kprobes.c 29.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  Kernel Probes (KProbes)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 *
 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 *		Probes initial implementation ( includes contributions from
 *		Rusty Russell).
 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 *		interface to access function arguments.
25 26
 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
L
Linus Torvalds 已提交
27 28
 * 2005-Mar	Roland McGrath <roland@redhat.com>
 *		Fixed to handle %rip-relative addressing mode correctly.
29 30 31 32 33 34 35
 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> added function-return probes.
 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
 * 		Added function return probes functionality
 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
 * 		kprobe-booster and kretprobe-booster for i386.
36 37
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
 * 		and kretprobe-booster for x86-64
38 39 40
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
 * 		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
 * 		unified x86 kprobes code.
L
Linus Torvalds 已提交
41 42 43 44 45 46
 */

#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
47
#include <linux/hardirq.h>
L
Linus Torvalds 已提交
48
#include <linux/preempt.h>
49
#include <linux/module.h>
50
#include <linux/kdebug.h>
51
#include <linux/kallsyms.h>
52

53 54
#include <asm/cacheflush.h>
#include <asm/desc.h>
L
Linus Torvalds 已提交
55
#include <asm/pgtable.h>
56
#include <asm/uaccess.h>
57
#include <asm/alternative.h>
58
#include <asm/insn.h>
59
#include <asm/debugreg.h>
L
Linus Torvalds 已提交
60 61 62

void jprobe_return_end(void);

63 64
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
L
Linus Torvalds 已提交
65

66
#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))
	/*
	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
	 * Groups, and some special opcodes can not boost.
	 */
static const u32 twobyte_is_boostable[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
	/*      ----------------------------------------------          */
	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
	/*      -----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
};
#undef W

102 103 104 105 106 107 108
struct kretprobe_blackpoint kretprobe_blacklist[] = {
	{"__switch_to", }, /* This function switches only current task, but
			      doesn't switch kernel stack.*/
	{NULL, NULL}	/* Terminator */
};
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);

109
/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
H
Harvey Harrison 已提交
110
static void __kprobes set_jmp_op(void *from, void *to)
111 112 113 114 115 116 117 118 119 120
{
	struct __arch_jmp_op {
		char op;
		s32 raddr;
	} __attribute__((packed)) * jop;
	jop = (struct __arch_jmp_op *)from;
	jop->raddr = (s32)((long)(to) - ((long)(from) + 5));
	jop->op = RELATIVEJUMP_INSTRUCTION;
}

121 122 123 124 125 126 127 128 129 130 131 132 133
/*
 * Check for the REX prefix which can only exist on X86_64
 * X86_32 always returns 0
 */
static int __kprobes is_REX_prefix(kprobe_opcode_t *insn)
{
#ifdef CONFIG_X86_64
	if ((*insn & 0xf0) == 0x40)
		return 1;
#endif
	return 0;
}

134
/*
135 136
 * Returns non-zero if opcode is boostable.
 * RIP relative instructions are adjusted at copying time in 64 bits mode
137
 */
H
Harvey Harrison 已提交
138
static int __kprobes can_boost(kprobe_opcode_t *opcodes)
139 140 141 142
{
	kprobe_opcode_t opcode;
	kprobe_opcode_t *orig_opcodes = opcodes;

143
	if (search_exception_tables((unsigned long)opcodes))
144 145
		return 0;	/* Page fault may occur on this address. */

146 147 148 149 150 151 152 153 154
retry:
	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
		return 0;
	opcode = *(opcodes++);

	/* 2nd-byte opcode */
	if (opcode == 0x0f) {
		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
			return 0;
155 156
		return test_bit(*opcodes,
				(unsigned long *)twobyte_is_boostable);
157 158 159
	}

