slab_common.c 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)

#define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA | SLAB_NOTRACK)

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 * (Could be removed. This was introduced to pacify the merge skeptics.)
 */
static int slab_nomerge;

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = 1;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

61 62 63 64 65 66 67 68 69
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

70
#ifdef CONFIG_DEBUG_VM
71
static int kmem_cache_sanity_check(const char *name, size_t size)
72 73 74 75 76
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
77 78
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
79
	}
80

81 82 83 84 85 86 87 88 89 90 91
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
92
			pr_err("Slab cache with size %d has lost its name\n",
93 94 95 96 97 98
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 100 101
	return 0;
}
#else
102
static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 104 105
{
	return 0;
}
106 107
#endif

108
#ifdef CONFIG_MEMCG_KMEM
109
void slab_init_memcg_params(struct kmem_cache *s)
110
{
111
	s->memcg_params.is_root_cache = true;
112
	INIT_LIST_HEAD(&s->memcg_params.list);
113 114 115 116 117 118 119
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
120

121 122 123 124
	if (memcg) {
		s->memcg_params.is_root_cache = false;
		s->memcg_params.memcg = memcg;
		s->memcg_params.root_cache = root_cache;
125
		return 0;
126
	}
127

128
	slab_init_memcg_params(s);
129

130 131
	if (!memcg_nr_cache_ids)
		return 0;
132

133 134 135 136 137
	arr = kzalloc(sizeof(struct memcg_cache_array) +
		      memcg_nr_cache_ids * sizeof(void *),
		      GFP_KERNEL);
	if (!arr)
		return -ENOMEM;
138

139
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
140 141 142
	return 0;
}

143
static void destroy_memcg_params(struct kmem_cache *s)
144
{
145 146
	if (is_root_cache(s))
		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
147 148
}

149
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
150
{
151
	struct memcg_cache_array *old, *new;
152

153 154
	if (!is_root_cache(s))
		return 0;
155

156 157 158
	new = kzalloc(sizeof(struct memcg_cache_array) +
		      new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
159 160
		return -ENOMEM;

161 162 163 164 165
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
166

167 168 169
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		kfree_rcu(old, rcu);
170 171 172
	return 0;
}

173 174 175 176 177
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

178
	mutex_lock(&slab_mutex);
179
	list_for_each_entry(s, &slab_caches, list) {
180
		ret = update_memcg_params(s, num_memcgs);
181 182 183 184 185
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
186
			break;
187 188 189 190
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
191
#else
192 193
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
194 195 196 197
{
	return 0;
}

198
static inline void destroy_memcg_params(struct kmem_cache *s)
199 200 201
{
}
#endif /* CONFIG_MEMCG_KMEM */
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

242
	list_for_each_entry_reverse(s, &slab_caches, list) {
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

261 262 263 264
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

265 266 267 268 269
		return s;
	}
	return NULL;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static struct kmem_cache *
do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
		     unsigned long flags, void (*ctor)(void *),
		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

316
	err = init_memcg_params(s, memcg, root_cache);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
332
	destroy_memcg_params(s);
333
	kmem_cache_free(kmem_cache, s);
334 335
	goto out;
}
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
361
struct kmem_cache *
362 363
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
364
{
365 366
	struct kmem_cache *s;
	char *cache_name;
367
	int err;
368

369
	get_online_cpus();
370
	get_online_mems();
371
	memcg_get_cache_ids();
372

373
	mutex_lock(&slab_mutex);
374

375
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
376 377
	if (err) {
		s = NULL;	/* suppress uninit var warning */
378
		goto out_unlock;
A
Andrew Morton 已提交
379
	}
380

381 382 383 384 385 386 387
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
388

389 390
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
391
		goto out_unlock;
392

393 394 395 396 397
	cache_name = kstrdup(name, GFP_KERNEL);
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
398

399 400 401 402 403 404 405
	s = do_kmem_cache_create(cache_name, size, size,
				 calculate_alignment(flags, align, size),
				 flags, ctor, NULL, NULL);
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
		kfree(cache_name);
	}
406 407

out_unlock:
408
	mutex_unlock(&slab_mutex);
409

410
	memcg_put_cache_ids();
411
	put_online_mems();
412 413
	put_online_cpus();

