIG_OPTPROBES
static int  __kprobes setup_detour_execution(struct kprobe *p,
					     struct pt_regs *regs,
					     int reenter);
#else
#define setup_detour_execution(p, regs, reenter) (0)
#endif

454
static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
455
				       struct kprobe_ctlblk *kcb, int reenter)
456
{
457 458 459
	if (setup_detour_execution(p, regs, reenter))
		return;

460
#if !defined(CONFIG_PREEMPT)
461 462
	if (p->ainsn.boostable == 1 && !p->post_handler) {
		/* Boost up -- we can execute copied instructions directly */
463 464 465 466 467 468 469
		if (!reenter)
			reset_current_kprobe();
		/*
		 * Reentering boosted probe doesn't reset current_kprobe,
		 * nor set current_kprobe, because it doesn't use single
		 * stepping.
		 */
470 471 472 473 474
		regs->ip = (unsigned long)p->ainsn.insn;
		preempt_enable_no_resched();
		return;
	}
#endif
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	if (reenter) {
		save_previous_kprobe(kcb);
		set_current_kprobe(p, regs, kcb);
		kcb->kprobe_status = KPROBE_REENTER;
	} else
		kcb->kprobe_status = KPROBE_HIT_SS;
	/* Prepare real single stepping */
	clear_btf();
	regs->flags |= X86_EFLAGS_TF;
	regs->flags &= ~X86_EFLAGS_IF;
	/* single step inline if the instruction is an int3 */
	if (p->opcode == BREAKPOINT_INSTRUCTION)
		regs->ip = (unsigned long)p->addr;
	else
		regs->ip = (unsigned long)p->ainsn.insn;
490 491
}

H
Harvey Harrison 已提交
492 493 494 495 496
/*
 * We have reentered the kprobe_handler(), since another probe was hit while
 * within the handler. We save the original kprobes variables and just single
 * step on the instruction of the new probe without calling any user handlers.
 */
497 498
static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
				    struct kprobe_ctlblk *kcb)
H
Harvey Harrison 已提交
499
{
500 501 502
	switch (kcb->kprobe_status) {
	case KPROBE_HIT_SSDONE:
	case KPROBE_HIT_ACTIVE:
503
		kprobes_inc_nmissed_count(p);
504
		setup_singlestep(p, regs, kcb, 1);
505 506
		break;
	case KPROBE_HIT_SS:
507 508 509 510 511 512 513 514 515 516
		/* A probe has been hit in the codepath leading up to, or just
		 * after, single-stepping of a probed instruction. This entire
		 * codepath should strictly reside in .kprobes.text section.
		 * Raise a BUG or we'll continue in an endless reentering loop
		 * and eventually a stack overflow.
		 */
		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
		       p->addr);
		dump_kprobe(p);
		BUG();
517 518 519
	default:
		/* impossible cases */
		WARN_ON(1);
520
		return 0;
521
	}
522

523
	return 1;
H
Harvey Harrison 已提交
524
}
525

526 527
/*
 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
528
 * remain disabled throughout this function.
529 530
 */
static int __kprobes kprobe_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
531
{
532
	kprobe_opcode_t *addr;
533
	struct kprobe *p;
534 535
	struct kprobe_ctlblk *kcb;

536
	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
537 538 539 540 541 542 543 544 545 546 547 548 549
	if (*addr != BREAKPOINT_INSTRUCTION) {
		/*
		 * The breakpoint instruction was removed right
		 * after we hit it.  Another cpu has removed
		 * either a probepoint or a debugger breakpoint
		 * at this address.  In either case, no further
		 * handling of this interrupt is appropriate.
		 * Back up over the (now missing) int3 and run
		 * the original instruction.
		 */
		regs->ip = (unsigned long)addr;
		return 1;
	}
550

551 552
	/*
	 * We don't want to be preempted for the entire
553 554 555
	 * duration of kprobe processing. We conditionally
	 * re-enable preemption at the end of this function,
	 * and also in reenter_kprobe() and setup_singlestep().
556 557
	 */
	preempt_disable();
L
Linus Torvalds 已提交
558

