spi-xilinx.c 14.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Xilinx SPI controller driver (master mode only)
 *
 * Author: MontaVista Software, Inc.
 *	source@mvista.com
 *
7 8 9 10 11 12 13
 * Copyright (c) 2010 Secret Lab Technologies, Ltd.
 * Copyright (c) 2009 Intel Corporation
 * 2002-2007 (c) MontaVista Software, Inc.

 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
14 15 16 17 18
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
19
#include <linux/of.h>
20
#include <linux/platform_device.h>
21 22
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
23
#include <linux/spi/xilinx_spi.h>
24
#include <linux/io.h>
25

26
#define XILINX_SPI_NAME "xilinx_spi"
27 28 29 30

/* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e)
 * Product Specification", DS464
 */
31
#define XSPI_CR_OFFSET		0x60	/* Control Register */
32

33
#define XSPI_CR_LOOP		0x01
34 35 36 37 38 39 40 41 42
#define XSPI_CR_ENABLE		0x02
#define XSPI_CR_MASTER_MODE	0x04
#define XSPI_CR_CPOL		0x08
#define XSPI_CR_CPHA		0x10
#define XSPI_CR_MODE_MASK	(XSPI_CR_CPHA | XSPI_CR_CPOL)
#define XSPI_CR_TXFIFO_RESET	0x20
#define XSPI_CR_RXFIFO_RESET	0x40
#define XSPI_CR_MANUAL_SSELECT	0x80
#define XSPI_CR_TRANS_INHIBIT	0x100
43
#define XSPI_CR_LSB_FIRST	0x200
44

45
#define XSPI_SR_OFFSET		0x64	/* Status Register */
46 47 48 49 50 51 52

#define XSPI_SR_RX_EMPTY_MASK	0x01	/* Receive FIFO is empty */
#define XSPI_SR_RX_FULL_MASK	0x02	/* Receive FIFO is full */
#define XSPI_SR_TX_EMPTY_MASK	0x04	/* Transmit FIFO is empty */
#define XSPI_SR_TX_FULL_MASK	0x08	/* Transmit FIFO is full */
#define XSPI_SR_MODE_FAULT_MASK	0x10	/* Mode fault error */

53 54
#define XSPI_TXD_OFFSET		0x68	/* Data Transmit Register */
#define XSPI_RXD_OFFSET		0x6c	/* Data Receive Register */
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

#define XSPI_SSR_OFFSET		0x70	/* 32-bit Slave Select Register */

/* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414
 * IPIF registers are 32 bit
 */
#define XIPIF_V123B_DGIER_OFFSET	0x1c	/* IPIF global int enable reg */
#define XIPIF_V123B_GINTR_ENABLE	0x80000000

#define XIPIF_V123B_IISR_OFFSET		0x20	/* IPIF interrupt status reg */
#define XIPIF_V123B_IIER_OFFSET		0x28	/* IPIF interrupt enable reg */

#define XSPI_INTR_MODE_FAULT		0x01	/* Mode fault error */
#define XSPI_INTR_SLAVE_MODE_FAULT	0x02	/* Selected as slave while
						 * disabled */
#define XSPI_INTR_TX_EMPTY		0x04	/* TxFIFO is empty */
#define XSPI_INTR_TX_UNDERRUN		0x08	/* TxFIFO was underrun */
#define XSPI_INTR_RX_FULL		0x10	/* RxFIFO is full */
#define XSPI_INTR_RX_OVERRUN		0x20	/* RxFIFO was overrun */
74
#define XSPI_INTR_TX_HALF_EMPTY		0x40	/* TxFIFO is half empty */
75 76 77 78 79 80 81 82

#define XIPIF_V123B_RESETR_OFFSET	0x40	/* IPIF reset register */
#define XIPIF_V123B_RESET_MASK		0x0a	/* the value to write */

struct xilinx_spi {
	/* bitbang has to be first */
	struct spi_bitbang bitbang;
	struct completion done;
83
	struct resource mem; /* phys mem */
84 85 86 87 88 89 90
	void __iomem	*regs;	/* virt. address of the control registers */

	u32		irq;

	u8 *rx_ptr;		/* pointer in the Tx buffer */
	const u8 *tx_ptr;	/* pointer in the Rx buffer */
	int remaining_bytes;	/* the number of bytes left to transfer */
91
	u8 bits_per_word;
92 93
	unsigned int (*read_fn) (void __iomem *);
	void (*write_fn) (u32, void __iomem *);
94 95
	void (*tx_fn) (struct xilinx_spi *);
	void (*rx_fn) (struct xilinx_spi *);
96 97
};

