cpufreq_schedutil.c 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * CPUFreq governor based on scheduler-provided CPU utilization data.
 *
 * Copyright (C) 2016, Intel Corporation
 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

14
#include <linux/cpufreq.h>
15
#include <linux/kthread.h>
16
#include <uapi/linux/sched/types.h>
17 18 19 20 21
#include <linux/slab.h>
#include <trace/events/power.h>

#include "sched.h"

22 23
#define SUGOV_KTHREAD_PRIORITY	50

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
struct sugov_tunables {
	struct gov_attr_set attr_set;
	unsigned int rate_limit_us;
};

struct sugov_policy {
	struct cpufreq_policy *policy;

	struct sugov_tunables *tunables;
	struct list_head tunables_hook;

	raw_spinlock_t update_lock;  /* For shared policies */
	u64 last_freq_update_time;
	s64 freq_update_delay_ns;
	unsigned int next_freq;
39
	unsigned int cached_raw_freq;
40 41 42

	/* The next fields are only needed if fast switch cannot be used. */
	struct irq_work irq_work;
43
	struct kthread_work work;
44
	struct mutex work_lock;
45 46
	struct kthread_worker worker;
	struct task_struct *thread;
47 48 49 50 51 52 53 54
	bool work_in_progress;

	bool need_freq_update;
};

struct sugov_cpu {
	struct update_util_data update_util;
	struct sugov_policy *sg_policy;
55
	unsigned int cpu;
56

57
	bool iowait_boost_pending;
58 59
	unsigned int iowait_boost;
	unsigned int iowait_boost_max;
60
	u64 last_update;
61

62 63 64
	/* The fields below are only needed when sharing a policy. */
	unsigned long util;
	unsigned long max;
65
	unsigned int flags;
66 67 68 69 70

	/* The field below is for single-CPU policies only. */
#ifdef CONFIG_NO_HZ_COMMON
	unsigned long saved_idle_calls;
#endif
71 72 73 74 75 76 77 78 79 80
};

static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);

/************************ Governor internals ***********************/

static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
{
	s64 delta_ns;

81 82 83 84 85 86
	/*
	 * Since cpufreq_update_util() is called with rq->lock held for
	 * the @target_cpu, our per-cpu data is fully serialized.
	 *
	 * However, drivers cannot in general deal with cross-cpu
	 * requests, so while get_next_freq() will work, our
87
	 * sugov_update_commit() call may not for the fast switching platforms.
88 89 90 91
	 *
	 * Hence stop here for remote requests if they aren't supported
	 * by the hardware, as calculating the frequency is pointless if
	 * we cannot in fact act on it.
92 93 94 95
	 *
	 * For the slow switching platforms, the kthread is always scheduled on
	 * the right set of CPUs and any CPU can find the next frequency and
	 * schedule the kthread.
96
	 */
97 98
	if (sg_policy->policy->fast_switch_enabled &&
	    !cpufreq_can_do_remote_dvfs(sg_policy->policy))
99 100
		return false;

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	if (sg_policy->work_in_progress)
		return false;

	if (unlikely(sg_policy->need_freq_update)) {
		sg_policy->need_freq_update = false;
		/*
		 * This happens when limits change, so forget the previous
		 * next_freq value and force an update.
		 */
		sg_policy->next_freq = UINT_MAX;
		return true;
	}

	delta_ns = time - sg_policy->last_freq_update_time;
	return delta_ns >= sg_policy->freq_update_delay_ns;
}

static void sugov_update_commit(struct sugov_policy *sg_policy, u64 time,
				unsigned int next_freq)
{
	struct cpufreq_policy *policy = sg_policy->policy;

123 124 125 126
	if (sg_policy->next_freq == next_freq)
		return;

	sg_policy->next_freq = next_freq;
127 128 129 130
	sg_policy->last_freq_update_time = time;

	if (policy->fast_switch_enabled) {
		next_freq = cpufreq_driver_fast_switch(policy, next_freq);
131
		if (!next_freq)
132 133 134 135
			return;

		policy->cur = next_freq;
		trace_cpu_frequency(next_freq, smp_processor_id());
136
	} else {
137 138 139 140 141 142 143
		sg_policy->work_in_progress = true;
		irq_work_queue(&sg_policy->irq_work);
	}
}

