spi-xilinx.c 14.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Xilinx SPI controller driver (master mode only)
 *
 * Author: MontaVista Software, Inc.
 *	source@mvista.com
 *
7 8 9 10 11 12 13
 * Copyright (c) 2010 Secret Lab Technologies, Ltd.
 * Copyright (c) 2009 Intel Corporation
 * 2002-2007 (c) MontaVista Software, Inc.

 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
14 15 16 17 18
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
19
#include <linux/of.h>
20
#include <linux/platform_device.h>
21 22
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
23
#include <linux/spi/xilinx_spi.h>
24
#include <linux/io.h>
25

26
#define XILINX_SPI_NAME "xilinx_spi"
27 28 29 30

/* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e)
 * Product Specification", DS464
 */
31
#define XSPI_CR_OFFSET		0x60	/* Control Register */
32 33 34 35 36 37 38 39 40 41

#define XSPI_CR_ENABLE		0x02
#define XSPI_CR_MASTER_MODE	0x04
#define XSPI_CR_CPOL		0x08
#define XSPI_CR_CPHA		0x10
#define XSPI_CR_MODE_MASK	(XSPI_CR_CPHA | XSPI_CR_CPOL)
#define XSPI_CR_TXFIFO_RESET	0x20
#define XSPI_CR_RXFIFO_RESET	0x40
#define XSPI_CR_MANUAL_SSELECT	0x80
#define XSPI_CR_TRANS_INHIBIT	0x100
42
#define XSPI_CR_LSB_FIRST	0x200
43

44
#define XSPI_SR_OFFSET		0x64	/* Status Register */
45 46 47 48 49 50 51

#define XSPI_SR_RX_EMPTY_MASK	0x01	/* Receive FIFO is empty */
#define XSPI_SR_RX_FULL_MASK	0x02	/* Receive FIFO is full */
#define XSPI_SR_TX_EMPTY_MASK	0x04	/* Transmit FIFO is empty */
#define XSPI_SR_TX_FULL_MASK	0x08	/* Transmit FIFO is full */
#define XSPI_SR_MODE_FAULT_MASK	0x10	/* Mode fault error */

52 53
#define XSPI_TXD_OFFSET		0x68	/* Data Transmit Register */
#define XSPI_RXD_OFFSET		0x6c	/* Data Receive Register */
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

#define XSPI_SSR_OFFSET		0x70	/* 32-bit Slave Select Register */

/* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414
 * IPIF registers are 32 bit
 */
#define XIPIF_V123B_DGIER_OFFSET	0x1c	/* IPIF global int enable reg */
#define XIPIF_V123B_GINTR_ENABLE	0x80000000

#define XIPIF_V123B_IISR_OFFSET		0x20	/* IPIF interrupt status reg */
#define XIPIF_V123B_IIER_OFFSET		0x28	/* IPIF interrupt enable reg */

#define XSPI_INTR_MODE_FAULT		0x01	/* Mode fault error */
#define XSPI_INTR_SLAVE_MODE_FAULT	0x02	/* Selected as slave while
						 * disabled */
#define XSPI_INTR_TX_EMPTY		0x04	/* TxFIFO is empty */
#define XSPI_INTR_TX_UNDERRUN		0x08	/* TxFIFO was underrun */
#define XSPI_INTR_RX_FULL		0x10	/* RxFIFO is full */
#define XSPI_INTR_RX_OVERRUN		0x20	/* RxFIFO was overrun */
73
#define XSPI_INTR_TX_HALF_EMPTY		0x40	/* TxFIFO is half empty */
74 75 76 77 78 79 80 81

