edac_mc_sysfs.c 28.6 KB
Newer Older
1 2
/*
 * edac_mc kernel module
3 4
 * (C) 2005-2007 Linux Networx (http://lnxi.com)
 *
5 6 7
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
8
 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9
 *
10 11 12
 * (c) 2012 - Mauro Carvalho Chehab <mchehab@redhat.com>
 *	The entire API were re-written, and ported to use struct device
 *
13 14 15
 */

#include <linux/ctype.h>
16
#include <linux/slab.h>
17
#include <linux/edac.h>
18
#include <linux/bug.h>
19
#include <linux/pm_runtime.h>
20
#include <linux/uaccess.h>
21

22
#include "edac_core.h"
23 24 25
#include "edac_module.h"

/* MC EDAC Controls, setable by module parameter, and sysfs */
D
Dave Jiang 已提交
26 27
static int edac_mc_log_ue = 1;
static int edac_mc_log_ce = 1;
28
static int edac_mc_panic_on_ue;
D
Dave Jiang 已提交
29
static int edac_mc_poll_msec = 1000;
30 31

/* Getter functions for above */
D
Dave Jiang 已提交
32
int edac_mc_get_log_ue(void)
33
{
D
Dave Jiang 已提交
34
	return edac_mc_log_ue;
35 36
}

D
Dave Jiang 已提交
37
int edac_mc_get_log_ce(void)
38
{
D
Dave Jiang 已提交
39
	return edac_mc_log_ce;
40 41
}

D
Dave Jiang 已提交
42
int edac_mc_get_panic_on_ue(void)
43
{
D
Dave Jiang 已提交
44
	return edac_mc_panic_on_ue;
45 46
}

47 48 49
/* this is temporary */
int edac_mc_get_poll_msec(void)
{
D
Dave Jiang 已提交
50
	return edac_mc_poll_msec;
51 52
}

A
Arthur Jones 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
{
	long l;
	int ret;

	if (!val)
		return -EINVAL;

	ret = strict_strtol(val, 0, &l);
	if (ret == -EINVAL || ((int)l != l))
		return -EINVAL;
	*((int *)kp->arg) = l;

	/* notify edac_mc engine to reset the poll period */
	edac_mc_reset_delay_period(l);

	return 0;
}

72
/* Parameter declarations for above */
D
Dave Jiang 已提交
73 74 75 76
module_param(edac_mc_panic_on_ue, int, 0644);
MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
module_param(edac_mc_log_ue, int, 0644);
MODULE_PARM_DESC(edac_mc_log_ue,
77
		 "Log uncorrectable error to console: 0=off 1=on");
D
Dave Jiang 已提交
78 79
module_param(edac_mc_log_ce, int, 0644);
MODULE_PARM_DESC(edac_mc_log_ce,
80
		 "Log correctable error to console: 0=off 1=on");
A
Arthur Jones 已提交
81 82
module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
		  &edac_mc_poll_msec, 0644);
D
Dave Jiang 已提交
83
MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84

85
static struct device *mci_pdev;
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * various constants for Memory Controllers
 */
static const char *mem_types[] = {
	[MEM_EMPTY] = "Empty",
	[MEM_RESERVED] = "Reserved",
	[MEM_UNKNOWN] = "Unknown",
	[MEM_FPM] = "FPM",
	[MEM_EDO] = "EDO",
	[MEM_BEDO] = "BEDO",
	[MEM_SDR] = "Unbuffered-SDR",
	[MEM_RDR] = "Registered-SDR",
	[MEM_DDR] = "Unbuffered-DDR",
	[MEM_RDDR] = "Registered-DDR",
101 102 103
	[MEM_RMBS] = "RMBS",
	[MEM_DDR2] = "Unbuffered-DDR2",
	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
104
	[MEM_RDDR2] = "Registered-DDR2",
105 106 107
	[MEM_XDR] = "XDR",
	[MEM_DDR3] = "Unbuffered-DDR3",
	[MEM_RDDR3] = "Registered-DDR3"
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
};