/**
 * get_next_freq - Compute a new frequency for a given cpufreq policy.
144
 * @sg_policy: schedutil policy object to compute the new frequency for.
145 146 147 148 149 150 151 152 153 154 155 156 157 158
 * @util: Current CPU utilization.
 * @max: CPU capacity.
 *
 * If the utilization is frequency-invariant, choose the new frequency to be
 * proportional to it, that is
 *
 * next_freq = C * max_freq * util / max
 *
 * Otherwise, approximate the would-be frequency-invariant utilization by
 * util_raw * (curr_freq / max_freq) which leads to
 *
 * next_freq = C * curr_freq * util_raw / max
 *
 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
159 160 161 162
 *
 * The lowest driver-supported frequency which is equal or greater than the raw
 * next_freq (as calculated above) is returned, subject to policy min/max and
 * cpufreq driver limitations.
163
 */
164 165
static unsigned int get_next_freq(struct sugov_policy *sg_policy,
				  unsigned long util, unsigned long max)
166
{
167
	struct cpufreq_policy *policy = sg_policy->policy;
168 169 170
	unsigned int freq = arch_scale_freq_invariant() ?
				policy->cpuinfo.max_freq : policy->cur;

171 172
	freq = (freq + (freq >> 2)) * util / max;

173
	if (freq == sg_policy->cached_raw_freq && sg_policy->next_freq != UINT_MAX)
174
		return sg_policy->next_freq;
175
	sg_policy->cached_raw_freq = freq;
176
	return cpufreq_driver_resolve_freq(policy, freq);
177 178
}

179
static void sugov_get_util(unsigned long *util, unsigned long *max, int cpu)
180
{
181
	struct rq *rq = cpu_rq(cpu);
182 183
	unsigned long cfs_max;

184
	cfs_max = arch_scale_cpu_capacity(NULL, cpu);
185 186 187 188 189

	*util = min(rq->cfs.avg.util_avg, cfs_max);
	*max = cfs_max;
}

190 191 192 193
static void sugov_set_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
				   unsigned int flags)
{
	if (flags & SCHED_CPUFREQ_IOWAIT) {
194 195 196 197 198 199 200 201 202 203 204 205
		if (sg_cpu->iowait_boost_pending)
			return;

		sg_cpu->iowait_boost_pending = true;

		if (sg_cpu->iowait_boost) {
			sg_cpu->iowait_boost <<= 1;
			if (sg_cpu->iowait_boost > sg_cpu->iowait_boost_max)
				sg_cpu->iowait_boost = sg_cpu->iowait_boost_max;
		} else {
			sg_cpu->iowait_boost = sg_cpu->sg_policy->policy->min;
		}
206 207 208 209
	} else if (sg_cpu->iowait_boost) {
		s64 delta_ns = time - sg_cpu->last_update;

		/* Clear iowait_boost if the CPU apprears to have been idle. */
210
		if (delta_ns > TICK_NSEC) {
211
			sg_cpu->iowait_boost = 0;
212 213
			sg_cpu->iowait_boost_pending = false;
		}
214 215 216 217 218 219
	}
}

static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, unsigned long *util,
			       unsigned long *max)
{
220
	unsigned int boost_util, boost_max;
221

222
	if (!sg_cpu->iowait_boost)
223 224
		return;

225 226 227 228 229 230 231 232 233 234 235 236 237
	if (sg_cpu->iowait_boost_pending) {
		sg_cpu->iowait_boost_pending = false;
	} else {
		sg_cpu->iowait_boost >>= 1;
		if (sg_cpu->iowait_boost < sg_cpu->sg_policy->policy->min) {
			sg_cpu->iowait_boost = 0;
			return;
		}
	}

	boost_util = sg_cpu->iowait_boost;
	boost_max = sg_cpu->iowait_boost_max;

238 239 240 241 242 243
	if (*util * boost_max < *max * boost_util) {
		*util = boost_util;
		*max = boost_max;
	}
}

244 245 246 247 248 249 250 251 252 253 254 255 256
#ifdef CONFIG_NO_HZ_COMMON
static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
{
	unsigned long idle_calls = tick_nohz_get_idle_calls();
	bool ret = idle_calls == sg_cpu->saved_idle_calls;

	sg_cpu->saved_idle_calls = idle_calls;
	return ret;
}
#else
static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
#endif /* CONFIG_NO_HZ_COMMON */

257
static void sugov_update_single(struct update_util_data *hook, u64 time,
258
				unsigned int flags)
259 260 261 262
{
	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
	struct cpufreq_policy *policy = sg_policy->policy;
263
	unsigned long util, max;
264
	unsigned int next_f;
265
	bool busy;
266