	switch (opcode & 0xf0) {
160
#ifdef CONFIG_X86_64
161 162
	case 0x40:
		goto retry; /* REX prefix is boostable */
163
#endif
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	case 0x60:
		if (0x63 < opcode && opcode < 0x67)
			goto retry; /* prefixes */
		/* can't boost Address-size override and bound */
		return (opcode != 0x62 && opcode != 0x67);
	case 0x70:
		return 0; /* can't boost conditional jump */
	case 0xc0:
		/* can't boost software-interruptions */
		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
	case 0xd0:
		/* can boost AA* and XLAT */
		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
	case 0xe0:
		/* can boost in/out and absolute jmps */
		return ((opcode & 0x04) || opcode == 0xea);
	case 0xf0:
		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
			goto retry; /* lock/rep(ne) prefix */
		/* clear and set flags are boostable */
		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
	default:
		/* segment override prefixes are boostable */
		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
			goto retry; /* prefixes */
		/* CS override prefix and call are not boostable */
		return (opcode != 0x2e && opcode != 0x9a);
	}
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/* Recover the probed instruction at addr for further analysis. */
static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
{
	struct kprobe *kp;
	kp = get_kprobe((void *)addr);
	if (!kp)
		return -EINVAL;

	/*
	 *  Basically, kp->ainsn.insn has an original instruction.
	 *  However, RIP-relative instruction can not do single-stepping
	 *  at different place, fix_riprel() tweaks the displacement of
	 *  that instruction. In that case, we can't recover the instruction
	 *  from the kp->ainsn.insn.
	 *
	 *  On the other hand, kp->opcode has a copy of the first byte of
	 *  the probed instruction, which is overwritten by int3. And
	 *  the instruction at kp->addr is not modified by kprobes except
	 *  for the first byte, we can recover the original instruction
	 *  from it and kp->opcode.
	 */
	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
	buf[0] = kp->opcode;
	return 0;
}

/* Dummy buffers for kallsyms_lookup */
static char __dummy_buf[KSYM_NAME_LEN];

/* Check if paddr is at an instruction boundary */
static int __kprobes can_probe(unsigned long paddr)
{
	int ret;
	unsigned long addr, offset = 0;
	struct insn insn;
	kprobe_opcode_t buf[MAX_INSN_SIZE];

	if (!kallsyms_lookup(paddr, NULL, &offset, NULL, __dummy_buf))
		return 0;

	/* Decode instructions */
	addr = paddr - offset;
	while (addr < paddr) {
		kernel_insn_init(&insn, (void *)addr);
		insn_get_opcode(&insn);

		/*
		 * Check if the instruction has been modified by another
		 * kprobe, in which case we replace the breakpoint by the
		 * original instruction in our buffer.
		 */
		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
			ret = recover_probed_instruction(buf, addr);
			if (ret)
				/*
				 * Another debugging subsystem might insert
				 * this breakpoint. In that case, we can't
				 * recover it.
				 */
				return 0;
			kernel_insn_init(&insn, buf);
		}
		insn_get_length(&insn);
		addr += insn.length;
	}

	return (addr == paddr);
}

L
Linus Torvalds 已提交
263
/*
264
 * Returns non-zero if opcode modifies the interrupt flag.
L
Linus Torvalds 已提交
265
 */
266
static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274
{
	switch (*insn) {
	case 0xfa:		/* cli */
	case 0xfb:		/* sti */
	case 0xcf:		/* iret/iretd */
	case 0x9d:		/* popf/popfd */
		return 1;
	}
275

276
	/*
277
	 * on X86_64, 0x40-0x4f are REX prefixes so we need to look
278 279
	 * at the next byte instead.. but of course not recurse infinitely
	 */
280
	if (is_REX_prefix(insn))
281
		return is_IF_modifier(++insn);
282