559
	kcb = get_kprobe_ctlblk();
560
	p = get_kprobe(addr);
561

562 563
	if (p) {
		if (kprobe_running()) {
564 565
			if (reenter_kprobe(p, regs, kcb))
				return 1;
L
Linus Torvalds 已提交
566
		} else {
567 568
			set_current_kprobe(p, regs, kcb);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
569

L
Linus Torvalds 已提交
570
			/*
571 572 573 574 575 576
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry
			 * for jprobe processing, so get out doing nothing
			 * more here.
L
Linus Torvalds 已提交
577
			 */
578
			if (!p->pre_handler || !p->pre_handler(p, regs))
579
				setup_singlestep(p, regs, kcb, 0);
580
			return 1;
581
		}
582 583 584
	} else if (kprobe_running()) {
		p = __get_cpu_var(current_kprobe);
		if (p->break_handler && p->break_handler(p, regs)) {
585
			setup_singlestep(p, regs, kcb, 0);
586
			return 1;
L
Linus Torvalds 已提交
587
		}
588
	} /* else: not a kprobe fault; let the kernel handle it */
L
Linus Torvalds 已提交
589

590
	preempt_enable_no_resched();
591
	return 0;
L
Linus Torvalds 已提交
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
#ifdef CONFIG_X86_64
#define SAVE_REGS_STRING		\
	/* Skip cs, ip, orig_ax. */	\
	"	subq $24, %rsp\n"	\
	"	pushq %rdi\n"		\
	"	pushq %rsi\n"		\
	"	pushq %rdx\n"		\
	"	pushq %rcx\n"		\
	"	pushq %rax\n"		\
	"	pushq %r8\n"		\
	"	pushq %r9\n"		\
	"	pushq %r10\n"		\
	"	pushq %r11\n"		\
	"	pushq %rbx\n"		\
	"	pushq %rbp\n"		\
	"	pushq %r12\n"		\
	"	pushq %r13\n"		\
	"	pushq %r14\n"		\
	"	pushq %r15\n"
#define RESTORE_REGS_STRING		\
	"	popq %r15\n"		\
	"	popq %r14\n"		\
	"	popq %r13\n"		\
	"	popq %r12\n"		\
	"	popq %rbp\n"		\
	"	popq %rbx\n"		\
	"	popq %r11\n"		\
	"	popq %r10\n"		\
	"	popq %r9\n"		\
	"	popq %r8\n"		\
	"	popq %rax\n"		\
	"	popq %rcx\n"		\
	"	popq %rdx\n"		\
	"	popq %rsi\n"		\
	"	popq %rdi\n"		\
	/* Skip orig_ax, ip, cs */	\
	"	addq $24, %rsp\n"
#else
#define SAVE_REGS_STRING		\
	/* Skip cs, ip, orig_ax and gs. */	\
	"	subl $16, %esp\n"	\
	"	pushl %fs\n"		\
	"	pushl %ds\n"		\
	"	pushl %es\n"		\
	"	pushl %eax\n"		\
	"	pushl %ebp\n"		\
	"	pushl %edi\n"		\
	"	pushl %esi\n"		\
	"	pushl %edx\n"		\
	"	pushl %ecx\n"		\
	"	pushl %ebx\n"
#define RESTORE_REGS_STRING		\
	"	popl %ebx\n"		\
	"	popl %ecx\n"		\
	"	popl %edx\n"		\
	"	popl %esi\n"		\
	"	popl %edi\n"		\
	"	popl %ebp\n"		\
	"	popl %eax\n"		\
	/* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
	"	addl $24, %esp\n"
#endif

