cpuset.c 68.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
L
Linus Torvalds 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
35
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
42
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
43 44
#include <linux/sched.h>
#include <linux/seq_file.h>
45
#include <linux/security.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
56
#include <linux/mutex.h>
P
Paul Jackson 已提交
57
#include <linux/kfifo.h>
58 59
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
60

61 62 63 64 65
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
66
int number_of_cpusets __read_mostly;
67

68
/* Forward declare cgroup structures */
69 70 71
struct cgroup_subsys cpuset_subsys;
struct cpuset;

72 73 74 75 76 77 78 79 80
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
81
struct cpuset {
82 83
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
94 95 96
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
97 98 99

	/* partition number for rebuild_sched_domains() */
	int pn;
100

101 102 103
	/* for custom sched domain */
	int relax_domain_level;

104 105
	/* used for walking a cpuset heirarchy */
	struct list_head stack_list;
L
Linus Torvalds 已提交
106 107
};

108 109 110 111 112 113 114 115 116 117 118 119 120
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}
121 122 123 124
struct cpuset_hotplug_scanner {
	struct cgroup_scanner scan;
	struct cgroup *to;
};
125

L
Linus Torvalds 已提交
126 127 128 129
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
130
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
131
	CS_SCHED_LOAD_BALANCE,
132 133
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
134 135 136 137 138
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
139
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
140 141 142 143
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
144
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
145 146
}

P
Paul Jackson 已提交
147 148 149 150 151
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

152 153
static inline int is_memory_migrate(const struct cpuset *cs)
{
154
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
155 156
}

157 158 159 160 161 162 163 164 165 166
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
167
/*
168
 * Increment this integer everytime any cpuset changes its
L
Linus Torvalds 已提交
169 170 171 172
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
173
 * A single, global generation is needed because cpuset_attach_task() could
L
Linus Torvalds 已提交
174 175 176 177
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
178
 * modify another's memory placement.  So we must enable every task,
L
Linus Torvalds 已提交
179 180 181
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
182
 *
183
 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
184
 * there is no need to mark it atomic.
L
Linus Torvalds 已提交
185
 */
186
static int cpuset_mems_generation;
L
Linus Torvalds 已提交
187 188 189 190 191 192 193 194

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
};

/*
195 196 197 198 199 200 201
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
202
 *
203
 * A task must hold both mutexes to modify cpusets.  If a task
204
 * holds cgroup_mutex, then it blocks others wanting that mutex,
205
 * ensuring that it is the only task able to also acquire callback_mutex
206 207
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
208
 * also allocate memory while just holding cgroup_mutex.  While it is
209
 * performing these checks, various callback routines can briefly
210 211
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
212 213
 *
 * Calls to the kernel memory allocator can not be made while holding
214
 * callback_mutex, as that would risk double tripping on callback_mutex
215 216 217
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
218
 * If a task is only holding callback_mutex, then it has read-only
219 220 221 222 223 224
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * The cpuset_common_file_write handler for operations that modify
225
 * the cpuset hierarchy holds cgroup_mutex across the entire operation,
226 227
 * single threading all such cpuset modifications across the system.
 *
228
 * The cpuset_common_file_read() handlers only hold callback_mutex across
229 230 231
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
232 233
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
234 235
 */

236
static DEFINE_MUTEX(callback_mutex);
237

238 239 240
/* This is ugly, but preserves the userspace API for existing cpuset
 * users. If someone tries to mount the "cpuset" filesystem, we
 * silently switch it to mount "cgroup" instead */
241 242 243
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
L
Linus Torvalds 已提交
244
{
245 246 247 248 249 250 251 252 253 254 255
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
274
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
290 291 292 293
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
294 295
 *
 * One way or another, we guarantee to return some non-empty subset
296
 * of node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
297
 *
298
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
299 300 301 302
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
303 304
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
305 306
		cs = cs->parent;
	if (cs)
307 308
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
L
Linus Torvalds 已提交
309
	else
310 311
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
L
Linus Torvalds 已提交
312 313
}

314 315 316 317 318 319
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
320
 *
321 322 323 324
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
325
 * Call without callback_mutex or task_lock() held.  May be
326 327
 * called with or without cgroup_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the task's cpuset pointer will never
D
David Rientjes 已提交
328 329
 * be NULL.  This routine also might acquire callback_mutex during
 * call.
330
 *
331 332
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
333
 * from concurrent freeing of current->cpuset using RCU.
334 335 336 337 338 339 340 341 342 343 344 345 346 347
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
348 349 350 351 352
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
L
Linus Torvalds 已提交
353 354
 */

355
void cpuset_update_task_memory_state(void)
L
Linus Torvalds 已提交
356
{
357
	int my_cpusets_mem_gen;
358
	struct task_struct *tsk = current;
359
	struct cpuset *cs;
360

361
	if (task_cs(tsk) == &top_cpuset) {
362 363 364 365
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
366
		my_cpusets_mem_gen = task_cs(current)->mems_generation;
367 368
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
369