L
Linus Torvalds 已提交
283 284 285 286
	return 0;
}

/*
287 288
 * Adjust the displacement if the instruction uses the %rip-relative
 * addressing mode.
289
 * If it does, Return the address of the 32-bit displacement word.
L
Linus Torvalds 已提交
290
 * If not, return null.
291
 * Only applicable to 64-bit x86.
L
Linus Torvalds 已提交
292
 */
293
static void __kprobes fix_riprel(struct kprobe *p)
L
Linus Torvalds 已提交
294
{
295
#ifdef CONFIG_X86_64
296 297
	struct insn insn;
	kernel_insn_init(&insn, p->ainsn.insn);
L
Linus Torvalds 已提交
298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	if (insn_rip_relative(&insn)) {
		s64 newdisp;
		u8 *disp;
		insn_get_displacement(&insn);
		/*
		 * The copied instruction uses the %rip-relative addressing
		 * mode.  Adjust the displacement for the difference between
		 * the original location of this instruction and the location
		 * of the copy that will actually be run.  The tricky bit here
		 * is making sure that the sign extension happens correctly in
		 * this calculation, since we need a signed 32-bit result to
		 * be sign-extended to 64 bits when it's added to the %rip
		 * value and yield the same 64-bit result that the sign-
		 * extension of the original signed 32-bit displacement would
		 * have given.
		 */
		newdisp = (u8 *) p->addr + (s64) insn.displacement.value -
			  (u8 *) p->ainsn.insn;
		BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */
		disp = (u8 *) p->ainsn.insn + insn_offset_displacement(&insn);
		*(s32 *) disp = (s32) newdisp;
L
Linus Torvalds 已提交
320
	}
321
#endif
322
}
L
Linus Torvalds 已提交
323

324
static void __kprobes arch_copy_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
325
{
326
	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
327

328
	fix_riprel(p);
329

330
	if (can_boost(p->addr))
331
		p->ainsn.boostable = 0;
332
	else
333
		p->ainsn.boostable = -1;
334

335
	p->opcode = *p->addr;
L
Linus Torvalds 已提交
336 337
}

338 339
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
340 341
	if (!can_probe((unsigned long)p->addr))
		return -EILSEQ;
342 343 344 345 346 347 348 349
	/* insn: must be on special executable page on x86. */
	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;
	arch_copy_kprobe(p);
	return 0;
}

350
void __kprobes arch_arm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
351
{
352
	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
L
Linus Torvalds 已提交
353 354
}

355
void __kprobes arch_disarm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
356
{
357
	text_poke(p->addr, &p->opcode, 1);
358 359
}

360
void __kprobes arch_remove_kprobe(struct kprobe *p)
361
{
362 363 364 365
	if (p->ainsn.insn) {
		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
		p->ainsn.insn = NULL;
	}
L
Linus Torvalds 已提交
366 367
}

368
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
369
{
370 371
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
372 373
	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
374 375
}

376
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
377
{
378 379
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
	kcb->kprobe_status = kcb->prev_kprobe.status;
380 381
	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
382 383
}

384
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
385
				struct kprobe_ctlblk *kcb)
386
{
387
	__get_cpu_var(current_kprobe) = p;
388
	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
389
		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
390
	if (is_IF_modifier(p->ainsn.insn))
391
		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
392 393
}

H
Harvey Harrison 已提交
394
static void __kprobes clear_btf(void)
R
Roland McGrath 已提交
395 396
{
	if (test_thread_flag(TIF_DEBUGCTLMSR))
397
		update_debugctlmsr(0);
R
Roland McGrath 已提交
398 399
}

H
Harvey Harrison 已提交
400
static void __kprobes restore_btf(void)
R
Roland McGrath 已提交
401 402
{
	if (test_thread_flag(TIF_DEBUGCTLMSR))
403
		update_debugctlmsr(current->thread.debugctlmsr);
R
Roland McGrath 已提交
404 405
}

406
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
407
{
R
Roland McGrath 已提交
408
	clear_btf();
409 410
	regs->flags |= X86_EFLAGS_TF;
	regs->flags &= ~X86_EFLAGS_IF;
H
Harvey Harrison 已提交
411
	/* single step inline if the instruction is an int3 */
L
Linus Torvalds 已提交
412
	if (p->opcode == BREAKPOINT_INSTRUCTION)
413
		regs->ip = (unsigned long)p->addr;
L
Linus Torvalds 已提交
414
	else
415
		regs->ip = (unsigned long)p->ainsn.insn;
L
Linus Torvalds 已提交
416 417
}

418
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
419
				      struct pt_regs *regs)
420
{
421
	unsigned long *sara = stack_addr(regs);
422