657
/*
658 659
 * When a retprobed function returns, this code saves registers and
 * calls trampoline_handler() runs, which calls the kretprobe's handler.
660
 */
661
static void __used __kprobes kretprobe_trampoline_holder(void)
662
{
663 664
	asm volatile (
			".global kretprobe_trampoline\n"
665
			"kretprobe_trampoline: \n"
666
#ifdef CONFIG_X86_64
667 668 669
			/* We don't bother saving the ss register */
			"	pushq %rsp\n"
			"	pushfq\n"
670
			SAVE_REGS_STRING
671 672 673 674
			"	movq %rsp, %rdi\n"
			"	call trampoline_handler\n"
			/* Replace saved sp with true return address. */
			"	movq %rax, 152(%rsp)\n"
675
			RESTORE_REGS_STRING
676
			"	popfq\n"
677 678
#else
			"	pushf\n"
679
			SAVE_REGS_STRING
680 681 682
			"	movl %esp, %eax\n"
			"	call trampoline_handler\n"
			/* Move flags to cs */
683 684
			"	movl 56(%esp), %edx\n"
			"	movl %edx, 52(%esp)\n"
685
			/* Replace saved flags with true return address. */
686
			"	movl %eax, 56(%esp)\n"
687
			RESTORE_REGS_STRING
688 689
			"	popf\n"
#endif
690
			"	ret\n");
691
}
692 693

/*
694
 * Called from kretprobe_trampoline
695
 */
696
static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
697
{
B
bibo,mao 已提交
698
	struct kretprobe_instance *ri = NULL;
699
	struct hlist_head *head, empty_rp;
B
bibo,mao 已提交
700
	struct hlist_node *node, *tmp;
701
	unsigned long flags, orig_ret_address = 0;
702
	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
703

704
	INIT_HLIST_HEAD(&empty_rp);
705
	kretprobe_hash_lock(current, &head, &flags);
706
	/* fixup registers */
707
#ifdef CONFIG_X86_64
708
	regs->cs = __KERNEL_CS;
709 710
#else
	regs->cs = __KERNEL_CS | get_kernel_rpl();
711
	regs->gs = 0;
712
#endif
713
	regs->ip = trampoline_address;
714
	regs->orig_ax = ~0UL;
715

716 717
	/*
	 * It is possible to have multiple instances associated with a given
718
	 * task either because multiple functions in the call path have
719
	 * return probes installed on them, and/or more than one
720 721 722
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
723
	 *     - instances are always pushed into the head of the list
724
	 *     - when multiple return probes are registered for the same
725 726 727
	 *	 function, the (chronologically) first instance's ret_addr
	 *	 will be the real return address, and all the rest will
	 *	 point to kretprobe_trampoline.
728 729
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
B
bibo,mao 已提交
730
		if (ri->task != current)
731
			/* another task is sharing our hash bucket */
B
bibo,mao 已提交
732
			continue;
733

734 735 736
		if (ri->rp && ri->rp->handler) {
			__get_cpu_var(current_kprobe) = &ri->rp->kp;
			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
737
			ri->rp->handler(ri, regs);
738 739
			__get_cpu_var(current_kprobe) = NULL;
		}
740 741

		orig_ret_address = (unsigned long)ri->ret_addr;
742
		recycle_rp_inst(ri, &empty_rp);
743 744 745 746 747 748 749 750

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
751
	}
752

753
	kretprobe_assert(ri, orig_ret_address, trampoline_address);
754

755
	kretprobe_hash_unlock(current, &flags);
756

757 758 759 760
	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
761
	return (void *)orig_ret_address;
762 763
}

L
Linus Torvalds 已提交
764 765 766 767 768 769 770 771 772 773 774 775
/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction whose first byte has been replaced by the "int 3"
 * instruction.  To avoid the SMP problems that can occur when we
 * temporarily put back the original opcode to single-step, we
 * single-stepped a copy of the instruction.  The address of this
 * copy is p->ainsn.insn.
 *
 * This function prepares to return from the post-single-step
 * interrupt.  We have to fix up the stack as follows:
 *
 * 0) Except in the case of absolute or indirect jump or call instructions,
776
 * the new ip is relative to the copied instruction.  We need to make
L
Linus Torvalds 已提交
777 778 779
 * it relative to the original instruction.
 *
 * 1) If the single-stepped instruction was pushfl, then the TF and IF
780
 * flags are set in the just-pushed flags, and may need to be cleared.
L
Linus Torvalds 已提交
781 782 783 784
 *
 * 2) If the single-stepped instruction was a call, the return address
 * that is atop the stack is the address following the copied instruction.
 * We need to make it the address following the original instruction.
785 786 787 788 789
 *
 * If this is the first time we've single-stepped the instruction at
 * this probepoint, and the instruction is boostable, boost it: add a
 * jump instruction after the copied instruction, that jumps to the next
 * instruction after the probepoint.
L
Linus Torvalds 已提交
790
 */
791 792
static void __kprobes resume_execution(struct kprobe *p,
		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
L
Linus Torvalds 已提交
793
{
794 795 796
	unsigned long *tos = stack_addr(regs);
	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
	unsigned long orig_ip = (unsigned long)p->addr;
L
Linus Torvalds 已提交
797 798 799
	kprobe_opcode_t *insn = p->ainsn.insn;