static const char *dev_types[] = {
	[DEV_UNKNOWN] = "Unknown",
	[DEV_X1] = "x1",
	[DEV_X2] = "x2",
	[DEV_X4] = "x4",
	[DEV_X8] = "x8",
	[DEV_X16] = "x16",
	[DEV_X32] = "x32",
	[DEV_X64] = "x64"
};

static const char *edac_caps[] = {
	[EDAC_UNKNOWN] = "Unknown",
	[EDAC_NONE] = "None",
	[EDAC_RESERVED] = "Reserved",
	[EDAC_PARITY] = "PARITY",
	[EDAC_EC] = "EC",
	[EDAC_SECDED] = "SECDED",
	[EDAC_S2ECD2ED] = "S2ECD2ED",
	[EDAC_S4ECD4ED] = "S4ECD4ED",
	[EDAC_S8ECD8ED] = "S8ECD8ED",
	[EDAC_S16ECD16ED] = "S16ECD16ED"
};

134
#ifdef CONFIG_EDAC_LEGACY_SYSFS
135 136 137 138 139 140 141 142 143
/*
 * EDAC sysfs CSROW data structures and methods
 */

#define to_csrow(k) container_of(k, struct csrow_info, dev)

/*
 * We need it to avoid namespace conflicts between the legacy API
 * and the per-dimm/per-rank one
144
 */
145 146 147 148 149 150 151 152 153 154 155 156 157
#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
	struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)

struct dev_ch_attribute {
	struct device_attribute attr;
	int channel;
};

#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
	struct dev_ch_attribute dev_attr_legacy_##_name = \
		{ __ATTR(_name, _mode, _show, _store), (_var) }

#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158 159

/* Set of more default csrow<id> attribute show/store functions */
160 161
static ssize_t csrow_ue_count_show(struct device *dev,
				   struct device_attribute *mattr, char *data)
162
{
163 164
	struct csrow_info *csrow = to_csrow(dev);

165
	return sprintf(data, "%u\n", csrow->ue_count);
166 167
}

168 169
static ssize_t csrow_ce_count_show(struct device *dev,
				   struct device_attribute *mattr, char *data)
170
{
171 172
	struct csrow_info *csrow = to_csrow(dev);

173
	return sprintf(data, "%u\n", csrow->ce_count);
174 175
}

176 177
static ssize_t csrow_size_show(struct device *dev,
			       struct device_attribute *mattr, char *data)
178
{
179
	struct csrow_info *csrow = to_csrow(dev);
180 181 182
	int i;
	u32 nr_pages = 0;

183 184 185
	if (csrow->mci->csbased)
		return sprintf(data, "%u\n", PAGES_TO_MiB(csrow->nr_pages));

186
	for (i = 0; i < csrow->nr_channels; i++)
187
		nr_pages += csrow->channels[i]->dimm->nr_pages;
188
	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
189 190
}

191 192
static ssize_t csrow_mem_type_show(struct device *dev,
				   struct device_attribute *mattr, char *data)
193
{
194 195
	struct csrow_info *csrow = to_csrow(dev);

196
	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
197 198
}

199 200
static ssize_t csrow_dev_type_show(struct device *dev,
				   struct device_attribute *mattr, char *data)
201
{
202 203
	struct csrow_info *csrow = to_csrow(dev);

204
	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
205 206
}

207 208 209
static ssize_t csrow_edac_mode_show(struct device *dev,
				    struct device_attribute *mattr,
				    char *data)
210
{
211 212
	struct csrow_info *csrow = to_csrow(dev);

213
	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
214 215 216
}

/* show/store functions for DIMM Label attributes */
217 218 219
static ssize_t channel_dimm_label_show(struct device *dev,
				       struct device_attribute *mattr,
				       char *data)
220
{
221 222
	struct csrow_info *csrow = to_csrow(dev);
	unsigned chan = to_channel(mattr);
223
	struct rank_info *rank = csrow->channels[chan];
224