#define XIPIF_V123B_RESETR_OFFSET	0x40	/* IPIF reset register */
#define XIPIF_V123B_RESET_MASK		0x0a	/* the value to write */

struct xilinx_spi {
	/* bitbang has to be first */
	struct spi_bitbang bitbang;
	struct completion done;
82
	struct resource mem; /* phys mem */
83 84 85 86 87 88 89
	void __iomem	*regs;	/* virt. address of the control registers */

	u32		irq;

	u8 *rx_ptr;		/* pointer in the Tx buffer */
	const u8 *tx_ptr;	/* pointer in the Rx buffer */
	int remaining_bytes;	/* the number of bytes left to transfer */
90
	u8 bits_per_word;
91 92
	unsigned int (*read_fn) (void __iomem *);
	void (*write_fn) (u32, void __iomem *);
93 94
	void (*tx_fn) (struct xilinx_spi *);
	void (*rx_fn) (struct xilinx_spi *);
95 96
};

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static void xspi_write32(u32 val, void __iomem *addr)
{
	iowrite32(val, addr);
}

static unsigned int xspi_read32(void __iomem *addr)
{
	return ioread32(addr);
}

static void xspi_write32_be(u32 val, void __iomem *addr)
{
	iowrite32be(val, addr);
}

static unsigned int xspi_read32_be(void __iomem *addr)
{
	return ioread32be(addr);
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static void xspi_tx8(struct xilinx_spi *xspi)
{
	xspi->write_fn(*xspi->tx_ptr, xspi->regs + XSPI_TXD_OFFSET);
	xspi->tx_ptr++;
}

static void xspi_tx16(struct xilinx_spi *xspi)
{
	xspi->write_fn(*(u16 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
	xspi->tx_ptr += 2;
}

static void xspi_tx32(struct xilinx_spi *xspi)
{
	xspi->write_fn(*(u32 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET);
	xspi->tx_ptr += 4;
}

static void xspi_rx8(struct xilinx_spi *xspi)
{
	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
	if (xspi->rx_ptr) {
		*xspi->rx_ptr = data & 0xff;
		xspi->rx_ptr++;
	}
}

static void xspi_rx16(struct xilinx_spi *xspi)
{
	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
	if (xspi->rx_ptr) {
		*(u16 *)(xspi->rx_ptr) = data & 0xffff;
		xspi->rx_ptr += 2;
	}
}

static void xspi_rx32(struct xilinx_spi *xspi)
{
	u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
	if (xspi->rx_ptr) {
		*(u32 *)(xspi->rx_ptr) = data;
		xspi->rx_ptr += 4;
	}
}

162
static void xspi_init_hw(struct xilinx_spi *xspi)
163
{
164 165
	void __iomem *regs_base = xspi->regs;

166
	/* Reset the SPI device */
167 168
	xspi->write_fn(XIPIF_V123B_RESET_MASK,
		regs_base + XIPIF_V123B_RESETR_OFFSET);
169
	/* Disable all the interrupts just in case */
170
	xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET);
171
	/* Enable the global IPIF interrupt */
172 173
	xspi->write_fn(XIPIF_V123B_GINTR_ENABLE,
		regs_base + XIPIF_V123B_DGIER_OFFSET);
174
	/* Deselect the slave on the SPI bus */
175
	xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET);
176 177
	/* Disable the transmitter, enable Manual Slave Select Assertion,
	 * put SPI controller into master mode, and enable it */
178
	xspi->write_fn(XSPI_CR_TRANS_INHIBIT | XSPI_CR_MANUAL_SSELECT |
179 180
		XSPI_CR_MASTER_MODE | XSPI_CR_ENABLE | XSPI_CR_TXFIFO_RESET |
		XSPI_CR_RXFIFO_RESET, regs_base + XSPI_CR_OFFSET);
181 182 183 184 185 186 187 188
}

static void xilinx_spi_chipselect(struct spi_device *spi, int is_on)
{
	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);

	if (is_on == BITBANG_CS_INACTIVE) {
		/* Deselect the slave on the SPI bus */
189
		xspi->write_fn(0xffff, xspi->regs + XSPI_SSR_OFFSET);
190 191
	} else if (is_on == BITBANG_CS_ACTIVE) {
		/* Set the SPI clock phase and polarity */
192
		u16 cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET)
193 194 195 196 197
			 & ~XSPI_CR_MODE_MASK;
		if (spi->mode & SPI_CPHA)
			cr |= XSPI_CR_CPHA;
		if (spi->mode & SPI_CPOL)
			cr |= XSPI_CR_CPOL;
198
		xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
199 200 201 202 203 204 205