	/*skip the REX prefix*/
800
	if (is_REX_prefix(insn))
L
Linus Torvalds 已提交
801 802
		insn++;

803
	regs->flags &= ~X86_EFLAGS_TF;
L
Linus Torvalds 已提交
804
	switch (*insn) {
M
Masami Hiramatsu 已提交
805
	case 0x9c:	/* pushfl */
806
		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
807
		*tos |= kcb->kprobe_old_flags;
L
Linus Torvalds 已提交
808
		break;
M
Masami Hiramatsu 已提交
809 810
	case 0xc2:	/* iret/ret/lret */
	case 0xc3:
811
	case 0xca:
M
Masami Hiramatsu 已提交
812 813 814 815
	case 0xcb:
	case 0xcf:
	case 0xea:	/* jmp absolute -- ip is correct */
		/* ip is already adjusted, no more changes required */
816
		p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
817 818
		goto no_change;
	case 0xe8:	/* call relative - Fix return addr */
819
		*tos = orig_ip + (*tos - copy_ip);
L
Linus Torvalds 已提交
820
		break;
H
Harvey Harrison 已提交
821
#ifdef CONFIG_X86_32
822 823 824 825
	case 0x9a:	/* call absolute -- same as call absolute, indirect */
		*tos = orig_ip + (*tos - copy_ip);
		goto no_change;
#endif
L
Linus Torvalds 已提交
826
	case 0xff:
827
		if ((insn[1] & 0x30) == 0x10) {
828 829 830 831 832 833
			/*
			 * call absolute, indirect
			 * Fix return addr; ip is correct.
			 * But this is not boostable
			 */
			*tos = orig_ip + (*tos - copy_ip);
M
Masami Hiramatsu 已提交
834
			goto no_change;
835 836 837 838 839 840
		} else if (((insn[1] & 0x31) == 0x20) ||
			   ((insn[1] & 0x31) == 0x21)) {
			/*
			 * jmp near and far, absolute indirect
			 * ip is correct. And this is boostable
			 */
841
			p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
842
			goto no_change;
L
Linus Torvalds 已提交
843 844 845 846 847
		}
	default:
		break;
	}

848
	if (p->ainsn.boostable == 0) {
849 850
		if ((regs->ip > copy_ip) &&
		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
851 852 853 854
			/*
			 * These instructions can be executed directly if it
			 * jumps back to correct address.
			 */
855 856
			synthesize_reljump((void *)regs->ip,
				(void *)orig_ip + (regs->ip - copy_ip));
857 858 859 860 861 862
			p->ainsn.boostable = 1;
		} else {
			p->ainsn.boostable = -1;
		}
	}

863
	regs->ip += orig_ip - copy_ip;
864

M
Masami Hiramatsu 已提交
865
no_change:
R
Roland McGrath 已提交
866
	restore_btf();
L
Linus Torvalds 已提交
867 868
}

869 870
/*
 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
871
 * remain disabled throughout this function.
872 873
 */
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
874
{
875 876 877 878
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
L
Linus Torvalds 已提交
879 880
		return 0;

881 882 883
	resume_execution(cur, regs, kcb);
	regs->flags |= kcb->kprobe_saved_flags;

884 885 886
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
887
	}
L
Linus Torvalds 已提交
888

889
	/* Restore back the original saved kprobes variables and continue. */
890 891
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
892 893
		goto out;
	}
894
	reset_current_kprobe();
895
out:
L
Linus Torvalds 已提交
896 897 898
	preempt_enable_no_resched();