423
	ri->ret_addr = (kprobe_opcode_t *) *sara;
424

425 426
	/* Replace the return addr with trampoline addr */
	*sara = (unsigned long) &kretprobe_trampoline;
427
}
428 429 430 431

static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
				       struct kprobe_ctlblk *kcb)
{
432
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_FREEZER)
433 434 435 436 437 438 439 440 441 442 443 444
	if (p->ainsn.boostable == 1 && !p->post_handler) {
		/* Boost up -- we can execute copied instructions directly */
		reset_current_kprobe();
		regs->ip = (unsigned long)p->ainsn.insn;
		preempt_enable_no_resched();
		return;
	}
#endif
	prepare_singlestep(p, regs);
	kcb->kprobe_status = KPROBE_HIT_SS;
}

H
Harvey Harrison 已提交
445 446 447 448 449
/*
 * We have reentered the kprobe_handler(), since another probe was hit while
 * within the handler. We save the original kprobes variables and just single
 * step on the instruction of the new probe without calling any user handlers.
 */
450 451
static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
				    struct kprobe_ctlblk *kcb)
H
Harvey Harrison 已提交
452
{
453 454 455
	switch (kcb->kprobe_status) {
	case KPROBE_HIT_SSDONE:
	case KPROBE_HIT_ACTIVE:
456 457 458 459 460
		save_previous_kprobe(kcb);
		set_current_kprobe(p, regs, kcb);
		kprobes_inc_nmissed_count(p);
		prepare_singlestep(p, regs);
		kcb->kprobe_status = KPROBE_REENTER;
461 462
		break;
	case KPROBE_HIT_SS:
463 464 465 466 467 468 469 470 471 472
		/* A probe has been hit in the codepath leading up to, or just
		 * after, single-stepping of a probed instruction. This entire
		 * codepath should strictly reside in .kprobes.text section.
		 * Raise a BUG or we'll continue in an endless reentering loop
		 * and eventually a stack overflow.
		 */
		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
		       p->addr);
		dump_kprobe(p);
		BUG();
473 474 475
	default:
		/* impossible cases */
		WARN_ON(1);
476
		return 0;
477
	}
478

479
	return 1;
H
Harvey Harrison 已提交
480
}
481

482 483
/*
 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
484
 * remain disabled throughout this function.
485 486
 */
static int __kprobes kprobe_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
487
{
488
	kprobe_opcode_t *addr;
489
	struct kprobe *p;
490 491
	struct kprobe_ctlblk *kcb;

492
	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
493 494 495 496 497 498 499 500 501 502 503 504 505
	if (*addr != BREAKPOINT_INSTRUCTION) {
		/*
		 * The breakpoint instruction was removed right
		 * after we hit it.  Another cpu has removed
		 * either a probepoint or a debugger breakpoint
		 * at this address.  In either case, no further
		 * handling of this interrupt is appropriate.
		 * Back up over the (now missing) int3 and run
		 * the original instruction.
		 */
		regs->ip = (unsigned long)addr;
		return 1;
	}
506

507 508
	/*
	 * We don't want to be preempted for the entire
509 510 511
	 * duration of kprobe processing. We conditionally
	 * re-enable preemption at the end of this function,
	 * and also in reenter_kprobe() and setup_singlestep().
512 513
	 */
	preempt_disable();
L
Linus Torvalds 已提交
514

515
	kcb = get_kprobe_ctlblk();
516
	p = get_kprobe(addr);
517

518 519
	if (p) {
		if (kprobe_running()) {
520 521
			if (reenter_kprobe(p, regs, kcb))
				return 1;
L
Linus Torvalds 已提交
522
		} else {
523 524
			set_current_kprobe(p, regs, kcb);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
525

L
Linus Torvalds 已提交
526
			/*
527 528 529 530 531 532
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry
			 * for jprobe processing, so get out doing nothing
			 * more here.
L
Linus Torvalds 已提交
533
			 */
534 535 536
			if (!p->pre_handler || !p->pre_handler(p, regs))
				setup_singlestep(p, regs, kcb);
			return 1;
537
		}
538 539 540 541 542
	} else if (kprobe_running()) {
		p = __get_cpu_var(current_kprobe);
		if (p->break_handler && p->break_handler(p, regs)) {
			setup_singlestep(p, regs, kcb);
			return 1;
L
Linus Torvalds 已提交
543
		}
544
	} /* else: not a kprobe fault; let the kernel handle it */
L
Linus Torvalds 已提交
545