370
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
371
		mutex_lock(&callback_mutex);
372
		task_lock(tsk);
373
		cs = task_cs(tsk); /* Maybe changed when task not locked */
374 375
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
376 377 378 379 380 381 382 383
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
384
		task_unlock(tsk);
385
		mutex_unlock(&callback_mutex);
386
		mpol_rebind_task(tsk, &tsk->mems_allowed);
L
Linus Torvalds 已提交
387 388 389 390 391 392 393 394
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
395
 * are only set if the other's are set.  Call holding cgroup_mutex.
L
Linus Torvalds 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
413
 * cgroup_mutex held.
L
Linus Torvalds 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
428
	struct cgroup *cont;
L
Linus Torvalds 已提交
429 430 431
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
432 433
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
L
Linus Torvalds 已提交
434 435 436 437
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
438
	if (cur == &top_cpuset)
L
Linus Torvalds 已提交
439 440
		return 0;

441 442
	par = cur->parent;

L
Linus Torvalds 已提交
443 444 445 446
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

447 448 449 450
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
451 452
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460 461 462
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

463 464 465 466 467 468 469 470
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
		if (cpus_empty(trial->cpus_allowed) ||
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

L
Linus Torvalds 已提交
471 472 473
	return 0;
}

P
Paul Jackson 已提交
474 475 476 477 478 479 480 481 482 483
/*
 * Helper routine for rebuild_sched_domains().
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */

static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
	return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
}

484 485 486 487 488 489 490 491 492 493
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (!dattr)
		return;
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

P
Paul Jackson 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * rebuild_sched_domains()
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * This routine builds a partial partition of the systems CPUs
 * (the set of non-overlappping cpumask_t's in the array 'part'
 * below), and passes that partial partition to the kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the
 * schedulers load balancing domains (sched domains) as specified
 * by that partial partition.  A 'partial partition' is a set of
 * non-overlapping subsets whose union is a subset of that set.
 *
 * See "What is sched_load_balance" in Documentation/cpusets.txt
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during
 * call due to the kfifo_alloc() and kmalloc() calls.  May nest
521
 * a call to the get_online_cpus()/put_online_cpus() pair.
P
Paul Jackson 已提交
522
 * Must not be called holding callback_mutex, because we must not
523 524
 * call get_online_cpus() while holding callback_mutex.  Elsewhere
 * the kernel nests callback_mutex inside get_online_cpus() calls.
P
Paul Jackson 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
 * So the reverse nesting would risk an ABBA deadlock.
 *
 * The three key local variables below are:
 *    q  - a kfifo queue of cpuset pointers, used to implement a
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */

static void rebuild_sched_domains(void)
{
	struct kfifo *q;	/* queue of cpusets to be scanned */
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
	cpumask_t *doms;	/* resulting partition; i.e. sched domains */
569
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
P
Paul Jackson 已提交
570 571 572 573 574 575
	int ndoms;		/* number of sched domains in result */
	int nslot;		/* next empty doms[] cpumask_t slot */

	q = NULL;
	csa = NULL;
	doms = NULL;
576
	dattr = NULL;
P
Paul Jackson 已提交
577 578 579 580 581 582 583

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
		ndoms = 1;
		doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
		if (!doms)
			goto rebuild;
584 585 586 587 588
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
			update_domain_attr(dattr, &top_cpuset);
		}
P
Paul Jackson 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		*doms = top_cpuset.cpus_allowed;
		goto rebuild;
	}

	q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
	if (IS_ERR(q))
		goto done;
	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

	cp = &top_cpuset;
	__kfifo_put(q, (void *)&cp, sizeof(cp));
	while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			__kfifo_put(q, (void *)&child, sizeof(cp));
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

	/* Convert <csn, csa> to <ndoms, doms> */
	doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
	if (!doms)
		goto rebuild;
645
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		if (apn >= 0) {
			cpumask_t *dp = doms + nslot;

			if (nslot == ndoms) {
				static int warnings = 10;
				if (warnings) {
					printk(KERN_WARNING
					 "rebuild_sched_domains confused:"
					  " nslot %d, ndoms %d, csn %d, i %d,"
					  " apn %d\n",
					  nslot, ndoms, csn, i, apn);
					warnings--;
				}
				continue;
			}

			cpus_clear(*dp);
668 669
			if (dattr)
				*(dattr + nslot) = SD_ATTR_INIT;
P
Paul Jackson 已提交
670 671 672 673 674 675
			for (j = i; j < csn; j++) {
				struct cpuset *b = csa[j];

				if (apn == b->pn) {
					cpus_or(*dp, *dp, b->cpus_allowed);
					b->pn = -1;
676
					update_domain_attr(dattr, b);
P
Paul Jackson 已提交
677 678 679 680 681 682 683 684 685
				}
			}
			nslot++;
		}
	}
	BUG_ON(nslot != ndoms);

rebuild:
	/* Have scheduler rebuild sched domains */
686
	get_online_cpus();
687
	partition_sched_domains(ndoms, doms, dattr);
688
	put_online_cpus();
P
Paul Jackson 已提交
689 690 691 692 693 694

done:
	if (q && !IS_ERR(q))
		kfifo_free(q);
	kfree(csa);
	/* Don't kfree(doms) -- partition_sched_domains() does that. */
695
	/* Don't kfree(dattr) -- partition_sched_domains() does that. */
P
Paul Jackson 已提交
696 697
}

P
Paul Menage 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively)
		 * simultaneously.
		 */
		return t1 > t2;
	}
}

static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

C
Cliff Wickman 已提交
728 729 730 731 732
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
733
 * Call with cgroup_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
734 735 736
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
737
 */
C
Cliff Wickman 已提交
738 739 740 741 742
int cpuset_test_cpumask(struct task_struct *tsk, struct cgroup_scanner *scan)
{
	return !cpus_equal(tsk->cpus_allowed,
			(cgroup_cs(scan->cg))->cpus_allowed);
}
743