	/*
899
	 * if somebody else is singlestepping across a probe point, flags
L
Linus Torvalds 已提交
900 901 902
	 * will have TF set, in which case, continue the remaining processing
	 * of do_debug, as if this is not a probe hit.
	 */
903
	if (regs->flags & X86_EFLAGS_TF)
L
Linus Torvalds 已提交
904 905 906 907 908
		return 0;

	return 1;
}

909
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
L
Linus Torvalds 已提交
910
{
911 912 913
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

914
	switch (kcb->kprobe_status) {
915 916 917 918 919
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
920
		 * kprobe and the ip points back to the probe address
921 922 923
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
924
		regs->ip = (unsigned long)cur->addr;
925
		regs->flags |= kcb->kprobe_old_flags;
926 927 928 929
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
L
Linus Torvalds 已提交
930
		preempt_enable_no_resched();
931 932 933 934 935
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
936
		 * we can also use npre/npostfault count for accounting
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;

		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
955 956
		if (fixup_exception(regs))
			return 1;
H
Harvey Harrison 已提交
957

958
		/*
959
		 * fixup routine could not handle it,
960 961 962 963 964
		 * Let do_page_fault() fix it.
		 */
		break;
	default:
		break;
L
Linus Torvalds 已提交
965 966 967 968 969 970 971
	}
	return 0;
}

/*
 * Wrapper routine for handling exceptions.
 */
972 973
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
L
Linus Torvalds 已提交
974
{
J
Jan Engelhardt 已提交
975
	struct die_args *args = data;
976 977
	int ret = NOTIFY_DONE;

978
	if (args->regs && user_mode_vm(args->regs))
979 980
		return ret;

L
Linus Torvalds 已提交
981 982 983
	switch (val) {
	case DIE_INT3:
		if (kprobe_handler(args->regs))
984
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
985 986
		break;
	case DIE_DEBUG:
987 988 989 990 991 992
		if (post_kprobe_handler(args->regs)) {
			/*
			 * Reset the BS bit in dr6 (pointed by args->err) to
			 * denote completion of processing
			 */
			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
993
			ret = NOTIFY_STOP;
994
		}
L
Linus Torvalds 已提交
995 996
		break;
	case DIE_GPF:
997 998 999 1000 1001 1002
		/*
		 * To be potentially processing a kprobe fault and to
		 * trust the result from kprobe_running(), we have
		 * be non-preemptible.
		 */
		if (!preemptible() && kprobe_running() &&
L
Linus Torvalds 已提交
1003
		    kprobe_fault_handler(args->regs, args->trapnr))
1004
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
1005 1006 1007 1008
		break;
	default:
		break;
	}
1009
	return ret;
L
Linus Torvalds 已提交
1010 1011
}

1012
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
1013 1014 1015
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr;
1016
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
L
Linus Torvalds 已提交
1017

1018
	kcb->jprobe_saved_regs = *regs;
1019 1020 1021
	kcb->jprobe_saved_sp = stack_addr(regs);
	addr = (unsigned long)(kcb->jprobe_saved_sp);

L
Linus Torvalds 已提交
1022 1023 1024 1025 1026 1027 1028
	/*
	 * As Linus pointed out, gcc assumes that the callee
	 * owns the argument space and could overwrite it, e.g.
	 * tailcall optimization. So, to be absolutely safe
	 * we also save and restore enough stack bytes to cover
	 * the argument area.
	 */
1029
	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1030
	       MIN_STACK_SIZE(addr));
1031
	regs->flags &= ~X86_EFLAGS_IF;
1032
	trace_hardirqs_off();
1033
	regs->ip = (unsigned long)(jp->entry);
L
Linus Torvalds 已提交
1034 1035 1036
	return 1;
}

1037
void __kprobes jprobe_return(void)
L
Linus Torvalds 已提交
1038
{
1039 1040
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	asm volatile (
#ifdef CONFIG_X86_64
			"       xchg   %%rbx,%%rsp	\n"
#else
			"       xchgl   %%ebx,%%esp	\n"
#endif
			"       int3			\n"
			"       .globl jprobe_return_end\n"
			"       jprobe_return_end:	\n"
			"       nop			\n"::"b"
			(kcb->jprobe_saved_sp):"memory");
L
Linus Torvalds 已提交
1052 1053
}