225
	/* if field has not been initialized, there is nothing to send */
226
	if (!rank->dimm->label[0])
227 228 229
		return 0;

	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
230
			rank->dimm->label);
231 232
}

233 234 235
static ssize_t channel_dimm_label_store(struct device *dev,
					struct device_attribute *mattr,
					const char *data, size_t count)
236
{
237 238
	struct csrow_info *csrow = to_csrow(dev);
	unsigned chan = to_channel(mattr);
239
	struct rank_info *rank = csrow->channels[chan];
240

241 242
	ssize_t max_size = 0;

243
	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
244 245
	strncpy(rank->dimm->label, data, max_size);
	rank->dimm->label[max_size] = '\0';
246 247 248 249 250

	return max_size;
}

/* show function for dynamic chX_ce_count attribute */
251 252
static ssize_t channel_ce_count_show(struct device *dev,
				     struct device_attribute *mattr, char *data)
253
{
254 255
	struct csrow_info *csrow = to_csrow(dev);
	unsigned chan = to_channel(mattr);
256
	struct rank_info *rank = csrow->channels[chan];
257 258

	return sprintf(data, "%u\n", rank->ce_count);
259 260
}

261 262 263 264 265 266 267
/* cwrow<id>/attribute files */
DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
268

269 270 271 272 273 274 275 276 277 278
/* default attributes of the CSROW<id> object */
static struct attribute *csrow_attrs[] = {
	&dev_attr_legacy_dev_type.attr,
	&dev_attr_legacy_mem_type.attr,
	&dev_attr_legacy_edac_mode.attr,
	&dev_attr_legacy_size_mb.attr,
	&dev_attr_legacy_ue_count.attr,
	&dev_attr_legacy_ce_count.attr,
	NULL,
};
279

280 281 282
static struct attribute_group csrow_attr_grp = {
	.attrs	= csrow_attrs,
};
283

284 285 286 287
static const struct attribute_group *csrow_attr_groups[] = {
	&csrow_attr_grp,
	NULL
};
288

289
static void csrow_attr_release(struct device *dev)
290
{
291 292
	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);

293
	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
294
	kfree(csrow);
295 296
}

297 298 299
static struct device_type csrow_attr_type = {
	.groups		= csrow_attr_groups,
	.release	= csrow_attr_release,
300 301
};

302 303 304 305
/*
 * possible dynamic channel DIMM Label attribute files
 *
 */
306

307
#define EDAC_NR_CHANNELS	6
308

309
DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
310
	channel_dimm_label_show, channel_dimm_label_store, 0);
311
DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
312
	channel_dimm_label_show, channel_dimm_label_store, 1);
313
DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
314
	channel_dimm_label_show, channel_dimm_label_store, 2);
315
DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
316
	channel_dimm_label_show, channel_dimm_label_store, 3);
317
DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
318
	channel_dimm_label_show, channel_dimm_label_store, 4);
319
DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
320
	channel_dimm_label_show, channel_dimm_label_store, 5);
321 322

/* Total possible dynamic DIMM Label attribute file table */
323 324 325 326 327 328 329
static struct device_attribute *dynamic_csrow_dimm_attr[] = {
	&dev_attr_legacy_ch0_dimm_label.attr,
	&dev_attr_legacy_ch1_dimm_label.attr,
	&dev_attr_legacy_ch2_dimm_label.attr,
	&dev_attr_legacy_ch3_dimm_label.attr,
	&dev_attr_legacy_ch4_dimm_label.attr,
	&dev_attr_legacy_ch5_dimm_label.attr
330 331 332
};

/* possible dynamic channel ce_count attribute files */
333 334 335 336 337 338 339 340 341 342 343 344
DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 0);
DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 1);
DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 2);
DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 3);
DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 4);
DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 5);
345 346