C
Cliff Wickman 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
void cpuset_change_cpumask(struct task_struct *tsk, struct cgroup_scanner *scan)
{
757
	set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
C
Cliff Wickman 已提交
758 759 760 761 762 763 764
}

/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
L
Linus Torvalds 已提交
765 766 767
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
C
Cliff Wickman 已提交
768
	struct cgroup_scanner scan;
P
Paul Menage 已提交
769
	struct ptr_heap heap;
C
Cliff Wickman 已提交
770 771
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
772

773 774 775 776
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

L
Linus Torvalds 已提交
777
	trialcs = *cs;
778 779

	/*
780
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
781 782 783
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
784
	 */
785 786
	buf = strstrip(buf);
	if (!*buf) {
787 788 789 790 791 792
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
	}
L
Linus Torvalds 已提交
793 794
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
	retval = validate_change(cs, &trialcs);
795 796
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
797

P
Paul Menage 已提交
798 799 800
	/* Nothing to do if the cpus didn't change */
	if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
		return 0;
C
Cliff Wickman 已提交
801

P
Paul Menage 已提交
802 803 804 805
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
	if (retval)
		return retval;

P
Paul Jackson 已提交
806 807
	is_load_balanced = is_sched_load_balance(&trialcs);

808
	mutex_lock(&callback_mutex);
809
	cs->cpus_allowed = trialcs.cpus_allowed;
810
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
811

P
Paul Menage 已提交
812 813
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
814
	 * that need an update.
P
Paul Menage 已提交
815
	 */
C
Cliff Wickman 已提交
816 817 818 819 820
	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
	scan.heap = &heap;
	cgroup_scan_tasks(&scan);
P
Paul Menage 已提交
821
	heap_free(&heap);
C
Cliff Wickman 已提交
822

P
Paul Menage 已提交
823
	if (is_load_balanced)
P
Paul Jackson 已提交
824
		rebuild_sched_domains();
825
	return 0;
L
Linus Torvalds 已提交
826 827
}

828 829 830 831 832 833 834 835
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
836
 *    Call holding cgroup_mutex, so current's cpuset won't change
837
 *    during this call, as manage_mutex holds off any cpuset_attach()
838 839
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
840
 *    our task's cpuset.
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
873
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
874 875 876
	mutex_unlock(&callback_mutex);
}

877
/*
878 879 880
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
881 882 883
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
884
 *
885
 * Call with cgroup_mutex held.  May take callback_mutex during call.
886 887 888
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
889 890
 */

891 892
static void *cpuset_being_rebound;

L
Linus Torvalds 已提交
893 894 895
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
896
	nodemask_t oldmem;
897
	struct task_struct *p;
898 899
	struct mm_struct **mmarray;
	int i, n, ntasks;
900
	int migrate;
901
	int fudge;
L
Linus Torvalds 已提交
902
	int retval;
903
	struct cgroup_iter it;
L
Linus Torvalds 已提交
904

905 906 907 908
	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
909 910 911
	if (cs == &top_cpuset)
		return -EACCES;

L
Linus Torvalds 已提交
912
	trialcs = *cs;
913 914

	/*
915 916 917 918
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
919
	 */
920 921
	buf = strstrip(buf);
	if (!*buf) {
922 923 924 925 926 927
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;
	}
928 929
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
						node_states[N_HIGH_MEMORY]);
930 931 932 933 934
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
935 936 937 938
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

939
	mutex_lock(&callback_mutex);
940
	cs->mems_allowed = trialcs.mems_allowed;
941
	cs->mems_generation = cpuset_mems_generation++;
942
	mutex_unlock(&callback_mutex);
943

944
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
945 946 947 948 949 950 951 952 953 954 955 956 957

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
958
		ntasks = cgroup_task_count(cs->css.cgroup);  /* guess */
959 960 961 962
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
963
		read_lock(&tasklist_lock);		/* block fork */
964
		if (cgroup_task_count(cs->css.cgroup) <= ntasks)
965
			break;				/* got enough */
966
		read_unlock(&tasklist_lock);		/* try again */
967 968 969 970 971 972
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
973 974
	cgroup_iter_start(cs->css.cgroup, &it);
	while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
975 976 977 978 979
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
980
			break;
981 982 983 984 985
		}
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
986 987
	}
	cgroup_iter_end(cs->css.cgroup, &it);
988
	read_unlock(&tasklist_lock);
989 990 991 992 993 994

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
995
	 * tasklist_lock.  Forks can happen again now - the mpol_dup()
996 997
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
998
	 * cgroup_mutex, we know that no other rebind effort will
999 1000
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1001
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1002
	 */
1003
	migrate = is_memory_migrate(cs);
1004 1005 1006 1007
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
1008 1009
		if (migrate)
			cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
1010 1011 1012
		mmput(mm);
	}

1013
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1014
	kfree(mmarray);
1015
	cpuset_being_rebound = NULL;
1016
	retval = 0;
1017
done:
L
Linus Torvalds 已提交
1018 1019 1020
	return retval;
}

1021 1022 1023 1024 1025
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1026
/*
1027
 * Call with cgroup_mutex held.
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static int update_relax_domain_level(struct cpuset *cs, char *buf)
{
	int val = simple_strtol(buf, NULL, 10);

	if (val < 0)
		val = -1;