267 268 269
	sugov_set_iowait_boost(sg_cpu, time, flags);
	sg_cpu->last_update = time;

270 271 272
	if (!sugov_should_update_freq(sg_policy, time))
		return;

273 274
	busy = sugov_cpu_is_busy(sg_cpu);

275 276 277
	if (flags & SCHED_CPUFREQ_RT_DL) {
		next_f = policy->cpuinfo.max_freq;
	} else {
278
		sugov_get_util(&util, &max, sg_cpu->cpu);
279
		sugov_iowait_boost(sg_cpu, &util, &max);
280
		next_f = get_next_freq(sg_policy, util, max);
281 282 283 284 285 286
		/*
		 * Do not reduce the frequency if the CPU has not been idle
		 * recently, as the reduction is likely to be premature then.
		 */
		if (busy && next_f < sg_policy->next_freq)
			next_f = sg_policy->next_freq;
287
	}
288 289 290
	sugov_update_commit(sg_policy, time, next_f);
}

291
static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
292
{
293
	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
294
	struct cpufreq_policy *policy = sg_policy->policy;
295
	unsigned long util = 0, max = 1;
296 297 298
	unsigned int j;

	for_each_cpu(j, policy->cpus) {
299
		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
300 301 302 303 304 305 306 307
		unsigned long j_util, j_max;
		s64 delta_ns;

		/*
		 * If the CPU utilization was last updated before the previous
		 * frequency update and the time elapsed between the last update
		 * of the CPU utilization and the last frequency update is long
		 * enough, don't take the CPU into account as it probably is
308
		 * idle now (and clear iowait_boost for it).
309
		 */
310
		delta_ns = time - j_sg_cpu->last_update;
311 312
		if (delta_ns > TICK_NSEC) {
			j_sg_cpu->iowait_boost = 0;
313
			j_sg_cpu->iowait_boost_pending = false;
314
			continue;
315
		}
316
		if (j_sg_cpu->flags & SCHED_CPUFREQ_RT_DL)
317
			return policy->cpuinfo.max_freq;
318

319
		j_util = j_sg_cpu->util;
320 321 322 323 324
		j_max = j_sg_cpu->max;
		if (j_util * max > j_max * util) {
			util = j_util;
			max = j_max;
		}
325 326

		sugov_iowait_boost(j_sg_cpu, &util, &max);
327 328
	}

329
	return get_next_freq(sg_policy, util, max);
330 331 332
}

static void sugov_update_shared(struct update_util_data *hook, u64 time,
333
				unsigned int flags)
334 335 336
{
	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
337
	unsigned long util, max;
338 339
	unsigned int next_f;

340
	sugov_get_util(&util, &max, sg_cpu->cpu);
341

342 343 344 345
	raw_spin_lock(&sg_policy->update_lock);

	sg_cpu->util = util;
	sg_cpu->max = max;
346
	sg_cpu->flags = flags;
347 348

	sugov_set_iowait_boost(sg_cpu, time, flags);
349 350 351
	sg_cpu->last_update = time;

	if (sugov_should_update_freq(sg_policy, time)) {
352 353 354
		if (flags & SCHED_CPUFREQ_RT_DL)
			next_f = sg_policy->policy->cpuinfo.max_freq;
		else
355
			next_f = sugov_next_freq_shared(sg_cpu, time);
356

357 358 359 360 361 362
		sugov_update_commit(sg_policy, time, next_f);
	}

	raw_spin_unlock(&sg_policy->update_lock);
}

363
static void sugov_work(struct kthread_work *work)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
{
	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);

	mutex_lock(&sg_policy->work_lock);
	__cpufreq_driver_target(sg_policy->policy, sg_policy->next_freq,
				CPUFREQ_RELATION_L);
	mutex_unlock(&sg_policy->work_lock);

	sg_policy->work_in_progress = false;
}

static void sugov_irq_work(struct irq_work *irq_work)
{
	struct sugov_policy *sg_policy;

	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
380 381

	/*
382 383 384
	 * For RT and deadline tasks, the schedutil governor shoots the
	 * frequency to maximum. Special care must be taken to ensure that this
	 * kthread doesn't result in the same behavior.
385 386
	 *
	 * This is (mostly) guaranteed by the work_in_progress flag. The flag is
387 388
	 * updated only at the end of the sugov_work() function and before that
	 * the schedutil governor rejects all other frequency scaling requests.
389
	 *
390
	 * There is a very rare case though, where the RT thread yields right
391 392 393 394
	 * after the work_in_progress flag is cleared. The effects of that are
	 * neglected for now.
	 */
	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
}