/* Total possible dynamic ce_count attribute file table */
347 348 349 350 351 352 353
static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
	&dev_attr_legacy_ch0_ce_count.attr,
	&dev_attr_legacy_ch1_ce_count.attr,
	&dev_attr_legacy_ch2_ce_count.attr,
	&dev_attr_legacy_ch3_ce_count.attr,
	&dev_attr_legacy_ch4_ce_count.attr,
	&dev_attr_legacy_ch5_ce_count.attr
354 355
};

356 357 358 359 360
static inline int nr_pages_per_csrow(struct csrow_info *csrow)
{
	int chan, nr_pages = 0;

	for (chan = 0; chan < csrow->nr_channels; chan++)
361
		nr_pages += csrow->channels[chan]->dimm->nr_pages;
362 363 364 365

	return nr_pages;
}

366 367 368
/* Create a CSROW object under specifed edac_mc_device */
static int edac_create_csrow_object(struct mem_ctl_info *mci,
				    struct csrow_info *csrow, int index)
369
{
370
	int err, chan;
371

372 373
	if (csrow->nr_channels >= EDAC_NR_CHANNELS)
		return -ENODEV;
374

375 376 377 378
	csrow->dev.type = &csrow_attr_type;
	csrow->dev.bus = &mci->bus;
	device_initialize(&csrow->dev);
	csrow->dev.parent = &mci->dev;
B
Borislav Petkov 已提交
379
	csrow->mci = mci;
380 381
	dev_set_name(&csrow->dev, "csrow%d", index);
	dev_set_drvdata(&csrow->dev, csrow);
382

383 384
	edac_dbg(0, "creating (virtual) csrow node %s\n",
		 dev_name(&csrow->dev));
385

386 387 388
	err = device_add(&csrow->dev);
	if (err < 0)
		return err;
389

390
	for (chan = 0; chan < csrow->nr_channels; chan++) {
391
		/* Only expose populated DIMMs */
392
		if (!csrow->channels[chan]->dimm->nr_pages)
393
			continue;
394 395 396 397 398 399 400 401 402 403 404 405
		err = device_create_file(&csrow->dev,
					 dynamic_csrow_dimm_attr[chan]);
		if (err < 0)
			goto error;
		err = device_create_file(&csrow->dev,
					 dynamic_csrow_ce_count_attr[chan]);
		if (err < 0) {
			device_remove_file(&csrow->dev,
					   dynamic_csrow_dimm_attr[chan]);
			goto error;
		}
	}
406

407
	return 0;
408

409 410 411 412 413 414 415 416
error:
	for (--chan; chan >= 0; chan--) {
		device_remove_file(&csrow->dev,
					dynamic_csrow_dimm_attr[chan]);
		device_remove_file(&csrow->dev,
					   dynamic_csrow_ce_count_attr[chan]);
	}
	put_device(&csrow->dev);
417

418 419
	return err;
}
420 421

/* Create a CSROW object under specifed edac_mc_device */
422
static int edac_create_csrow_objects(struct mem_ctl_info *mci)
423
{
424 425
	int err, i, chan;
	struct csrow_info *csrow;
426

427
	for (i = 0; i < mci->nr_csrows; i++) {
428
		csrow = mci->csrows[i];
429 430
		if (!nr_pages_per_csrow(csrow))
			continue;
431
		err = edac_create_csrow_object(mci, mci->csrows[i], i);
432 433 434 435
		if (err < 0)
			goto error;
	}
	return 0;
436

437 438
error:
	for (--i; i >= 0; i--) {
439
		csrow = mci->csrows[i];
440 441
		if (!nr_pages_per_csrow(csrow))
			continue;
442
		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
443
			if (!csrow->channels[chan]->dimm->nr_pages)
444
				continue;
445 446 447 448 449
			device_remove_file(&csrow->dev,
						dynamic_csrow_dimm_attr[chan]);
			device_remove_file(&csrow->dev,
						dynamic_csrow_ce_count_attr[chan]);
		}
450
		put_device(&mci->csrows[i]->dev);
451
	}
452

453 454
	return err;
}
455

456 457 458 459
static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
{
	int i, chan;
	struct csrow_info *csrow;
460