		/* We do not check spi->max_speed_hz here as the SPI clock
		 * frequency is not software programmable (the IP block design
		 * parameter)
		 */

		/* Activate the chip select */
206 207
		xspi->write_fn(~(0x0001 << spi->chip_select),
			xspi->regs + XSPI_SSR_OFFSET);
208 209 210 211 212
	}
}

/* spi_bitbang requires custom setup_transfer() to be defined if there is a
 * custom txrx_bufs(). We have nothing to setup here as the SPI IP block
213 214 215
 * supports 8 or 16 bits per word which cannot be changed in software.
 * SPI clock can't be changed in software either.
 * Check for correct bits per word. Chip select delay calculations could be
216 217 218 219 220
 * added here as soon as bitbang_work() can be made aware of the delay value.
 */
static int xilinx_spi_setup_transfer(struct spi_device *spi,
		struct spi_transfer *t)
{
221
	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
222 223
	u8 bits_per_word;

224 225
	bits_per_word = (t && t->bits_per_word)
			 ? t->bits_per_word : spi->bits_per_word;
226
	if (bits_per_word != xspi->bits_per_word) {
227
		dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
228
			__func__, bits_per_word);
229 230 231 232 233 234 235 236
		return -EINVAL;
	}

	return 0;
}

static int xilinx_spi_setup(struct spi_device *spi)
{
237 238 239 240 241 242 243 244 245 246
	/* always return 0, we can not check the number of bits.
	 * There are cases when SPI setup is called before any driver is
	 * there, in that case the SPI core defaults to 8 bits, which we
	 * do not support in some cases. But if we return an error, the
	 * SPI device would not be registered and no driver can get hold of it
	 * When the driver is there, it will call SPI setup again with the
	 * correct number of bits per transfer.
	 * If a driver setups with the wrong bit number, it will fail when
	 * it tries to do a transfer
	 */
247 248 249 250 251 252 253 254
	return 0;
}

static void xilinx_spi_fill_tx_fifo(struct xilinx_spi *xspi)
{
	u8 sr;

	/* Fill the Tx FIFO with as many bytes as possible */
255
	sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
256
	while ((sr & XSPI_SR_TX_FULL_MASK) == 0 && xspi->remaining_bytes > 0) {
257
		if (xspi->tx_ptr)
258
			xspi->tx_fn(xspi);
259 260
		else
			xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
261
		xspi->remaining_bytes -= xspi->bits_per_word / 8;
262
		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	}
}

static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
{
	struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
	u32 ipif_ier;

	/* We get here with transmitter inhibited */

	xspi->tx_ptr = t->tx_buf;
	xspi->rx_ptr = t->rx_buf;
	xspi->remaining_bytes = t->len;
	INIT_COMPLETION(xspi->done);


	/* Enable the transmit empty interrupt, which we use to determine
	 * progress on the transmission.
	 */
282 283 284
	ipif_ier = xspi->read_fn(xspi->regs + XIPIF_V123B_IIER_OFFSET);
	xspi->write_fn(ipif_ier | XSPI_INTR_TX_EMPTY,
		xspi->regs + XIPIF_V123B_IIER_OFFSET);
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	for (;;) {
		u16 cr;
		u8 sr;

		xilinx_spi_fill_tx_fifo(xspi);

		/* Start the transfer by not inhibiting the transmitter any
		 * longer
		 */
		cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET) &
							~XSPI_CR_TRANS_INHIBIT;
		xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);

		wait_for_completion(&xspi->done);

		/* A transmit has just completed. Process received data and
		 * check for more data to transmit. Always inhibit the
		 * transmitter while the Isr refills the transmit register/FIFO,
		 * or make sure it is stopped if we're done.
		 */
		cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
		xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
			       xspi->regs + XSPI_CR_OFFSET);