546
	preempt_enable_no_resched();
547
	return 0;
L
Linus Torvalds 已提交
548 549
}

550
/*
551 552
 * When a retprobed function returns, this code saves registers and
 * calls trampoline_handler() runs, which calls the kretprobe's handler.
553
 */
554
static void __used __kprobes kretprobe_trampoline_holder(void)
555
{
556 557
	asm volatile (
			".global kretprobe_trampoline\n"
558
			"kretprobe_trampoline: \n"
559
#ifdef CONFIG_X86_64
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
			/* We don't bother saving the ss register */
			"	pushq %rsp\n"
			"	pushfq\n"
			/*
			 * Skip cs, ip, orig_ax.
			 * trampoline_handler() will plug in these values
			 */
			"	subq $24, %rsp\n"
			"	pushq %rdi\n"
			"	pushq %rsi\n"
			"	pushq %rdx\n"
			"	pushq %rcx\n"
			"	pushq %rax\n"
			"	pushq %r8\n"
			"	pushq %r9\n"
			"	pushq %r10\n"
			"	pushq %r11\n"
			"	pushq %rbx\n"
			"	pushq %rbp\n"
			"	pushq %r12\n"
			"	pushq %r13\n"
			"	pushq %r14\n"
			"	pushq %r15\n"
			"	movq %rsp, %rdi\n"
			"	call trampoline_handler\n"
			/* Replace saved sp with true return address. */
			"	movq %rax, 152(%rsp)\n"
			"	popq %r15\n"
			"	popq %r14\n"
			"	popq %r13\n"
			"	popq %r12\n"
			"	popq %rbp\n"
			"	popq %rbx\n"
			"	popq %r11\n"
			"	popq %r10\n"
			"	popq %r9\n"
			"	popq %r8\n"
			"	popq %rax\n"
			"	popq %rcx\n"
			"	popq %rdx\n"
			"	popq %rsi\n"
			"	popq %rdi\n"
			/* Skip orig_ax, ip, cs */
			"	addq $24, %rsp\n"
			"	popfq\n"
605 606 607
#else
			"	pushf\n"
			/*
608
			 * Skip cs, ip, orig_ax and gs.
609 610
			 * trampoline_handler() will plug in these values
			 */
611
			"	subl $16, %esp\n"
612 613
			"	pushl %fs\n"
			"	pushl %es\n"
614
			"	pushl %ds\n"
615 616 617 618 619 620 621 622 623 624
			"	pushl %eax\n"
			"	pushl %ebp\n"
			"	pushl %edi\n"
			"	pushl %esi\n"
			"	pushl %edx\n"
			"	pushl %ecx\n"
			"	pushl %ebx\n"
			"	movl %esp, %eax\n"
			"	call trampoline_handler\n"
			/* Move flags to cs */
625 626
			"	movl 56(%esp), %edx\n"
			"	movl %edx, 52(%esp)\n"
627
			/* Replace saved flags with true return address. */
628
			"	movl %eax, 56(%esp)\n"
629 630 631 632 633 634 635
			"	popl %ebx\n"
			"	popl %ecx\n"
			"	popl %edx\n"
			"	popl %esi\n"
			"	popl %edi\n"
			"	popl %ebp\n"
			"	popl %eax\n"
636 637
			/* Skip ds, es, fs, gs, orig_ax and ip */
			"	addl $24, %esp\n"
638 639
			"	popf\n"
#endif
640
			"	ret\n");
641
}
642 643

/*
644
 * Called from kretprobe_trampoline
645
 */
646
static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
647
{
B
bibo,mao 已提交
648
	struct kretprobe_instance *ri = NULL;
649
	struct hlist_head *head, empty_rp;
B
bibo,mao 已提交
650
	struct hlist_node *node, *tmp;
651
	unsigned long flags, orig_ret_address = 0;
652
	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
653