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
		rebuild_sched_domains();
	}

	return 0;
}

L
Linus Torvalds 已提交
1054 1055 1056
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
P
Paul Jackson 已提交
1057
 *				CS_SCHED_LOAD_BALANCE,
1058 1059
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
L
Linus Torvalds 已提交
1060 1061
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
1062
 *
1063
 * Call with cgroup_mutex held.
L
Linus Torvalds 已提交
1064 1065 1066 1067 1068 1069
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
1070
	int err;
P
Paul Jackson 已提交
1071
	int cpus_nonempty, balance_flag_changed;
L
Linus Torvalds 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1082 1083
	if (err < 0)
		return err;
P
Paul Jackson 已提交
1084 1085 1086 1087 1088

	cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
	balance_flag_changed = (is_sched_load_balance(cs) !=
		 			is_sched_load_balance(&trialcs));

1089
	mutex_lock(&callback_mutex);
1090
	cs->flags = trialcs.flags;
1091
	mutex_unlock(&callback_mutex);
1092

P
Paul Jackson 已提交
1093 1094 1095
	if (cpus_nonempty && balance_flag_changed)
		rebuild_sched_domains();

1096
	return 0;
L
Linus Torvalds 已提交
1097 1098
}

1099
/*
A
Adrian Bunk 已提交
1100
 * Frequency meter - How fast is some event occurring?
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1197
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1198 1199
static int cpuset_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
L
Linus Torvalds 已提交
1200
{
1201
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1202 1203 1204 1205

	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

1206 1207
	return security_task_setscheduler(tsk, 0, NULL);
}
L
Linus Torvalds 已提交
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217
static void cpuset_attach(struct cgroup_subsys *ss,
			  struct cgroup *cont, struct cgroup *oldcont,
			  struct task_struct *tsk)
{
	cpumask_t cpus;
	nodemask_t from, to;
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1218

1219
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1220
	guarantee_online_cpus(cs, &cpus);
1221
	set_cpus_allowed_ptr(tsk, &cpus);
1222
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1223

1224 1225
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;
1226 1227 1228
	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1229
		if (is_memory_migrate(cs))
1230
			cpuset_migrate_mm(mm, &from, &to);
1231 1232 1233
		mmput(mm);
	}

L
Linus Torvalds 已提交
1234 1235 1236 1237 1238
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1239
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1240 1241 1242 1243
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
P
Paul Jackson 已提交
1244
	FILE_SCHED_LOAD_BALANCE,
1245
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1246 1247
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1248 1249
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1250 1251
} cpuset_filetype_t;

1252 1253 1254
static ssize_t cpuset_common_file_write(struct cgroup *cont,
					struct cftype *cft,
					struct file *file,
1255
					const char __user *userbuf,
L
Linus Torvalds 已提交
1256 1257
					size_t nbytes, loff_t *unused_ppos)
{
1258
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1259 1260 1261 1262 1263
	cpuset_filetype_t type = cft->private;
	char *buffer;
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
P
Paul Jackson 已提交
1264
	if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
L
Linus Torvalds 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

1277
	cgroup_lock();
L
Linus Torvalds 已提交
1278

1279
	if (cgroup_is_removed(cont)) {
L
Linus Torvalds 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
P
Paul Jackson 已提交
1297 1298 1299
	case FILE_SCHED_LOAD_BALANCE:
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
		break;
1300 1301 1302
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, buffer);
		break;
1303 1304 1305
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
1306 1307 1308 1309 1310 1311
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1312 1313
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1314
		cs->mems_generation = cpuset_mems_generation++;
1315 1316 1317
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1318
		cs->mems_generation = cpuset_mems_generation++;
1319
		break;
L
Linus Torvalds 已提交
1320 1321 1322 1323 1324 1325 1326 1327
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
1328
	cgroup_unlock();
L
Linus Torvalds 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
out1:
	kfree(buffer);
	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1350
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1351
	mask = cs->cpus_allowed;
1352
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1353 1354 1355 1356 1357 1358 1359 1360

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1361
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1362
	mask = cs->mems_allowed;
1363
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1364 1365 1366 1367

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

1368 1369 1370 1371 1372
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1373
{
1374
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1380
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
P
Paul Jackson 已提交
1398 1399 1400
	case FILE_SCHED_LOAD_BALANCE:
		*s++ = is_sched_load_balance(cs) ? '1' : '0';
		break;
1401 1402 1403
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		s += sprintf(s, "%d", cs->relax_domain_level);
		break;
1404 1405 1406
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
1407 1408 1409 1410 1411 1412
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE:
		s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
		break;
1413 1414 1415 1416 1417 1418
	case FILE_SPREAD_PAGE:
		*s++ = is_spread_page(cs) ? '1' : '0';
		break;
	case FILE_SPREAD_SLAB:
		*s++ = is_spread_slab(cs) ? '1' : '0';
		break;
L
Linus Torvalds 已提交
1419 1420 1421 1422 1423 1424
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1425
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
out:
	free_page((unsigned long)page);
	return retval;
}