		/* Read out all the data from the Rx FIFO */
		sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
		while ((sr & XSPI_SR_RX_EMPTY_MASK) == 0) {
			xspi->rx_fn(xspi);
			sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
		}
316

317 318 319 320
		/* See if there is more data to send */
		if (!xspi->remaining_bytes > 0)
			break;
	}
321 322

	/* Disable the transmit empty interrupt */
323
	xspi->write_fn(ipif_ier, xspi->regs + XIPIF_V123B_IIER_OFFSET);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

	return t->len - xspi->remaining_bytes;
}


/* This driver supports single master mode only. Hence Tx FIFO Empty
 * is the only interrupt we care about.
 * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode
 * Fault are not to happen.
 */
static irqreturn_t xilinx_spi_irq(int irq, void *dev_id)
{
	struct xilinx_spi *xspi = dev_id;
	u32 ipif_isr;

	/* Get the IPIF interrupts, and clear them immediately */
340 341
	ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
	xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET);
342 343

	if (ipif_isr & XSPI_INTR_TX_EMPTY) {	/* Transmission completed */
344
		complete(&xspi->done);
345 346 347 348 349
	}

	return IRQ_HANDLED;
}

350 351 352 353 354 355 356
static const struct of_device_id xilinx_spi_of_match[] = {
	{ .compatible = "xlnx,xps-spi-2.00.a", },
	{ .compatible = "xlnx,xps-spi-2.00.b", },
	{}
};
MODULE_DEVICE_TABLE(of, xilinx_spi_of_match);

357
struct spi_master *xilinx_spi_init(struct device *dev, struct resource *mem,
358
	u32 irq, s16 bus_num, int num_cs, int little_endian, int bits_per_word)
359 360 361
{
	struct spi_master *master;
	struct xilinx_spi *xspi;
362
	int ret;
363

364 365 366
	master = spi_alloc_master(dev, sizeof(struct xilinx_spi));
	if (!master)
		return NULL;
367

368 369 370
	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA;

371 372 373 374 375 376 377 378
	xspi = spi_master_get_devdata(master);
	xspi->bitbang.master = spi_master_get(master);
	xspi->bitbang.chipselect = xilinx_spi_chipselect;
	xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
	xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
	xspi->bitbang.master->setup = xilinx_spi_setup;
	init_completion(&xspi->done);

379 380
	if (!request_mem_region(mem->start, resource_size(mem),
		XILINX_SPI_NAME))
381 382
		goto put_master;

383
	xspi->regs = ioremap(mem->start, resource_size(mem));
384
	if (xspi->regs == NULL) {
385 386
		dev_warn(dev, "ioremap failure\n");
		goto map_failed;
387 388
	}

389
	master->bus_num = bus_num;
390
	master->num_chipselect = num_cs;
391
	master->dev.of_node = dev->of_node;
392

393 394
	xspi->mem = *mem;
	xspi->irq = irq;
395
	if (little_endian) {
396 397
		xspi->read_fn = xspi_read32;
		xspi->write_fn = xspi_write32;
398
	} else {
399 400
		xspi->read_fn = xspi_read32_be;
		xspi->write_fn = xspi_write32_be;
401
	}
402
	xspi->bits_per_word = bits_per_word;
403 404 405 406 407 408 409 410 411 412 413 414
	if (xspi->bits_per_word == 8) {
		xspi->tx_fn = xspi_tx8;
		xspi->rx_fn = xspi_rx8;
	} else if (xspi->bits_per_word == 16) {
		xspi->tx_fn = xspi_tx16;
		xspi->rx_fn = xspi_rx16;
	} else if (xspi->bits_per_word == 32) {
		xspi->tx_fn = xspi_tx32;
		xspi->rx_fn = xspi_rx32;
	} else
		goto unmap_io;

415 416

	/* SPI controller initializations */
417
	xspi_init_hw(xspi);
418 419

	/* Register for SPI Interrupt */
420 421
	ret = request_irq(xspi->irq, xilinx_spi_irq, 0, XILINX_SPI_NAME, xspi);
	if (ret)
422 423
		goto unmap_io;