461
	for (i = mci->nr_csrows - 1; i >= 0; i--) {
462
		csrow = mci->csrows[i];
463 464
		if (!nr_pages_per_csrow(csrow))
			continue;
465
		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
466
			if (!csrow->channels[chan]->dimm->nr_pages)
467
				continue;
468 469
			edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
				 i, chan);
470 471 472 473
			device_remove_file(&csrow->dev,
						dynamic_csrow_dimm_attr[chan]);
			device_remove_file(&csrow->dev,
						dynamic_csrow_ce_count_attr[chan]);
474
		}
475 476
		put_device(&mci->csrows[i]->dev);
		device_del(&mci->csrows[i]->dev);
477 478
	}
}
479 480 481 482 483 484 485 486 487 488 489 490 491 492
#endif

/*
 * Per-dimm (or per-rank) devices
 */

#define to_dimm(k) container_of(k, struct dimm_info, dev)

/* show/store functions for DIMM Label attributes */
static ssize_t dimmdev_location_show(struct device *dev,
				     struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

493
	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
}

static ssize_t dimmdev_label_show(struct device *dev,
				  struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	/* if field has not been initialized, there is nothing to send */
	if (!dimm->label[0])
		return 0;

	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
}

static ssize_t dimmdev_label_store(struct device *dev,
				   struct device_attribute *mattr,
				   const char *data,
				   size_t count)
{
	struct dimm_info *dimm = to_dimm(dev);

	ssize_t max_size = 0;

	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
	strncpy(dimm->label, data, max_size);
	dimm->label[max_size] = '\0';

	return max_size;
}

static ssize_t dimmdev_size_show(struct device *dev,
				 struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
}

static ssize_t dimmdev_mem_type_show(struct device *dev,
				     struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
}

static ssize_t dimmdev_dev_type_show(struct device *dev,
				     struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
}

static ssize_t dimmdev_edac_mode_show(struct device *dev,
				      struct device_attribute *mattr,
				      char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
}

/* dimm/rank attribute files */
static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
		   dimmdev_label_show, dimmdev_label_store);
static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);

/* attributes of the dimm<id>/rank<id> object */
static struct attribute *dimm_attrs[] = {
	&dev_attr_dimm_label.attr,
	&dev_attr_dimm_location.attr,
	&dev_attr_size.attr,
	&dev_attr_dimm_mem_type.attr,
	&dev_attr_dimm_dev_type.attr,
	&dev_attr_dimm_edac_mode.attr,
	NULL,
};

static struct attribute_group dimm_attr_grp = {
	.attrs	= dimm_attrs,
};

static const struct attribute_group *dimm_attr_groups[] = {
	&dimm_attr_grp,
	NULL
};

586
static void dimm_attr_release(struct device *dev)
587
{
588 589
	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);

590
	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
591
	kfree(dimm);
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
}

static struct device_type dimm_attr_type = {
	.groups		= dimm_attr_groups,
	.release	= dimm_attr_release,
};

/* Create a DIMM object under specifed memory controller device */
static int edac_create_dimm_object(struct mem_ctl_info *mci,
				   struct dimm_info *dimm,
				   int index)
{
	int err;
	dimm->mci = mci;

	dimm->dev.type = &dimm_attr_type;
	dimm->dev.bus = &mci->bus;
	device_initialize(&dimm->dev);

	dimm->dev.parent = &mci->dev;
	if (mci->mem_is_per_rank)
		dev_set_name(&dimm->dev, "rank%d", index);
	else
		dev_set_name(&dimm->dev, "dimm%d", index);
	dev_set_drvdata(&dimm->dev, dimm);
	pm_runtime_forbid(&mci->dev);

	err =  device_add(&dimm->dev);