654
	INIT_HLIST_HEAD(&empty_rp);
655
	kretprobe_hash_lock(current, &head, &flags);
656
	/* fixup registers */
657
#ifdef CONFIG_X86_64
658
	regs->cs = __KERNEL_CS;
659 660
#else
	regs->cs = __KERNEL_CS | get_kernel_rpl();
661
	regs->gs = 0;
662
#endif
663
	regs->ip = trampoline_address;
664
	regs->orig_ax = ~0UL;
665

666 667
	/*
	 * It is possible to have multiple instances associated with a given
668
	 * task either because multiple functions in the call path have
669
	 * return probes installed on them, and/or more than one
670 671 672
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
673
	 *     - instances are always pushed into the head of the list
674
	 *     - when multiple return probes are registered for the same
675 676 677
	 *	 function, the (chronologically) first instance's ret_addr
	 *	 will be the real return address, and all the rest will
	 *	 point to kretprobe_trampoline.
678 679
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
B
bibo,mao 已提交
680
		if (ri->task != current)
681
			/* another task is sharing our hash bucket */
B
bibo,mao 已提交
682
			continue;
683

684 685 686
		if (ri->rp && ri->rp->handler) {
			__get_cpu_var(current_kprobe) = &ri->rp->kp;
			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
687
			ri->rp->handler(ri, regs);
688 689
			__get_cpu_var(current_kprobe) = NULL;
		}
690 691

		orig_ret_address = (unsigned long)ri->ret_addr;
692
		recycle_rp_inst(ri, &empty_rp);
693 694 695 696 697 698 699 700

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
701
	}
702

703
	kretprobe_assert(ri, orig_ret_address, trampoline_address);
704

705
	kretprobe_hash_unlock(current, &flags);
706

707 708 709 710
	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
711
	return (void *)orig_ret_address;
712 713
}

L
Linus Torvalds 已提交
714 715 716 717 718 719 720 721 722 723 724 725
/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction whose first byte has been replaced by the "int 3"
 * instruction.  To avoid the SMP problems that can occur when we
 * temporarily put back the original opcode to single-step, we
 * single-stepped a copy of the instruction.  The address of this
 * copy is p->ainsn.insn.
 *
 * This function prepares to return from the post-single-step
 * interrupt.  We have to fix up the stack as follows:
 *
 * 0) Except in the case of absolute or indirect jump or call instructions,
726
 * the new ip is relative to the copied instruction.  We need to make
L
Linus Torvalds 已提交
727 728 729
 * it relative to the original instruction.
 *
 * 1) If the single-stepped instruction was pushfl, then the TF and IF
730
 * flags are set in the just-pushed flags, and may need to be cleared.
L
Linus Torvalds 已提交
731 732 733 734
 *
 * 2) If the single-stepped instruction was a call, the return address
 * that is atop the stack is the address following the copied instruction.
 * We need to make it the address following the original instruction.
735 736 737 738 739
 *
 * If this is the first time we've single-stepped the instruction at
 * this probepoint, and the instruction is boostable, boost it: add a
 * jump instruction after the copied instruction, that jumps to the next
 * instruction after the probepoint.
L
Linus Torvalds 已提交
740
 */
741 742
static void __kprobes resume_execution(struct kprobe *p,
		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
L
Linus Torvalds 已提交
743
{
744 745 746
	unsigned long *tos = stack_addr(regs);
	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
	unsigned long orig_ip = (unsigned long)p->addr;
L
Linus Torvalds 已提交
747 748 749
	kprobe_opcode_t *insn = p->ainsn.insn;

	/*skip the REX prefix*/
750
	if (is_REX_prefix(insn))
L
Linus Torvalds 已提交
751 752
		insn++;