/*
 * for the common functions, 'private' gives the type of file
 */

static struct cftype cft_cpus = {
	.name = "cpus",
1441 1442
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
L
Linus Torvalds 已提交
1443 1444 1445 1446 1447
	.private = FILE_CPULIST,
};

static struct cftype cft_mems = {
	.name = "mems",
1448 1449
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
L
Linus Torvalds 已提交
1450 1451 1452 1453 1454
	.private = FILE_MEMLIST,
};

static struct cftype cft_cpu_exclusive = {
	.name = "cpu_exclusive",
1455 1456
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461
	.private = FILE_CPU_EXCLUSIVE,
};

static struct cftype cft_mem_exclusive = {
	.name = "mem_exclusive",
1462 1463
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
L
Linus Torvalds 已提交
1464 1465 1466
	.private = FILE_MEM_EXCLUSIVE,
};

P
Paul Jackson 已提交
1467 1468 1469 1470 1471 1472 1473
static struct cftype cft_sched_load_balance = {
	.name = "sched_load_balance",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_SCHED_LOAD_BALANCE,
};

1474 1475 1476 1477 1478 1479 1480
static struct cftype cft_sched_relax_domain_level = {
	.name = "sched_relax_domain_level",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
};

1481 1482
static struct cftype cft_memory_migrate = {
	.name = "memory_migrate",
1483 1484
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1485 1486 1487
	.private = FILE_MEMORY_MIGRATE,
};

1488 1489
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
1490 1491
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1492 1493 1494 1495 1496
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

static struct cftype cft_memory_pressure = {
	.name = "memory_pressure",
1497 1498
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1499 1500 1501
	.private = FILE_MEMORY_PRESSURE,
};

1502 1503
static struct cftype cft_spread_page = {
	.name = "memory_spread_page",
1504 1505
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1506 1507 1508 1509 1510
	.private = FILE_SPREAD_PAGE,
};

static struct cftype cft_spread_slab = {
	.name = "memory_spread_slab",
1511 1512
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1513 1514 1515
	.private = FILE_SPREAD_SLAB,
};

1516
static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1517 1518 1519
{
	int err;

1520
	if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
L
Linus Torvalds 已提交
1521
		return err;
1522
	if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
L
Linus Torvalds 已提交
1523
		return err;
1524
	if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
L
Linus Torvalds 已提交
1525
		return err;
1526
	if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
L
Linus Torvalds 已提交
1527
		return err;
1528
	if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
L
Linus Torvalds 已提交
1529
		return err;
P
Paul Jackson 已提交
1530 1531
	if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
		return err;
1532 1533 1534
	if ((err = cgroup_add_file(cont, ss,
					&cft_sched_relax_domain_level)) < 0)
		return err;
1535
	if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
1536
		return err;
1537
	if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
1538
		return err;
1539
	if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
L
Linus Torvalds 已提交
1540
		return err;
1541 1542 1543 1544
	/* memory_pressure_enabled is in root cpuset only */
	if (err == 0 && !cont->parent)
		err = cgroup_add_file(cont, ss,
					 &cft_memory_pressure_enabled);
L
Linus Torvalds 已提交
1545 1546 1547
	return 0;
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/*
 * post_clone() is called at the end of cgroup_clone().
 * 'cgroup' was just created automatically as a result of
 * a cgroup_clone(), and the current task is about to
 * be moved into 'cgroup'.
 *
 * Currently we refuse to set up the cgroup - thereby
 * refusing the task to be entered, and as a result refusing
 * the sys_unshare() or clone() which initiated it - if any
 * sibling cpusets have exclusive cpus or mem.
 *
 * If this becomes a problem for some users who wish to
 * allow that scenario, then cpuset_post_clone() could be
 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1562 1563
 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
 * held.
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
 */
static void cpuset_post_clone(struct cgroup_subsys *ss,
			      struct cgroup *cgroup)
{
	struct cgroup *parent, *child;
	struct cpuset *cs, *parent_cs;

	parent = cgroup->parent;
	list_for_each_entry(child, &parent->children, sibling) {
		cs = cgroup_cs(child);
		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
			return;
	}
	cs = cgroup_cs(cgroup);
	parent_cs = cgroup_cs(parent);

	cs->mems_allowed = parent_cs->mems_allowed;
	cs->cpus_allowed = parent_cs->cpus_allowed;
	return;
}

L
Linus Torvalds 已提交
1585 1586
/*
 *	cpuset_create - create a cpuset
1587 1588
 *	ss:	cpuset cgroup subsystem
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1589 1590
 */

1591 1592 1593
static struct cgroup_subsys_state *cpuset_create(
	struct cgroup_subsys *ss,
	struct cgroup *cont)
L
Linus Torvalds 已提交
1594 1595
{
	struct cpuset *cs;
1596
	struct cpuset *parent;
L
Linus Torvalds 已提交
1597

1598 1599 1600 1601 1602 1603
	if (!cont->parent) {
		/* This is early initialization for the top cgroup */
		top_cpuset.mems_generation = cpuset_mems_generation++;
		return &top_cpuset.css;
	}
	parent = cgroup_cs(cont->parent);
L
Linus Torvalds 已提交
1604 1605
	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
1606
		return ERR_PTR(-ENOMEM);
L
Linus Torvalds 已提交
1607

1608
	cpuset_update_task_memory_state();
L
Linus Torvalds 已提交
1609
	cs->flags = 0;
1610 1611 1612 1613
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
P
Paul Jackson 已提交
1614
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1615 1616
	cpus_clear(cs->cpus_allowed);
	nodes_clear(cs->mems_allowed);
1617
	cs->mems_generation = cpuset_mems_generation++;
1618
	fmeter_init(&cs->fmeter);
1619
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1620 1621

	cs->parent = parent;
1622
	number_of_cpusets++;
1623
	return &cs->css ;
L
Linus Torvalds 已提交
1624 1625
}