621
	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
622 623 624

	return err;
}
625

626 627 628 629 630
/*
 * Memory controller device
 */

#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
631

632 633
static ssize_t mci_reset_counters_store(struct device *dev,
					struct device_attribute *mattr,
634
					const char *data, size_t count)
635
{
636 637
	struct mem_ctl_info *mci = to_mci(dev);
	int cnt, row, chan, i;
638 639
	mci->ue_mc = 0;
	mci->ce_mc = 0;
640 641
	mci->ue_noinfo_count = 0;
	mci->ce_noinfo_count = 0;
642 643

	for (row = 0; row < mci->nr_csrows; row++) {
644
		struct csrow_info *ri = mci->csrows[row];
645 646 647 648 649

		ri->ue_count = 0;
		ri->ce_count = 0;

		for (chan = 0; chan < ri->nr_channels; chan++)
650
			ri->channels[chan]->ce_count = 0;
651 652
	}

653 654 655 656 657 658 659
	cnt = 1;
	for (i = 0; i < mci->n_layers; i++) {
		cnt *= mci->layers[i].size;
		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
	}

660 661 662 663
	mci->start_time = jiffies;
	return count;
}

664 665 666 667 668 669 670 671 672
/* Memory scrubbing interface:
 *
 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
 *
 * Negative value still means that an error has occurred while setting
 * the scrub rate.
 */
673 674
static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
					  struct device_attribute *mattr,
675
					  const char *data, size_t count)
676
{
677
	struct mem_ctl_info *mci = to_mci(dev);
678
	unsigned long bandwidth = 0;
679
	int new_bw = 0;
680

681
	if (!mci->set_sdram_scrub_rate)
B
Borislav Petkov 已提交
682
		return -ENODEV;
683

684 685
	if (strict_strtoul(data, 10, &bandwidth) < 0)
		return -EINVAL;
686

687
	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
688 689 690 691
	if (new_bw < 0) {
		edac_printk(KERN_WARNING, EDAC_MC,
			    "Error setting scrub rate to: %lu\n", bandwidth);
		return -EINVAL;
692
	}
693

694
	return count;
695 696
}

697 698 699
/*
 * ->get_sdram_scrub_rate() return value semantics same as above.
 */
700 701 702
static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
					 struct device_attribute *mattr,
					 char *data)
703
{
704
	struct mem_ctl_info *mci = to_mci(dev);
705
	int bandwidth = 0;
706

707
	if (!mci->get_sdram_scrub_rate)
B
Borislav Petkov 已提交
708
		return -ENODEV;
709

710 711
	bandwidth = mci->get_sdram_scrub_rate(mci);
	if (bandwidth < 0) {
712
		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
713
		return bandwidth;
714
	}
715 716

	return sprintf(data, "%d\n", bandwidth);
717 718 719
}

/* default attribute files for the MCI object */
720 721 722
static ssize_t mci_ue_count_show(struct device *dev,
				 struct device_attribute *mattr,
				 char *data)
723
{
724 725
	struct mem_ctl_info *mci = to_mci(dev);

726
	return sprintf(data, "%d\n", mci->ue_mc);
727 728
}

729 730 731
static ssize_t mci_ce_count_show(struct device *dev,
				 struct device_attribute *mattr,
				 char *data)
732
{
733 734
	struct mem_ctl_info *mci = to_mci(dev);

735
	return sprintf(data, "%d\n", mci->ce_mc);
736 737
}

738 739 740
static ssize_t mci_ce_noinfo_show(struct device *dev,
				  struct device_attribute *mattr,
				  char *data)
741
{
742 743
	struct mem_ctl_info *mci = to_mci(dev);

744
	return sprintf(data, "%d\n", mci->ce_noinfo_count);
745 746
}

747 748 749
static ssize_t mci_ue_noinfo_show(struct device *dev,
				  struct device_attribute *mattr,
				  char *data)
750
{
751 752
	struct mem_ctl_info *mci = to_mci(dev);

753
	return sprintf(data, "%d\n", mci->ue_noinfo_count);
754 755
}

756 757 758
static ssize_t mci_seconds_show(struct device *dev,
				struct device_attribute *mattr,
				char *data)
759
{
760 761
	struct mem_ctl_info *mci = to_mci(dev);