753
	regs->flags &= ~X86_EFLAGS_TF;
L
Linus Torvalds 已提交
754
	switch (*insn) {
M
Masami Hiramatsu 已提交
755
	case 0x9c:	/* pushfl */
756
		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
757
		*tos |= kcb->kprobe_old_flags;
L
Linus Torvalds 已提交
758
		break;
M
Masami Hiramatsu 已提交
759 760
	case 0xc2:	/* iret/ret/lret */
	case 0xc3:
761
	case 0xca:
M
Masami Hiramatsu 已提交
762 763 764 765
	case 0xcb:
	case 0xcf:
	case 0xea:	/* jmp absolute -- ip is correct */
		/* ip is already adjusted, no more changes required */
766
		p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
767 768
		goto no_change;
	case 0xe8:	/* call relative - Fix return addr */
769
		*tos = orig_ip + (*tos - copy_ip);
L
Linus Torvalds 已提交
770
		break;
H
Harvey Harrison 已提交
771
#ifdef CONFIG_X86_32
772 773 774 775
	case 0x9a:	/* call absolute -- same as call absolute, indirect */
		*tos = orig_ip + (*tos - copy_ip);
		goto no_change;
#endif
L
Linus Torvalds 已提交
776
	case 0xff:
777
		if ((insn[1] & 0x30) == 0x10) {
778 779 780 781 782 783
			/*
			 * call absolute, indirect
			 * Fix return addr; ip is correct.
			 * But this is not boostable
			 */
			*tos = orig_ip + (*tos - copy_ip);
M
Masami Hiramatsu 已提交
784
			goto no_change;
785 786 787 788 789 790
		} else if (((insn[1] & 0x31) == 0x20) ||
			   ((insn[1] & 0x31) == 0x21)) {
			/*
			 * jmp near and far, absolute indirect
			 * ip is correct. And this is boostable
			 */
791
			p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
792
			goto no_change;
L
Linus Torvalds 已提交
793 794 795 796 797
		}
	default:
		break;
	}

798
	if (p->ainsn.boostable == 0) {
799 800
		if ((regs->ip > copy_ip) &&
		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
801 802 803 804 805
			/*
			 * These instructions can be executed directly if it
			 * jumps back to correct address.
			 */
			set_jmp_op((void *)regs->ip,
806
				   (void *)orig_ip + (regs->ip - copy_ip));
807 808 809 810 811 812
			p->ainsn.boostable = 1;
		} else {
			p->ainsn.boostable = -1;
		}
	}

813
	regs->ip += orig_ip - copy_ip;
814

M
Masami Hiramatsu 已提交
815
no_change:
R
Roland McGrath 已提交
816
	restore_btf();
L
Linus Torvalds 已提交
817 818
}

819 820
/*
 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
821
 * remain disabled throughout this function.
822 823
 */
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
824
{
825 826 827 828
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
L
Linus Torvalds 已提交
829 830
		return 0;

831 832 833
	resume_execution(cur, regs, kcb);
	regs->flags |= kcb->kprobe_saved_flags;

834 835 836
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
837
	}
L
Linus Torvalds 已提交
838

839
	/* Restore back the original saved kprobes variables and continue. */
840 841
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
842 843
		goto out;
	}
844
	reset_current_kprobe();
845
out:
L
Linus Torvalds 已提交
846 847 848
	preempt_enable_no_resched();

	/*
849
	 * if somebody else is singlestepping across a probe point, flags
L
Linus Torvalds 已提交
850 851 852
	 * will have TF set, in which case, continue the remaining processing
	 * of do_debug, as if this is not a probe hit.
	 */
853
	if (regs->flags & X86_EFLAGS_TF)
L
Linus Torvalds 已提交
854 855 856 857 858
		return 0;

	return 1;
}

859
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
L
Linus Torvalds 已提交
860
{
861 862 863
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

864
	switch (kcb->kprobe_status) {
865 866 867 868 869
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
870
		 * kprobe and the ip points back to the probe address
871 872 873
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
874
		regs->ip = (unsigned long)cur->addr;
875
		regs->flags |= kcb->kprobe_old_flags;
876 877 878 879
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
L
Linus Torvalds 已提交
880
		preempt_enable_no_resched();
881 882 883 884 885
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
886
		 * we can also use npre/npostfault count for accounting
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;

		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
905 906
		if (fixup_exception(regs))
			return 1;
H
Harvey Harrison 已提交
907

908
		/*
909
		 * fixup routine could not handle it,
910 911 912 913 914
		 * Let do_page_fault() fix it.
		 */
		break;
	default:
		break;
L
Linus Torvalds 已提交
915 916 917 918 919 920 921
	}
	return 0;
}