P
Paul Jackson 已提交
1626 1627 1628 1629 1630
/*
 * Locking note on the strange update_flag() call below:
 *
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1631
 * will call rebuild_sched_domains().  The get_online_cpus()
P
Paul Jackson 已提交
1632 1633
 * call in rebuild_sched_domains() must not be made while holding
 * callback_mutex.  Elsewhere the kernel nests callback_mutex inside
1634
 * get_online_cpus() calls.  So the reverse nesting would risk an
P
Paul Jackson 已提交
1635 1636 1637
 * ABBA deadlock.
 */

1638
static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1639
{
1640
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1641

1642
	cpuset_update_task_memory_state();
P
Paul Jackson 已提交
1643 1644 1645 1646

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, "0");

1647
	number_of_cpusets--;
1648
	kfree(cs);
L
Linus Torvalds 已提交
1649 1650
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
	.create = cpuset_create,
	.destroy  = cpuset_destroy,
	.can_attach = cpuset_can_attach,
	.attach = cpuset_attach,
	.populate = cpuset_populate,
	.post_clone = cpuset_post_clone,
	.subsys_id = cpuset_subsys_id,
	.early_init = 1,
};

1663 1664 1665 1666 1667 1668 1669 1670
/*
 * cpuset_init_early - just enough so that the calls to
 * cpuset_update_task_memory_state() in early init code
 * are harmless.
 */

int __init cpuset_init_early(void)
{
1671
	top_cpuset.mems_generation = cpuset_mems_generation++;
1672 1673 1674
	return 0;
}

1675

L
Linus Torvalds 已提交
1676 1677 1678 1679 1680 1681 1682 1683
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1684
	int err = 0;
L
Linus Torvalds 已提交
1685

1686 1687
	cpus_setall(top_cpuset.cpus_allowed);
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1688

1689
	fmeter_init(&top_cpuset.fmeter);
1690
	top_cpuset.mems_generation = cpuset_mems_generation++;
P
Paul Jackson 已提交
1691
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1692
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1693 1694 1695

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1696 1697
		return err;

1698
	number_of_cpusets = 1;
1699
	return 0;
L
Linus Torvalds 已提交
1700 1701
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/**
 * cpuset_do_move_task - move a given task to another cpuset
 * @tsk: pointer to task_struct the task to move
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 * Return nonzero to stop the walk through the tasks.
 */
void cpuset_do_move_task(struct task_struct *tsk, struct cgroup_scanner *scan)
{
	struct cpuset_hotplug_scanner *chsp;

	chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
	cgroup_attach_task(chsp->to, tsk);
}

/**
 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
 * @from: cpuset in which the tasks currently reside
 * @to: cpuset to which the tasks will be moved
 *
1723 1724
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 */
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
{
	struct cpuset_hotplug_scanner scan;

	scan.scan.cg = from->css.cgroup;
	scan.scan.test_task = NULL; /* select all tasks in cgroup */
	scan.scan.process_task = cpuset_do_move_task;
	scan.scan.heap = NULL;
	scan.to = to->css.cgroup;

	if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
		printk(KERN_ERR "move_member_tasks_to_cpuset: "
				"cgroup_scan_tasks failed\n");
}

1744 1745 1746 1747
/*
 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
1748 1749
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
1750
 *
1751 1752
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
1753
 */
1754 1755 1756 1757
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

1758 1759 1760 1761 1762
	/*
	 * The cgroup's css_sets list is in use if there are tasks
	 * in the cpuset; the list is empty if there are none;
	 * the cs->css.refcnt seems always 0.
	 */
1763 1764
	if (list_empty(&cs->css.cgroup->css_sets))
		return;
1765

1766 1767 1768 1769 1770
	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
	parent = cs->parent;
1771 1772
	while (cpus_empty(parent->cpus_allowed) ||
			nodes_empty(parent->mems_allowed))
1773 1774 1775 1776 1777 1778 1779 1780 1781
		parent = parent->parent;

	move_member_tasks_to_cpuset(cs, parent);
}

/*
 * Walk the specified cpuset subtree and look for empty cpusets.
 * The tasks of such cpuset must be moved to a parent cpuset.
 *
1782
 * Called with cgroup_mutex held.  We take callback_mutex to modify
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
 * cpus_allowed and mems_allowed.
 *
 * This walk processes the tree from top to bottom, completing one layer
 * before dropping down to the next.  It always processes a node before
 * any of its children.
 *
 * For now, since we lack memory hot unplug, we'll never see a cpuset
 * that has tasks along with an empty 'mems'.  But if we did see such
 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
 */
static void scan_for_empty_cpusets(const struct cpuset *root)
1794
{
1795 1796 1797
	struct cpuset *cp;	/* scans cpusets being updated */
	struct cpuset *child;	/* scans child cpusets of cp */
	struct list_head queue;
1798
	struct cgroup *cont;
1799

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	INIT_LIST_HEAD(&queue);

	list_add_tail((struct list_head *)&root->stack_list, &queue);

	while (!list_empty(&queue)) {
		cp = container_of(queue.next, struct cpuset, stack_list);
		list_del(queue.next);
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &queue);
		}
		cont = cp->css.cgroup;
1812 1813 1814 1815 1816 1817

		/* Continue past cpusets with all cpus, mems online */
		if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
			continue;