762
	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
763 764
}

765 766 767
static ssize_t mci_ctl_name_show(struct device *dev,
				 struct device_attribute *mattr,
				 char *data)
768
{
769 770
	struct mem_ctl_info *mci = to_mci(dev);

771
	return sprintf(data, "%s\n", mci->ctl_name);
772 773
}

774 775 776
static ssize_t mci_size_mb_show(struct device *dev,
				struct device_attribute *mattr,
				char *data)
777
{
778
	struct mem_ctl_info *mci = to_mci(dev);
779
	int total_pages = 0, csrow_idx, j;
780

781
	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
782
		struct csrow_info *csrow = mci->csrows[csrow_idx];
783

J
Josh Hunt 已提交
784 785 786 787 788 789 790 791
		if (csrow->mci->csbased) {
			total_pages += csrow->nr_pages;
		} else {
			for (j = 0; j < csrow->nr_channels; j++) {
				struct dimm_info *dimm = csrow->channels[j]->dimm;

				total_pages += dimm->nr_pages;
			}
792
		}
793 794
	}

795
	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
796 797
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static ssize_t mci_max_location_show(struct device *dev,
				     struct device_attribute *mattr,
				     char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);
	int i;
	char *p = data;

	for (i = 0; i < mci->n_layers; i++) {
		p += sprintf(p, "%s %d ",
			     edac_layer_name[mci->layers[i].type],
			     mci->layers[i].size - 1);
	}

	return p - data;
}

815 816 817 818 819 820 821 822
#ifdef CONFIG_EDAC_DEBUG
static ssize_t edac_fake_inject_write(struct file *file,
				      const char __user *data,
				      size_t count, loff_t *ppos)
{
	struct device *dev = file->private_data;
	struct mem_ctl_info *mci = to_mci(dev);
	static enum hw_event_mc_err_type type;
823 824 825 826
	u16 errcount = mci->fake_inject_count;

	if (!errcount)
		errcount = 1;
827 828 829 830 831

	type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
				   : HW_EVENT_ERR_CORRECTED;

	printk(KERN_DEBUG
832 833
	       "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
		errcount,
834
		(type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
835
		errcount > 1 ? "s" : "",
836 837 838 839
		mci->fake_inject_layer[0],
		mci->fake_inject_layer[1],
		mci->fake_inject_layer[2]
	       );
840
	edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
841 842 843
			     mci->fake_inject_layer[0],
			     mci->fake_inject_layer[1],
			     mci->fake_inject_layer[2],
844
			     "FAKE ERROR", "for EDAC testing only");
845 846 847 848 849

	return count;
}

static const struct file_operations debug_fake_inject_fops = {
W
Wei Yongjun 已提交
850
	.open = simple_open,
851 852 853 854 855
	.write = edac_fake_inject_write,
	.llseek = generic_file_llseek,
};
#endif

856
/* default Control file */
857
DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
858 859

/* default Attribute files */
860 861 862 863 864 865 866
DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
867
DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
868 869

/* memory scrubber attribute file */
870
DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
871
	mci_sdram_scrub_rate_store);
872

873 874 875 876 877 878 879 880 881 882
static struct attribute *mci_attrs[] = {
	&dev_attr_reset_counters.attr,
	&dev_attr_mc_name.attr,
	&dev_attr_size_mb.attr,
	&dev_attr_seconds_since_reset.attr,
	&dev_attr_ue_noinfo_count.attr,
	&dev_attr_ce_noinfo_count.attr,
	&dev_attr_ue_count.attr,
	&dev_attr_ce_count.attr,
	&dev_attr_sdram_scrub_rate.attr,
883
	&dev_attr_max_location.attr,
884 885 886
	NULL
};

887 888
static struct attribute_group mci_attr_grp = {
	.attrs	= mci_attrs,
889 890
};

891 892 893
static const struct attribute_group *mci_attr_groups[] = {
	&mci_attr_grp,
	NULL
894 895
};