1054
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
1055
{
1056
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1057
	u8 *addr = (u8 *) (regs->ip - 1);
L
Linus Torvalds 已提交
1058 1059
	struct jprobe *jp = container_of(p, struct jprobe, kp);

1060 1061
	if ((addr > (u8 *) jprobe_return) &&
	    (addr < (u8 *) jprobe_return_end)) {
1062
		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
M
Masami Hiramatsu 已提交
1063
			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1064 1065
			printk(KERN_ERR
			       "current sp %p does not match saved sp %p\n",
1066
			       stack_addr(regs), kcb->jprobe_saved_sp);
1067
			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
L
Linus Torvalds 已提交
1068
			show_registers(saved_regs);
1069
			printk(KERN_ERR "Current registers\n");
L
Linus Torvalds 已提交
1070 1071 1072
			show_registers(regs);
			BUG();
		}
1073
		*regs = kcb->jprobe_saved_regs;
1074 1075 1076
		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
		       kcb->jprobes_stack,
		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1077
		preempt_enable_no_resched();
L
Linus Torvalds 已提交
1078 1079 1080 1081
		return 1;
	}
	return 0;
}
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

#ifdef CONFIG_OPTPROBES

/* Insert a call instruction at address 'from', which calls address 'to'.*/
static void __kprobes synthesize_relcall(void *from, void *to)
{
	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
}

/* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
static void __kprobes synthesize_set_arg1(kprobe_opcode_t *addr,
					  unsigned long val)
{
#ifdef CONFIG_X86_64
	*addr++ = 0x48;
	*addr++ = 0xbf;
#else
	*addr++ = 0xb8;
#endif
	*(unsigned long *)addr = val;
}

void __kprobes kprobes_optinsn_template_holder(void)
{
	asm volatile (
			".global optprobe_template_entry\n"
			"optprobe_template_entry: \n"
#ifdef CONFIG_X86_64
			/* We don't bother saving the ss register */
			"	pushq %rsp\n"
			"	pushfq\n"
			SAVE_REGS_STRING
			"	movq %rsp, %rsi\n"
			".global optprobe_template_val\n"
			"optprobe_template_val: \n"
			ASM_NOP5
			ASM_NOP5
			".global optprobe_template_call\n"
			"optprobe_template_call: \n"
			ASM_NOP5
			/* Move flags to rsp */
			"	movq 144(%rsp), %rdx\n"
			"	movq %rdx, 152(%rsp)\n"
			RESTORE_REGS_STRING
			/* Skip flags entry */
			"	addq $8, %rsp\n"
			"	popfq\n"
#else /* CONFIG_X86_32 */
			"	pushf\n"
			SAVE_REGS_STRING
			"	movl %esp, %edx\n"
			".global optprobe_template_val\n"
			"optprobe_template_val: \n"
			ASM_NOP5
			".global optprobe_template_call\n"
			"optprobe_template_call: \n"
			ASM_NOP5
			RESTORE_REGS_STRING
			"	addl $4, %esp\n"	/* skip cs */
			"	popf\n"
#endif
			".global optprobe_template_end\n"
			"optprobe_template_end: \n");
}

#define TMPL_MOVE_IDX \
	((long)&optprobe_template_val - (long)&optprobe_template_entry)
#define TMPL_CALL_IDX \
	((long)&optprobe_template_call - (long)&optprobe_template_entry)
#define TMPL_END_IDX \
	((long)&optprobe_template_end - (long)&optprobe_template_entry)

#define INT3_SIZE sizeof(kprobe_opcode_t)

/* Optimized kprobe call back function: called from optinsn */
static void __kprobes optimized_callback(struct optimized_kprobe *op,
					 struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	preempt_disable();
	if (kprobe_running()) {
		kprobes_inc_nmissed_count(&op->kp);
	} else {
		/* Save skipped registers */
#ifdef CONFIG_X86_64
		regs->cs = __KERNEL_CS;
#else
		regs->cs = __KERNEL_CS | get_kernel_rpl();
		regs->gs = 0;
#endif
		regs->ip = (unsigned long)op->kp.addr + INT3_SIZE;
		regs->orig_ax = ~0UL;