414
	if (err) {
415 416 417 418 419 420 421 422 423 424
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}
		return NULL;
	}
425 426
	return s;
}
427
EXPORT_SYMBOL(kmem_cache_create);
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442
static int do_kmem_cache_shutdown(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	if (__kmem_cache_shutdown(s) != 0) {
		printk(KERN_ERR "kmem_cache_destroy %s: "
		       "Slab cache still has objects\n", s->name);
		dump_stack();
		return -EBUSY;
	}

	if (s->flags & SLAB_DESTROY_BY_RCU)
		*need_rcu_barrier = true;

#ifdef CONFIG_MEMCG_KMEM
443
	if (!is_root_cache(s))
444
		list_del(&s->memcg_params.list);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
#endif
	list_move(&s->list, release);
	return 0;
}

static void do_kmem_cache_release(struct list_head *release,
				  bool need_rcu_barrier)
{
	struct kmem_cache *s, *s2;

	if (need_rcu_barrier)
		rcu_barrier();

	list_for_each_entry_safe(s, s2, release, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_remove(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
}

467 468
#ifdef CONFIG_MEMCG_KMEM
/*
469
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
470 471 472 473 474 475 476
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
477 478
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
479
{
480
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
481
	struct cgroup_subsys_state *css = mem_cgroup_css(memcg);
482
	struct memcg_cache_array *arr;
483
	struct kmem_cache *s = NULL;
484
	char *cache_name;
485
	int idx;
486 487

	get_online_cpus();
488 489
	get_online_mems();

490 491
	mutex_lock(&slab_mutex);

492 493 494 495 496 497 498
	/*
	 * The memory cgroup could have been deactivated while the cache
	 * creation work was pending.
	 */
	if (!memcg_kmem_is_active(memcg))
		goto out_unlock;

499 500 501 502
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

503 504 505 506 507
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
508
	if (arr->entries[idx])
509 510
		goto out_unlock;

511
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
512
	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
513
			       css->id, memcg_name_buf);
514 515 516 517 518 519 520
	if (!cache_name)
		goto out_unlock;

	s = do_kmem_cache_create(cache_name, root_cache->object_size,
				 root_cache->size, root_cache->align,
				 root_cache->flags, root_cache->ctor,
				 memcg, root_cache);
521 522 523 524 525
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
526
	if (IS_ERR(s)) {
527
		kfree(cache_name);
528
		goto out_unlock;
529
	}
530

531 532
	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);

533 534 535 536 537 538
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
539
	arr->entries[idx] = s;
540

541 542
out_unlock:
	mutex_unlock(&slab_mutex);
543 544

	put_online_mems();
545
	put_online_cpus();
546
}
547

548 549 550 551
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
552
	struct kmem_cache *s, *c;
553 554 555

	idx = memcg_cache_id(memcg);

556 557 558
	get_online_cpus();
	get_online_mems();

559 560 561 562 563 564 565
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
566 567 568 569 570
		c = arr->entries[idx];
		if (!c)
			continue;

		__kmem_cache_shrink(c, true);
571 572 573
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
574 575 576

	put_online_mems();
	put_online_cpus();
577 578
}

579
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
580
{
581 582 583
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
	struct kmem_cache *s, *s2;
584

585 586
	get_online_cpus();
	get_online_mems();
587 588

	mutex_lock(&slab_mutex);
589
	list_for_each_entry_safe(s, s2, &slab_caches, list) {
590
		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
591 592 593 594 595 596 597 598
			continue;
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
		BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
	}
	mutex_unlock(&slab_mutex);
599

600 601 602 603
	put_online_mems();
	put_online_cpus();

	do_kmem_cache_release(&release, need_rcu_barrier);
604
}
605
#endif /* CONFIG_MEMCG_KMEM */
606

607 608
void slab_kmem_cache_release(struct kmem_cache *s)
{
609
	destroy_memcg_params(s);
610 611 612 613
	kfree(s->name);
	kmem_cache_free(kmem_cache, s);
}