424 425 426
	ret = spi_bitbang_start(&xspi->bitbang);
	if (ret) {
		dev_err(dev, "spi_bitbang_start FAILED\n");
427 428 429
		goto free_irq;
	}

430 431
	dev_info(dev, "at 0x%08llX mapped to 0x%p, irq=%d\n",
		(unsigned long long)mem->start, xspi->regs, xspi->irq);
432
	return master;
433 434 435 436 437

free_irq:
	free_irq(xspi->irq, xspi);
unmap_io:
	iounmap(xspi->regs);
438 439
map_failed:
	release_mem_region(mem->start, resource_size(mem));
440 441
put_master:
	spi_master_put(master);
442
	return NULL;
443
}
444
EXPORT_SYMBOL(xilinx_spi_init);
445

446
void xilinx_spi_deinit(struct spi_master *master)
447 448 449 450 451 452 453 454
{
	struct xilinx_spi *xspi;

	xspi = spi_master_get_devdata(master);

	spi_bitbang_stop(&xspi->bitbang);
	free_irq(xspi->irq, xspi);
	iounmap(xspi->regs);
455

456 457
	release_mem_region(xspi->mem.start, resource_size(&xspi->mem));
	spi_master_put(xspi->bitbang.master);
458
}
459
EXPORT_SYMBOL(xilinx_spi_deinit);
460

461
static int xilinx_spi_probe(struct platform_device *dev)
462 463 464
{
	struct xspi_platform_data *pdata;
	struct resource *r;
465
	int irq, num_cs = 0, little_endian = 0, bits_per_word = 8;
466 467 468
	struct spi_master *master;
	u8 i;

469
	pdata = dev->dev.platform_data;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	if (pdata) {
		num_cs = pdata->num_chipselect;
		little_endian = pdata->little_endian;
		bits_per_word = pdata->bits_per_word;
	}

#ifdef CONFIG_OF
	if (dev->dev.of_node) {
		const __be32 *prop;
		int len;

		/* number of slave select bits is required */
		prop = of_get_property(dev->dev.of_node, "xlnx,num-ss-bits",
				       &len);
		if (prop && len >= sizeof(*prop))
			num_cs = __be32_to_cpup(prop);
	}
#endif

	if (!num_cs) {
		dev_err(&dev->dev, "Missing slave select configuration data\n");
		return -EINVAL;
	}

494 495 496 497 498 499 500 501 502

	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
	if (!r)
		return -ENODEV;

	irq = platform_get_irq(dev, 0);
	if (irq < 0)
		return -ENXIO;

503 504
	master = xilinx_spi_init(&dev->dev, r, irq, dev->id, num_cs,
				 little_endian, bits_per_word);
505 506 507
	if (!master)
		return -ENODEV;

508 509 510 511
	if (pdata) {
		for (i = 0; i < pdata->num_devices; i++)
			spi_new_device(master, pdata->devices + i);
	}
512 513 514 515 516

	platform_set_drvdata(dev, master);
	return 0;
}

517
static int xilinx_spi_remove(struct platform_device *dev)
518 519 520 521 522 523 524 525 526 527 528 529
{
	xilinx_spi_deinit(platform_get_drvdata(dev));
	platform_set_drvdata(dev, 0);

	return 0;
}

/* work with hotplug and coldplug */
MODULE_ALIAS("platform:" XILINX_SPI_NAME);

static struct platform_driver xilinx_spi_driver = {
	.probe = xilinx_spi_probe,
530
	.remove = xilinx_spi_remove,
531 532 533
	.driver = {
		.name = XILINX_SPI_NAME,
		.owner = THIS_MODULE,
534
		.of_match_table = xilinx_spi_of_match,
535 536
	},
};
537
module_platform_driver(xilinx_spi_driver);
538

539 540 541
MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>");
MODULE_DESCRIPTION("Xilinx SPI driver");
MODULE_LICENSE("GPL");