		__get_cpu_var(current_kprobe) = &op->kp;
		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
		opt_pre_handler(&op->kp, regs);
		__get_cpu_var(current_kprobe) = NULL;
	}
	preempt_enable_no_resched();
}

static int __kprobes copy_optimized_instructions(u8 *dest, u8 *src)
{
	int len = 0, ret;

	while (len < RELATIVEJUMP_SIZE) {
		ret = __copy_instruction(dest + len, src + len, 1);
		if (!ret || !can_boost(dest + len))
			return -EINVAL;
		len += ret;
	}
	/* Check whether the address range is reserved */
	if (ftrace_text_reserved(src, src + len - 1) ||
	    alternatives_text_reserved(src, src + len - 1))
		return -EBUSY;

	return len;
}

/* Check whether insn is indirect jump */
static int __kprobes insn_is_indirect_jump(struct insn *insn)
{
	return ((insn->opcode.bytes[0] == 0xff &&
		(X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */
		insn->opcode.bytes[0] == 0xea);	/* Segment based jump */
}

/* Check whether insn jumps into specified address range */
static int insn_jump_into_range(struct insn *insn, unsigned long start, int len)
{
	unsigned long target = 0;

	switch (insn->opcode.bytes[0]) {
	case 0xe0:	/* loopne */
	case 0xe1:	/* loope */
	case 0xe2:	/* loop */
	case 0xe3:	/* jcxz */
	case 0xe9:	/* near relative jump */
	case 0xeb:	/* short relative jump */
		break;
	case 0x0f:
		if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */
			break;
		return 0;
	default:
		if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */
			break;
		return 0;
	}
	target = (unsigned long)insn->next_byte + insn->immediate.value;

	return (start <= target && target <= start + len);
}

/* Decode whole function to ensure any instructions don't jump into target */
static int __kprobes can_optimize(unsigned long paddr)
{
	int ret;
	unsigned long addr, size = 0, offset = 0;
	struct insn insn;
	kprobe_opcode_t buf[MAX_INSN_SIZE];
	/* Dummy buffers for lookup_symbol_attrs */
	static char __dummy_buf[KSYM_NAME_LEN];

	/* Lookup symbol including addr */
	if (!kallsyms_lookup(paddr, &size, &offset, NULL, __dummy_buf))
		return 0;

	/* Check there is enough space for a relative jump. */
	if (size - offset < RELATIVEJUMP_SIZE)
		return 0;

	/* Decode instructions */
	addr = paddr - offset;
	while (addr < paddr - offset + size) { /* Decode until function end */
		if (search_exception_tables(addr))
			/*
			 * Since some fixup code will jumps into this function,
			 * we can't optimize kprobe in this function.
			 */
			return 0;
		kernel_insn_init(&insn, (void *)addr);
		insn_get_opcode(&insn);
		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
			ret = recover_probed_instruction(buf, addr);
			if (ret)
				return 0;
			kernel_insn_init(&insn, buf);
		}
		insn_get_length(&insn);
		/* Recover address */
		insn.kaddr = (void *)addr;
		insn.next_byte = (void *)(addr + insn.length);
		/* Check any instructions don't jump into target */
		if (insn_is_indirect_jump(&insn) ||
		    insn_jump_into_range(&insn, paddr + INT3_SIZE,
					 RELATIVE_ADDR_SIZE))
			return 0;
		addr += insn.length;
	}

	return 1;
}

/* Check optimized_kprobe can actually be optimized. */
int __kprobes arch_check_optimized_kprobe(struct optimized_kprobe *op)
{
	int i;
	struct kprobe *p;

	for (i = 1; i < op->optinsn.size; i++) {
		p = get_kprobe(op->kp.addr + i);
		if (p && !kprobe_disabled(p))
			return -EEXIST;
	}

	return 0;
}

/* Check the addr is within the optimized instructions. */
int __kprobes arch_within_optimized_kprobe(struct optimized_kprobe *op,
					   unsigned long addr)
{
	return ((unsigned long)op->kp.addr <= addr &&
		(unsigned long)op->kp.addr + op->optinsn.size > addr);
}