/*
 * Wrapper routine for handling exceptions.
 */
922 923
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
L
Linus Torvalds 已提交
924
{
J
Jan Engelhardt 已提交
925
	struct die_args *args = data;
926 927
	int ret = NOTIFY_DONE;

928
	if (args->regs && user_mode_vm(args->regs))
929 930
		return ret;

L
Linus Torvalds 已提交
931 932 933
	switch (val) {
	case DIE_INT3:
		if (kprobe_handler(args->regs))
934
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
935 936
		break;
	case DIE_DEBUG:
937 938 939 940 941 942
		if (post_kprobe_handler(args->regs)) {
			/*
			 * Reset the BS bit in dr6 (pointed by args->err) to
			 * denote completion of processing
			 */
			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
943
			ret = NOTIFY_STOP;
944
		}
L
Linus Torvalds 已提交
945 946
		break;
	case DIE_GPF:
947 948 949 950 951 952
		/*
		 * To be potentially processing a kprobe fault and to
		 * trust the result from kprobe_running(), we have
		 * be non-preemptible.
		 */
		if (!preemptible() && kprobe_running() &&
L
Linus Torvalds 已提交
953
		    kprobe_fault_handler(args->regs, args->trapnr))
954
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
955 956 957 958
		break;
	default:
		break;
	}
959
	return ret;
L
Linus Torvalds 已提交
960 961
}

962
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
963 964 965
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr;
966
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
L
Linus Torvalds 已提交
967

968
	kcb->jprobe_saved_regs = *regs;
969 970 971
	kcb->jprobe_saved_sp = stack_addr(regs);
	addr = (unsigned long)(kcb->jprobe_saved_sp);

L
Linus Torvalds 已提交
972 973 974 975 976 977 978
	/*
	 * As Linus pointed out, gcc assumes that the callee
	 * owns the argument space and could overwrite it, e.g.
	 * tailcall optimization. So, to be absolutely safe
	 * we also save and restore enough stack bytes to cover
	 * the argument area.
	 */
979
	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
980
	       MIN_STACK_SIZE(addr));
981
	regs->flags &= ~X86_EFLAGS_IF;
982
	trace_hardirqs_off();
983
	regs->ip = (unsigned long)(jp->entry);
L
Linus Torvalds 已提交
984 985 986
	return 1;
}

987
void __kprobes jprobe_return(void)
L
Linus Torvalds 已提交
988
{
989 990
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

991 992 993 994 995 996 997 998 999 1000 1001
	asm volatile (
#ifdef CONFIG_X86_64
			"       xchg   %%rbx,%%rsp	\n"
#else
			"       xchgl   %%ebx,%%esp	\n"
#endif
			"       int3			\n"
			"       .globl jprobe_return_end\n"
			"       jprobe_return_end:	\n"
			"       nop			\n"::"b"
			(kcb->jprobe_saved_sp):"memory");
L
Linus Torvalds 已提交
1002 1003
}

1004
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
1005
{
1006
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1007
	u8 *addr = (u8 *) (regs->ip - 1);
L
Linus Torvalds 已提交
1008 1009
	struct jprobe *jp = container_of(p, struct jprobe, kp);

1010 1011
	if ((addr > (u8 *) jprobe_return) &&
	    (addr < (u8 *) jprobe_return_end)) {
1012
		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
M
Masami Hiramatsu 已提交
1013
			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1014 1015
			printk(KERN_ERR
			       "current sp %p does not match saved sp %p\n",
1016
			       stack_addr(regs), kcb->jprobe_saved_sp);
1017
			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
L
Linus Torvalds 已提交
1018
			show_registers(saved_regs);
1019
			printk(KERN_ERR "Current registers\n");
L
Linus Torvalds 已提交
1020 1021 1022
			show_registers(regs);
			BUG();
		}
1023
		*regs = kcb->jprobe_saved_regs;
1024 1025 1026
		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
		       kcb->jprobes_stack,
		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1027
		preempt_enable_no_resched();
L
Linus Torvalds 已提交
1028 1029 1030 1031
		return 1;
	}
	return 0;
}
1032

1033
int __init arch_init_kprobes(void)
1034
{
1035
	return 0;
1036
}
1037 1038 1039 1040 1041

int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
	return 0;
}