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static void xspi_write32(u32 val, void __iomem *addr)
{
	iowrite32(val, addr);
}

static unsigned int xspi_read32(void __iomem *addr)
{
	return ioread32(addr);
}

static void xspi_write32_be(u32 val, void __iomem *addr)
{
	iowrite32be(val, addr);
}

static unsigned int xspi_read32_be(void __iomem *addr)
{
	return ioread32be(addr);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
static void xspi_tx8(struct xilinx_spi *xspi)
{
	xspi->write_fn(*xspi->tx_ptr, xspi->regs + XSPI_TXD_OFFSET);
	xspi->tx_ptr++;
}

static void xspi_tx16(struct xilinx_spi *xspi)
{
	xspi->write_fn(*(u16 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
	xspi->tx_ptr += 2;
}

static void xspi_tx32(struct xilinx_spi *xspi)
{
	xspi->write_fn(*(u32 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
	xspi->tx_ptr += 4;
}

static void xspi_rx8(struct xilinx_spi *xspi)
{
	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
	if (xspi->rx_ptr) {
		*xspi->rx_ptr = data & 0xff;
		xspi->rx_ptr++;
	}
}

static void xspi_rx16(struct xilinx_spi *xspi)
{
	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
	if (xspi->rx_ptr) {
		*(u16 *)(xspi->rx_ptr) = data & 0xffff;
		xspi->rx_ptr += 2;
	}
}

static void xspi_rx32(struct xilinx_spi *xspi)
{
	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
	if (xspi->rx_ptr) {
		*(u32 *)(xspi->rx_ptr) = data;
		xspi->rx_ptr += 4;
	}
}

163
static void xspi_init_hw(struct xilinx_spi *xspi)
164
{
165 166
	void __iomem *regs_base = xspi->regs;

167
	/* Reset the SPI device */
168 169
	xspi->write_fn(XIPIF_V123B_RESET_MASK,
		regs_base + XIPIF_V123B_RESETR_OFFSET);
170
	/* Disable all the interrupts just in case */
171
	xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET);
172
	/* Enable the global IPIF interrupt */
173 174
	xspi->write_fn(XIPIF_V123B_GINTR_ENABLE,
		regs_base + XIPIF_V123B_DGIER_OFFSET);
175
	/* Deselect the slave on the SPI bus */
176
	xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET);
177 178
	/* Disable the transmitter, enable Manual Slave Select Assertion,
	 * put SPI controller into master mode, and enable it */
179
	xspi->write_fn(XSPI_CR_TRANS_INHIBIT | XSPI_CR_MANUAL_SSELECT |
180 181
		XSPI_CR_MASTER_MODE | XSPI_CR_ENABLE | XSPI_CR_TXFIFO_RESET |
		XSPI_CR_RXFIFO_RESET, regs_base + XSPI_CR_OFFSET);
182 183 184 185 186 187 188 189
}

static void xilinx_spi_chipselect(struct spi_device *spi, int is_on)
{
	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);

	if (is_on == BITBANG_CS_INACTIVE) {
		/* Deselect the slave on the SPI bus */
190
		xspi->write_fn(0xffff, xspi->regs + XSPI_SSR_OFFSET);
191 192
	} else if (is_on == BITBANG_CS_ACTIVE) {
		/* Set the SPI clock phase and polarity */
193
		u16 cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET)
194 195 196 197 198
			 & ~XSPI_CR_MODE_MASK;
		if (spi->mode & SPI_CPHA)
			cr |= XSPI_CR_CPHA;
		if (spi->mode & SPI_CPOL)
			cr |= XSPI_CR_CPOL;
199
		xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
200 201 202 203 204 205 206

		/* We do not check spi->max_speed_hz here as the SPI clock
		 * frequency is not software programmable (the IP block design
		 * parameter)
		 */

		/* Activate the chip select */
207 208
		xspi->write_fn(~(0x0001 << spi->chip_select),
			xspi->regs + XSPI_SSR_OFFSET);
209 210 211 212 213
	}
}

/* spi_bitbang requires custom setup_transfer() to be defined if there is a
 * custom txrx_bufs(). We have nothing to setup here as the SPI IP block
214 215 216
 * supports 8 or 16 bits per word which cannot be changed in software.
 * SPI clock can't be changed in software either.
 * Check for correct bits per word. Chip select delay calculations could be
217 218 219 220 221
 * added here as soon as bitbang_work() can be made aware of the delay value.
 */
static int xilinx_spi_setup_transfer(struct spi_device *spi,
		struct spi_transfer *t)
{
222
	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
223 224
	u8 bits_per_word;