/************************** sysfs interface ************************/

static struct sugov_tunables *global_tunables;
static DEFINE_MUTEX(global_tunables_lock);

static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
{
	return container_of(attr_set, struct sugov_tunables, attr_set);
}

static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);

	return sprintf(buf, "%u\n", tunables->rate_limit_us);
}

static ssize_t rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf,
				   size_t count)
{
	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
	struct sugov_policy *sg_policy;
	unsigned int rate_limit_us;

	if (kstrtouint(buf, 10, &rate_limit_us))
		return -EINVAL;

	tunables->rate_limit_us = rate_limit_us;

	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;

	return count;
}

static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);

static struct attribute *sugov_attributes[] = {
	&rate_limit_us.attr,
	NULL
};

static struct kobj_type sugov_tunables_ktype = {
	.default_attrs = sugov_attributes,
	.sysfs_ops = &governor_sysfs_ops,
};

/********************** cpufreq governor interface *********************/

static struct cpufreq_governor schedutil_gov;

static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
{
	struct sugov_policy *sg_policy;

	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
	if (!sg_policy)
		return NULL;

	sg_policy->policy = policy;
	raw_spin_lock_init(&sg_policy->update_lock);
	return sg_policy;
}

static void sugov_policy_free(struct sugov_policy *sg_policy)
{
	kfree(sg_policy);
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static int sugov_kthread_create(struct sugov_policy *sg_policy)
{
	struct task_struct *thread;
	struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO / 2 };
	struct cpufreq_policy *policy = sg_policy->policy;
	int ret;

	/* kthread only required for slow path */
	if (policy->fast_switch_enabled)
		return 0;

	kthread_init_work(&sg_policy->work, sugov_work);
	kthread_init_worker(&sg_policy->worker);
	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
				"sugov:%d",
				cpumask_first(policy->related_cpus));
	if (IS_ERR(thread)) {
		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
		return PTR_ERR(thread);
	}

	ret = sched_setscheduler_nocheck(thread, SCHED_FIFO, &param);
	if (ret) {
		kthread_stop(thread);
		pr_warn("%s: failed to set SCHED_FIFO\n", __func__);
		return ret;
	}

	sg_policy->thread = thread;
495 496 497 498 499

	/* Kthread is bound to all CPUs by default */
	if (!policy->dvfs_possible_from_any_cpu)
		kthread_bind_mask(thread, policy->related_cpus);

500 501 502
	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
	mutex_init(&sg_policy->work_lock);

503 504 505 506 507 508 509 510 511 512 513 514 515
	wake_up_process(thread);

	return 0;
}

static void sugov_kthread_stop(struct sugov_policy *sg_policy)
{
	/* kthread only required for slow path */
	if (sg_policy->policy->fast_switch_enabled)
		return;

	kthread_flush_worker(&sg_policy->worker);
	kthread_stop(sg_policy->thread);
516
	mutex_destroy(&sg_policy->work_lock);
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
{
	struct sugov_tunables *tunables;

	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
	if (tunables) {
		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
		if (!have_governor_per_policy())
			global_tunables = tunables;
	}
	return tunables;
}

static void sugov_tunables_free(struct sugov_tunables *tunables)
{
	if (!have_governor_per_policy())
		global_tunables = NULL;

	kfree(tunables);
}

static int sugov_init(struct cpufreq_policy *policy)
{
	struct sugov_policy *sg_policy;
	struct sugov_tunables *tunables;
	int ret = 0;

	/* State should be equivalent to EXIT */
	if (policy->governor_data)
		return -EBUSY;

550 551
	cpufreq_enable_fast_switch(policy);

552
	sg_policy = sugov_policy_alloc(policy);
553 554 555 556
	if (!sg_policy) {
		ret = -ENOMEM;
		goto disable_fast_switch;
	}
557

558 559 560 561
	ret = sugov_kthread_create(sg_policy);
	if (ret)
		goto free_sg_policy;

562 563 564 565 566
	mutex_lock(&global_tunables_lock);

	if (global_tunables) {
		if (WARN_ON(have_governor_per_policy())) {
			ret = -EINVAL;
567
			goto stop_kthread;
568 569 570 571 572 573 574 575 576 577 578
		}
		policy->governor_data = sg_policy;
		sg_policy->tunables = global_tunables;

		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
		goto out;
	}

	tunables = sugov_tunables_alloc(sg_policy);
	if (!tunables) {
		ret = -ENOMEM;
579
		goto stop_kthread;
580 581
	}