1818
		/* Remove offline cpus and mems from this cpuset. */
1819
		mutex_lock(&callback_mutex);
1820 1821 1822
		cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
		nodes_and(cp->mems_allowed, cp->mems_allowed,
						node_states[N_HIGH_MEMORY]);
1823 1824 1825
		mutex_unlock(&callback_mutex);

		/* Move tasks from the empty cpuset to a parent */
1826
		if (cpus_empty(cp->cpus_allowed) ||
1827
		     nodes_empty(cp->mems_allowed))
1828
			remove_tasks_in_empty_cpuset(cp);
1829 1830 1831 1832 1833
	}
}

/*
 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1834
 * cpu_online_map and node_states[N_HIGH_MEMORY].  Force the top cpuset to
1835
 * track what's online after any CPU or memory node hotplug or unplug event.
1836 1837 1838 1839 1840 1841 1842 1843 1844
 *
 * Since there are two callers of this routine, one for CPU hotplug
 * events and one for memory node hotplug events, we could have coded
 * two separate routines here.  We code it as a single common routine
 * in order to minimize text size.
 */

static void common_cpu_mem_hotplug_unplug(void)
{
1845
	cgroup_lock();
1846 1847

	top_cpuset.cpus_allowed = cpu_online_map;
1848
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1849
	scan_for_empty_cpusets(&top_cpuset);
1850

1851
	cgroup_unlock();
1852 1853
}

1854 1855 1856 1857 1858 1859
/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
1860 1861
 * This routine ensures that top_cpuset.cpus_allowed tracks
 * cpu_online_map on each CPU hotplug (cpuhp) event.
1862 1863
 */

P
Paul Jackson 已提交
1864 1865
static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
				unsigned long phase, void *unused_cpu)
1866
{
1867 1868 1869
	if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
		return NOTIFY_DONE;

1870
	common_cpu_mem_hotplug_unplug();
1871 1872 1873
	return 0;
}

1874
#ifdef CONFIG_MEMORY_HOTPLUG
1875
/*
1876 1877 1878
 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
 * Call this routine anytime after you change
 * node_states[N_HIGH_MEMORY].
1879 1880 1881
 * See also the previous routine cpuset_handle_cpuhp().
 */

A
Al Viro 已提交
1882
void cpuset_track_online_nodes(void)
1883
{
1884
	common_cpu_mem_hotplug_unplug();
1885 1886 1887
}
#endif

L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
	top_cpuset.cpus_allowed = cpu_online_map;
1897
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1898 1899

	hotcpu_notifier(cpuset_handle_cpuhp, 0);
L
Linus Torvalds 已提交
1900 1901 1902
}

/**
1903

L
Linus Torvalds 已提交
1904 1905
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1906
 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
1907 1908 1909 1910 1911 1912 1913
 *
 * Description: Returns the cpumask_t cpus_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

1914
void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
L
Linus Torvalds 已提交
1915
{
1916
	mutex_lock(&callback_mutex);
1917
	cpuset_cpus_allowed_locked(tsk, pmask);
1918 1919 1920 1921 1922
	mutex_unlock(&callback_mutex);
}

/**
 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1923
 * Must be called with callback_mutex held.
1924
 **/
1925
void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
1926
{
1927
	task_lock(tsk);
1928
	guarantee_online_cpus(task_cs(tsk), pmask);
1929
	task_unlock(tsk);
L
Linus Torvalds 已提交
1930 1931 1932 1933
}

void cpuset_init_current_mems_allowed(void)
{
1934
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
1935 1936
}

1937 1938 1939 1940 1941 1942
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
1943
 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
1944 1945 1946 1947 1948 1949 1950
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

1951
	mutex_lock(&callback_mutex);
1952
	task_lock(tsk);
1953
	guarantee_online_mems(task_cs(tsk), &mask);
1954
	task_unlock(tsk);
1955
	mutex_unlock(&callback_mutex);
1956 1957 1958 1959

	return mask;
}

1960
/**
1961 1962
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
1963
 *
1964
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
1965
 */
1966
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
1967
{
1968
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
1969 1970
}

1971 1972
/*
 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1973
 * ancestor to the specified cpuset.  Call holding callback_mutex.
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
 * If no ancestor is mem_exclusive (an unusual configuration), then
 * returns the root cpuset.
 */
static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
{
	while (!is_mem_exclusive(cs) && cs->parent)
		cs = cs->parent;
	return cs;
}

1984
/**
1985
 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
1986
 * @z: is this zone on an allowed node?
1987
 * @gfp_mask: memory allocation flags
1988
 *
1989 1990
 * If we're in interrupt, yes, we can always allocate.  If
 * __GFP_THISNODE is set, yes, we can always allocate.  If zone
1991 1992 1993
 * z's node is in our tasks mems_allowed, yes.  If it's not a
 * __GFP_HARDWALL request and this zone's nodes is in the nearest
 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1994 1995
 * If the task has been OOM killed and has access to memory reserves
 * as specified by the TIF_MEMDIE flag, yes.
1996 1997
 * Otherwise, no.
 *
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
 * reduces to cpuset_zone_allowed_hardwall().  Otherwise,
 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
 * from an enclosing cpuset.
 *
 * cpuset_zone_allowed_hardwall() only handles the simpler case of
 * hardwall cpusets, and never sleeps.
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2012
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2013 2014
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2015
 * GFP_KERNEL allocations are not so marked, so can escape to the
2016
 * nearest enclosing mem_exclusive ancestor cpuset.
2017
 *
2018 2019 2020 2021 2022 2023 2024
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2025
 *
2026
 * The first call here from mm/page_alloc:get_page_from_freelist()
2027 2028 2029
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2030 2031 2032 2033 2034 2035
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2036 2037
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2038
 *	TIF_MEMDIE   - any node ok
2039 2040
 *	GFP_KERNEL   - any node in enclosing mem_exclusive cpuset ok
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2041 2042
 *
 * Rule:
2043
 *    Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2044 2045
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2046
 */
2047