225 226
	bits_per_word = (t && t->bits_per_word)
			 ? t->bits_per_word : spi->bits_per_word;
227
	if (bits_per_word != xspi->bits_per_word) {
228
		dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
229
			__func__, bits_per_word);
230 231 232 233 234 235 236 237 238 239 240
		return -EINVAL;
	}

	return 0;
}

static void xilinx_spi_fill_tx_fifo(struct xilinx_spi *xspi)
{
	u8 sr;

	/* Fill the Tx FIFO with as many bytes as possible */
241
	sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
242
	while ((sr & XSPI_SR_TX_FULL_MASK) == 0 && xspi->remaining_bytes > 0) {
243
		if (xspi->tx_ptr)
244
			xspi->tx_fn(xspi);
245 246
		else
			xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
247
		xspi->remaining_bytes -= xspi->bits_per_word / 8;
248
		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	}
}

static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
{
	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
	u32 ipif_ier;

	/* We get here with transmitter inhibited */

	xspi->tx_ptr = t->tx_buf;
	xspi->rx_ptr = t->rx_buf;
	xspi->remaining_bytes = t->len;
	INIT_COMPLETION(xspi->done);


	/* Enable the transmit empty interrupt, which we use to determine
	 * progress on the transmission.
	 */
268 269 270
	ipif_ier = xspi->read_fn(xspi->regs + XIPIF_V123B_IIER_OFFSET);
	xspi->write_fn(ipif_ier | XSPI_INTR_TX_EMPTY,
		xspi->regs + XIPIF_V123B_IIER_OFFSET);
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	for (;;) {
		u16 cr;
		u8 sr;

		xilinx_spi_fill_tx_fifo(xspi);

		/* Start the transfer by not inhibiting the transmitter any
		 * longer
		 */
		cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET) &
							~XSPI_CR_TRANS_INHIBIT;
		xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);

		wait_for_completion(&xspi->done);

		/* A transmit has just completed. Process received data and
		 * check for more data to transmit. Always inhibit the
		 * transmitter while the Isr refills the transmit register/FIFO,
		 * or make sure it is stopped if we're done.
		 */
		cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
		xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
			       xspi->regs + XSPI_CR_OFFSET);

		/* Read out all the data from the Rx FIFO */
		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
		while ((sr & XSPI_SR_RX_EMPTY_MASK) == 0) {
			xspi->rx_fn(xspi);
			sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
		}
302

303
		/* See if there is more data to send */
304
		if (xspi->remaining_bytes <= 0)
305 306
			break;
	}
307 308

	/* Disable the transmit empty interrupt */
309
	xspi->write_fn(ipif_ier, xspi->regs + XIPIF_V123B_IIER_OFFSET);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

	return t->len - xspi->remaining_bytes;
}


/* This driver supports single master mode only. Hence Tx FIFO Empty
 * is the only interrupt we care about.
 * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode
 * Fault are not to happen.
 */
static irqreturn_t xilinx_spi_irq(int irq, void *dev_id)
{
	struct xilinx_spi *xspi = dev_id;
	u32 ipif_isr;

	/* Get the IPIF interrupts, and clear them immediately */
326 327
	ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
	xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET);
328 329

	if (ipif_isr & XSPI_INTR_TX_EMPTY) {	/* Transmission completed */
330
		complete(&xspi->done);
331 332 333 334 335
	}

	return IRQ_HANDLED;
}

336 337 338 339 340 341 342
static const struct of_device_id xilinx_spi_of_match[] = {
	{ .compatible = "xlnx,xps-spi-2.00.a", },
	{ .compatible = "xlnx,xps-spi-2.00.b", },
	{}
};
MODULE_DEVICE_TABLE(of, xilinx_spi_of_match);

343
static int xilinx_spi_probe(struct platform_device *dev)
344 345
{
	struct xilinx_spi *xspi;
346 347 348 349
	struct xspi_platform_data *pdata;
	struct resource *r;
	int ret, irq, num_cs = 0, bits_per_word = 8;
	struct spi_master *master;
350
	u32 tmp;
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	u8 i;

	pdata = dev->dev.platform_data;
	if (pdata) {
		num_cs = pdata->num_chipselect;
		bits_per_word = pdata->bits_per_word;
	}

#ifdef CONFIG_OF
	if (dev->dev.of_node) {
		const __be32 *prop;
		int len;

		/* number of slave select bits is required */
		prop = of_get_property(dev->dev.of_node, "xlnx,num-ss-bits",
				       &len);
		if (prop && len >= sizeof(*prop))
			num_cs = __be32_to_cpup(prop);
	}
#endif
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385
	if (!num_cs) {
		dev_err(&dev->dev, "Missing slave select configuration data\n");
		return -EINVAL;
	}