/* Free optimized instruction slot */
static __kprobes
void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty)
{
	if (op->optinsn.insn) {
		free_optinsn_slot(op->optinsn.insn, dirty);
		op->optinsn.insn = NULL;
		op->optinsn.size = 0;
	}
}

void __kprobes arch_remove_optimized_kprobe(struct optimized_kprobe *op)
{
	__arch_remove_optimized_kprobe(op, 1);
}

/*
 * Copy replacing target instructions
 * Target instructions MUST be relocatable (checked inside)
 */
int __kprobes arch_prepare_optimized_kprobe(struct optimized_kprobe *op)
{
	u8 *buf;
	int ret;
	long rel;

	if (!can_optimize((unsigned long)op->kp.addr))
		return -EILSEQ;

	op->optinsn.insn = get_optinsn_slot();
	if (!op->optinsn.insn)
		return -ENOMEM;

	/*
	 * Verify if the address gap is in 2GB range, because this uses
	 * a relative jump.
	 */
	rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE;
	if (abs(rel) > 0x7fffffff)
		return -ERANGE;

	buf = (u8 *)op->optinsn.insn;

	/* Copy instructions into the out-of-line buffer */
	ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr);
	if (ret < 0) {
		__arch_remove_optimized_kprobe(op, 0);
		return ret;
	}
	op->optinsn.size = ret;

	/* Copy arch-dep-instance from template */
	memcpy(buf, &optprobe_template_entry, TMPL_END_IDX);

	/* Set probe information */
	synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op);

	/* Set probe function call */
	synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback);

	/* Set returning jmp instruction at the tail of out-of-line buffer */
	synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size,
			   (u8 *)op->kp.addr + op->optinsn.size);

	flush_icache_range((unsigned long) buf,
			   (unsigned long) buf + TMPL_END_IDX +
			   op->optinsn.size + RELATIVEJUMP_SIZE);
	return 0;
}

/* Replace a breakpoint (int3) with a relative jump.  */
int __kprobes arch_optimize_kprobe(struct optimized_kprobe *op)
{
	unsigned char jmp_code[RELATIVEJUMP_SIZE];
	s32 rel = (s32)((long)op->optinsn.insn -
			((long)op->kp.addr + RELATIVEJUMP_SIZE));

	/* Backup instructions which will be replaced by jump address */
	memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE,
	       RELATIVE_ADDR_SIZE);

	jmp_code[0] = RELATIVEJUMP_OPCODE;
	*(s32 *)(&jmp_code[1]) = rel;

	/*
	 * text_poke_smp doesn't support NMI/MCE code modifying.
	 * However, since kprobes itself also doesn't support NMI/MCE
	 * code probing, it's not a problem.
	 */
	text_poke_smp(op->kp.addr, jmp_code, RELATIVEJUMP_SIZE);
	return 0;
}

/* Replace a relative jump with a breakpoint (int3).  */
void __kprobes arch_unoptimize_kprobe(struct optimized_kprobe *op)
{
	u8 buf[RELATIVEJUMP_SIZE];

	/* Set int3 to first byte for kprobes */
	buf[0] = BREAKPOINT_INSTRUCTION;
	memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
	text_poke_smp(op->kp.addr, buf, RELATIVEJUMP_SIZE);
}

static int  __kprobes setup_detour_execution(struct kprobe *p,
					     struct pt_regs *regs,
					     int reenter)
{
	struct optimized_kprobe *op;

	if (p->flags & KPROBE_FLAG_OPTIMIZED) {
		/* This kprobe is really able to run optimized path. */
		op = container_of(p, struct optimized_kprobe, kp);
		/* Detour through copied instructions */
		regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX;
		if (!reenter)
			reset_current_kprobe();
		preempt_enable_no_resched();
		return 1;
	}
	return 0;
}
#endif

1435
int __init arch_init_kprobes(void)
1436
{
1437
	return 0;
1438
}
1439 1440 1441 1442 1443

int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
	return 0;
}