614 615
void kmem_cache_destroy(struct kmem_cache *s)
{
616
	struct kmem_cache *c, *c2;
617 618 619 620
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
	bool busy = false;

621 622
	BUG_ON(!is_root_cache(s));

623
	get_online_cpus();
624 625
	get_online_mems();

626
	mutex_lock(&slab_mutex);
627

628
	s->refcount--;
629 630 631
	if (s->refcount)
		goto out_unlock;

632 633
	for_each_memcg_cache_safe(c, c2, s) {
		if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
634
			busy = true;
635
	}
636

637 638
	if (!busy)
		do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
639 640 641

out_unlock:
	mutex_unlock(&slab_mutex);
642

643
	put_online_mems();
644
	put_online_cpus();
645 646

	do_kmem_cache_release(&release, need_rcu_barrier);
647 648 649
}
EXPORT_SYMBOL(kmem_cache_destroy);

650 651 652 653 654 655 656 657 658 659 660 661 662
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
663
	ret = __kmem_cache_shrink(cachep, false);
664 665 666 667 668 669
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

670 671 672 673
int slab_is_available(void)
{
	return slab_state >= UP;
}
674

675 676 677 678 679 680 681 682 683
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
684
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
685 686 687

	slab_init_memcg_params(s);

688 689 690
	err = __kmem_cache_create(s, flags);

	if (err)
691
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

711 712 713 714 715 716 717 718
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

765
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
766
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
767
		return NULL;
768
	}
769

770 771 772 773 774 775 776 777 778
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
779
	if (unlikely((flags & GFP_DMA)))
780 781 782 783 784 785
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

786 787 788 789 790 791 792 793 794
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * MIPS it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
836 837
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i]) {
838 839
			kmalloc_caches[i] = create_kmalloc_cache(NULL,
							1 << i, flags);
840
		}
841

842 843 844 845 846 847 848
		/*
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
		 */
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
849

850 851
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
852 853
	}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	/* Kmalloc array is now usable */
	slab_state = UP;

	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];
		char *n;

		if (s) {
			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));

			BUG_ON(!n);
			s->name = n;
		}
	}

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
885 886
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
887 888 889 890 891
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
	page = alloc_kmem_pages(flags, order);
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

905 906 907 908 909 910 911 912 913
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
914

915
#ifdef CONFIG_SLABINFO
916 917 918 919 920 921 922

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

923
static void print_slabinfo_header(struct seq_file *m)
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

946
void *slab_start(struct seq_file *m, loff_t *pos)
947 948 949 950 951
{
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
}

952
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
953 954 955 956
{
	return seq_list_next(p, &slab_caches, pos);
}

957
void slab_stop(struct seq_file *m, void *p)
958 959 960 961
{
	mutex_unlock(&slab_mutex);
}

962 963 964 965 966 967 968 969 970
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

971
	for_each_memcg_cache(c, s) {
972 973 974 975 976 977 978 979 980 981 982
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

983
static void cache_show(struct kmem_cache *s, struct seq_file *m)
984
{
985 986 987 988 989
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

990 991
	memcg_accumulate_slabinfo(s, &sinfo);

992
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
993
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
994 995 996 997 998 999 1000 1001
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1002 1003
}

1004
static int slab_show(struct seq_file *m, void *p)
1005 1006 1007
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

1008 1009
	if (p == slab_caches.next)
		print_slabinfo_header(m);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	if (is_root_cache(s))
		cache_show(s, m);
	return 0;
}

#ifdef CONFIG_MEMCG_KMEM
int memcg_slab_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	if (p == slab_caches.next)
		print_slabinfo_header(m);
1023
	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1024 1025
		cache_show(s, m);
	return 0;
1026
}
1027
#endif
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1043
	.start = slab_start,
1044 1045
	.next = slab_next,
	.stop = slab_stop,
1046
	.show = slab_show,
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1064 1065
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1066 1067 1068 1069
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

	if (ks >= new_size)
		return (void *)p;

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);