	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
	if (!r)
		return -ENODEV;

	irq = platform_get_irq(dev, 0);
	if (irq < 0)
		return -ENXIO;

	master = spi_alloc_master(&dev->dev, sizeof(struct xilinx_spi));
386
	if (!master)
387
		return -ENODEV;
388

389 390 391
	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA;

392 393 394 395 396 397 398
	xspi = spi_master_get_devdata(master);
	xspi->bitbang.master = spi_master_get(master);
	xspi->bitbang.chipselect = xilinx_spi_chipselect;
	xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
	xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
	init_completion(&xspi->done);

399
	xspi->regs = devm_ioremap_resource(&dev->dev, r);
400 401
	if (IS_ERR(xspi->regs)) {
		ret = PTR_ERR(xspi->regs);
402 403 404
		goto put_master;
	}

405
	master->bus_num = dev->dev.id;
406
	master->num_chipselect = num_cs;
407
	master->dev.of_node = dev->dev.of_node;
408

409
	xspi->mem = *r;
410
	xspi->irq = irq;
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

	/*
	 * Detect endianess on the IP via loop bit in CR. Detection
	 * must be done before reset is sent because incorrect reset
	 * value generates error interrupt.
	 * Setup little endian helper functions first and try to use them
	 * and check if bit was correctly setup or not.
	 */
	xspi->read_fn = xspi_read32;
	xspi->write_fn = xspi_write32;

	xspi->write_fn(XSPI_CR_LOOP, xspi->regs + XSPI_CR_OFFSET);
	tmp = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
	tmp &= XSPI_CR_LOOP;
	if (tmp != XSPI_CR_LOOP) {
426 427
		xspi->read_fn = xspi_read32_be;
		xspi->write_fn = xspi_write32_be;
428
	}
429

430
	xspi->bits_per_word = bits_per_word;
431 432 433 434 435 436 437 438 439
	if (xspi->bits_per_word == 8) {
		xspi->tx_fn = xspi_tx8;
		xspi->rx_fn = xspi_rx8;
	} else if (xspi->bits_per_word == 16) {
		xspi->tx_fn = xspi_tx16;
		xspi->rx_fn = xspi_rx16;
	} else if (xspi->bits_per_word == 32) {
		xspi->tx_fn = xspi_tx32;
		xspi->rx_fn = xspi_rx32;
440 441
	} else {
		ret = -EINVAL;
442
		goto put_master;
443
	}
444

445 446

	/* SPI controller initializations */
447
	xspi_init_hw(xspi);
448 449

	/* Register for SPI Interrupt */
450 451
	ret = request_irq(xspi->irq, xilinx_spi_irq, 0, XILINX_SPI_NAME, xspi);
	if (ret)
452
		goto put_master;
453

454 455
	ret = spi_bitbang_start(&xspi->bitbang);
	if (ret) {
456
		dev_err(&dev->dev, "spi_bitbang_start FAILED\n");
457 458 459
		goto free_irq;
	}

460 461 462 463 464 465 466 467 468 469
	dev_info(&dev->dev, "at 0x%08llX mapped to 0x%p, irq=%d\n",
		(unsigned long long)r->start, xspi->regs, xspi->irq);

	if (pdata) {
		for (i = 0; i < pdata->num_devices; i++)
			spi_new_device(master, pdata->devices + i);
	}

	platform_set_drvdata(dev, master);
	return 0;
470 471 472 473 474

free_irq:
	free_irq(xspi->irq, xspi);
put_master:
	spi_master_put(master);
475 476

	return ret;
477 478
}

479
static int xilinx_spi_remove(struct platform_device *dev)
480
{
481 482
	struct spi_master *master = platform_get_drvdata(dev);
	struct xilinx_spi *xspi = spi_master_get_devdata(master);
483 484 485

	spi_bitbang_stop(&xspi->bitbang);
	free_irq(xspi->irq, xspi);
486

487
	spi_master_put(xspi->bitbang.master);
488 489 490 491 492 493 494 495 496

	return 0;
}

/* work with hotplug and coldplug */
MODULE_ALIAS("platform:" XILINX_SPI_NAME);

static struct platform_driver xilinx_spi_driver = {
	.probe = xilinx_spi_probe,
497
	.remove = xilinx_spi_remove,
498 499 500
	.driver = {
		.name = XILINX_SPI_NAME,
		.owner = THIS_MODULE,
501
		.of_match_table = xilinx_spi_of_match,
502 503
	},
};
504
module_platform_driver(xilinx_spi_driver);
505

506 507 508
MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>");
MODULE_DESCRIPTION("Xilinx SPI driver");
MODULE_LICENSE("GPL");