582
	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
583 584 585 586 587 588 589 590 591 592

	policy->governor_data = sg_policy;
	sg_policy->tunables = tunables;

	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
				   get_governor_parent_kobj(policy), "%s",
				   schedutil_gov.name);
	if (ret)
		goto fail;

593
out:
594 595 596
	mutex_unlock(&global_tunables_lock);
	return 0;

597
fail:
598 599 600
	policy->governor_data = NULL;
	sugov_tunables_free(tunables);

601 602 603
stop_kthread:
	sugov_kthread_stop(sg_policy);

604
free_sg_policy:
605 606 607
	mutex_unlock(&global_tunables_lock);

	sugov_policy_free(sg_policy);
608 609 610 611

disable_fast_switch:
	cpufreq_disable_fast_switch(policy);

612
	pr_err("initialization failed (error %d)\n", ret);
613 614 615
	return ret;
}

616
static void sugov_exit(struct cpufreq_policy *policy)
617 618 619 620 621 622 623 624 625 626 627 628 629 630
{
	struct sugov_policy *sg_policy = policy->governor_data;
	struct sugov_tunables *tunables = sg_policy->tunables;
	unsigned int count;

	mutex_lock(&global_tunables_lock);

	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
	policy->governor_data = NULL;
	if (!count)
		sugov_tunables_free(tunables);

	mutex_unlock(&global_tunables_lock);

631
	sugov_kthread_stop(sg_policy);
632
	sugov_policy_free(sg_policy);
633
	cpufreq_disable_fast_switch(policy);
634 635 636 637 638 639 640 641 642 643 644 645
}

static int sugov_start(struct cpufreq_policy *policy)
{
	struct sugov_policy *sg_policy = policy->governor_data;
	unsigned int cpu;

	sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
	sg_policy->last_freq_update_time = 0;
	sg_policy->next_freq = UINT_MAX;
	sg_policy->work_in_progress = false;
	sg_policy->need_freq_update = false;
646
	sg_policy->cached_raw_freq = 0;
647 648 649 650

	for_each_cpu(cpu, policy->cpus) {
		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);

651
		memset(sg_cpu, 0, sizeof(*sg_cpu));
652
		sg_cpu->cpu = cpu;
653
		sg_cpu->sg_policy = sg_policy;
654 655
		sg_cpu->flags = SCHED_CPUFREQ_RT;
		sg_cpu->iowait_boost_max = policy->cpuinfo.max_freq;
656 657 658 659 660
	}

	for_each_cpu(cpu, policy->cpus) {
		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);

661 662 663 664
		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
					     policy_is_shared(policy) ?
							sugov_update_shared :
							sugov_update_single);
665 666 667 668
	}
	return 0;
}

669
static void sugov_stop(struct cpufreq_policy *policy)
670 671 672 673 674 675 676 677 678
{
	struct sugov_policy *sg_policy = policy->governor_data;
	unsigned int cpu;

	for_each_cpu(cpu, policy->cpus)
		cpufreq_remove_update_util_hook(cpu);

	synchronize_sched();

679 680 681 682
	if (!policy->fast_switch_enabled) {
		irq_work_sync(&sg_policy->irq_work);
		kthread_cancel_work_sync(&sg_policy->work);
	}
683 684
}

685
static void sugov_limits(struct cpufreq_policy *policy)
686 687 688 689 690
{
	struct sugov_policy *sg_policy = policy->governor_data;

	if (!policy->fast_switch_enabled) {
		mutex_lock(&sg_policy->work_lock);
691
		cpufreq_policy_apply_limits(policy);
692 693 694 695 696 697 698 699 700
		mutex_unlock(&sg_policy->work_lock);
	}

	sg_policy->need_freq_update = true;
}

static struct cpufreq_governor schedutil_gov = {
	.name = "schedutil",
	.owner = THIS_MODULE,
701
	.dynamic_switching = true,
702 703 704 705 706
	.init = sugov_init,
	.exit = sugov_exit,
	.start = sugov_start,
	.stop = sugov_stop,
	.limits = sugov_limits,
707 708 709 710 711 712 713 714
};

#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
struct cpufreq_governor *cpufreq_default_governor(void)
{
	return &schedutil_gov;
}
#endif
715 716 717 718 719 720

static int __init sugov_register(void)
{
	return cpufreq_register_governor(&schedutil_gov);
}
fs_initcall(sugov_register);