2048
int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2049
{
2050 2051
	int node;			/* node that zone z is on */
	const struct cpuset *cs;	/* current cpuset ancestors */
2052
	int allowed;			/* is allocation in zone z allowed? */
2053

2054
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2055
		return 1;
2056
	node = zone_to_nid(z);
2057
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2058 2059
	if (node_isset(node, current->mems_allowed))
		return 1;
2060 2061 2062 2063 2064 2065
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2066 2067 2068
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2069 2070 2071
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2072
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2073
	mutex_lock(&callback_mutex);
2074 2075

	task_lock(current);
2076
	cs = nearest_exclusive_ancestor(task_cs(current));
2077 2078
	task_unlock(current);

2079
	allowed = node_isset(node, cs->mems_allowed);
2080
	mutex_unlock(&callback_mutex);
2081
	return allowed;
L
Linus Torvalds 已提交
2082 2083
}

2084 2085 2086 2087 2088 2089 2090
/*
 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.
 * If __GFP_THISNODE is set, yes, we can always allocate.  If zone
2091 2092 2093
 * z's node is in our tasks mems_allowed, yes.   If the task has been
 * OOM killed and has access to memory reserves as specified by the
 * TIF_MEMDIE flag, yes.  Otherwise, no.
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
 * Unlike the cpuset_zone_allowed_softwall() variant, above,
 * this variant requires that the zone be in the current tasks
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */

int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
{
	int node;			/* node that zone z is on */

	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	node = zone_to_nid(z);
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2117 2118 2119 2120 2121 2122
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2123 2124 2125
	return 0;
}

P
Paul Jackson 已提交
2126 2127 2128
/**
 * cpuset_lock - lock out any changes to cpuset structures
 *
2129
 * The out of memory (oom) code needs to mutex_lock cpusets
P
Paul Jackson 已提交
2130
 * from being changed while it scans the tasklist looking for a
2131
 * task in an overlapping cpuset.  Expose callback_mutex via this
P
Paul Jackson 已提交
2132 2133
 * cpuset_lock() routine, so the oom code can lock it, before
 * locking the task list.  The tasklist_lock is a spinlock, so
2134
 * must be taken inside callback_mutex.
P
Paul Jackson 已提交
2135 2136 2137 2138
 */

void cpuset_lock(void)
{
2139
	mutex_lock(&callback_mutex);
P
Paul Jackson 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
}

/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
2150
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
2151 2152
}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
/**
 * cpuset_mem_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

int cpuset_mem_spread_node(void)
{
	int node;

	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
	current->cpuset_mem_spread_rotor = node;
	return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2191
/**
2192 2193 2194 2195 2196 2197 2198 2199
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2200 2201
 **/

2202 2203
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2204
{
2205
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2206 2207
}

2208 2209 2210 2211 2212 2213
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2214
int cpuset_memory_pressure_enabled __read_mostly;
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2237
	fmeter_markevent(&task_cs(current)->fmeter);
2238 2239 2240
	task_unlock(current);
}

2241
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2242 2243 2244 2245
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2246 2247
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2248
 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2249
 *    anyway.
L
Linus Torvalds 已提交
2250
 */
P
Paul Jackson 已提交
2251
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2252
{
2253
	struct pid *pid;
L
Linus Torvalds 已提交
2254 2255
	struct task_struct *tsk;
	char *buf;
2256
	struct cgroup_subsys_state *css;
2257
	int retval;
L
Linus Torvalds 已提交
2258

2259
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2260 2261
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2262 2263 2264
		goto out;

	retval = -ESRCH;
2265 2266
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2267 2268
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2269

2270
	retval = -EINVAL;
2271 2272 2273
	cgroup_lock();
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Linus Torvalds 已提交
2274
	if (retval < 0)
2275
		goto out_unlock;
L
Linus Torvalds 已提交
2276 2277
	seq_puts(m, buf);
	seq_putc(m, '\n');
2278
out_unlock:
2279
	cgroup_unlock();
2280 2281
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2282
	kfree(buf);
2283
out:
L
Linus Torvalds 已提交
2284 2285 2286 2287 2288
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2289 2290
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2291 2292
}

2293
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2299
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2300 2301

/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2302 2303 2304 2305 2306 2307
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Cpus_allowed:\t");
	m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
					task->cpus_allowed);
	seq_printf(m, "\n");
2308 2309 2310 2311
	seq_printf(m, "Cpus_allowed_list:\t");
	m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
					task->cpus_allowed);
	seq_printf(m, "\n");
2312 2313 2314 2315
	seq_printf(m, "Mems_allowed:\t");
	m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
					task->mems_allowed);
	seq_printf(m, "\n");
2316 2317 2318 2319
	seq_printf(m, "Mems_allowed_list:\t");
	m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
					task->mems_allowed);
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2320
}