896
static void mci_attr_release(struct device *dev)
897
{
898 899
	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);

900
	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
901
	kfree(mci);
902 903
}

904 905 906 907
static struct device_type mci_attr_type = {
	.groups		= mci_attr_groups,
	.release	= mci_attr_release,
};
908

909
#ifdef CONFIG_EDAC_DEBUG
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static struct dentry *edac_debugfs;

int __init edac_debugfs_init(void)
{
	edac_debugfs = debugfs_create_dir("edac", NULL);
	if (IS_ERR(edac_debugfs)) {
		edac_debugfs = NULL;
		return -ENOMEM;
	}
	return 0;
}

void __exit edac_debugfs_exit(void)
{
	debugfs_remove(edac_debugfs);
}

927 928 929 930 931 932
int edac_create_debug_nodes(struct mem_ctl_info *mci)
{
	struct dentry *d, *parent;
	char name[80];
	int i;

933 934 935 936
	if (!edac_debugfs)
		return -ENODEV;

	d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	if (!d)
		return -ENOMEM;
	parent = d;

	for (i = 0; i < mci->n_layers; i++) {
		sprintf(name, "fake_inject_%s",
			     edac_layer_name[mci->layers[i].type]);
		d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
				      &mci->fake_inject_layer[i]);
		if (!d)
			goto nomem;
	}

	d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
				&mci->fake_inject_ue);
	if (!d)
		goto nomem;

955 956 957 958 959
	d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
				&mci->fake_inject_count);
	if (!d)
		goto nomem;

960 961 962 963 964 965
	d = debugfs_create_file("fake_inject", S_IWUSR, parent,
				&mci->dev,
				&debug_fake_inject_fops);
	if (!d)
		goto nomem;

966
	mci->debugfs = parent;
967 968 969 970 971 972 973
	return 0;
nomem:
	debugfs_remove(mci->debugfs);
	return -ENOMEM;
}
#endif

974 975 976 977 978 979 980 981 982 983
/*
 * Create a new Memory Controller kobject instance,
 *	mc<id> under the 'mc' directory
 *
 * Return:
 *	0	Success
 *	!0	Failure
 */
int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
{
984
	int i, err;
985

986 987 988 989 990 991 992
	/*
	 * The memory controller needs its own bus, in order to avoid
	 * namespace conflicts at /sys/bus/edac.
	 */
	mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
	if (!mci->bus.name)
		return -ENOMEM;
993
	edac_dbg(0, "creating bus %s\n", mci->bus.name);
994 995 996
	err = bus_register(&mci->bus);
	if (err < 0)
		return err;
997

998 999 1000
	/* get the /sys/devices/system/edac subsys reference */
	mci->dev.type = &mci_attr_type;
	device_initialize(&mci->dev);
1001

1002
	mci->dev.parent = mci_pdev;
1003 1004 1005 1006 1007
	mci->dev.bus = &mci->bus;
	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
	dev_set_drvdata(&mci->dev, mci);
	pm_runtime_forbid(&mci->dev);

1008
	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1009 1010 1011 1012 1013
	err = device_add(&mci->dev);
	if (err < 0) {
		bus_unregister(&mci->bus);
		kfree(mci->bus.name);
		return err;
1014 1015
	}

1016 1017
	/*
	 * Create the dimm/rank devices
1018
	 */
1019
	for (i = 0; i < mci->tot_dimms; i++) {
1020
		struct dimm_info *dimm = mci->dimms[i];
1021 1022 1023 1024
		/* Only expose populated DIMMs */
		if (dimm->nr_pages == 0)
			continue;
#ifdef CONFIG_EDAC_DEBUG
1025
		edac_dbg(1, "creating dimm%d, located at ", i);
1026 1027 1028 1029 1030 1031 1032
		if (edac_debug_level >= 1) {
			int lay;
			for (lay = 0; lay < mci->n_layers; lay++)
				printk(KERN_CONT "%s %d ",
					edac_layer_name[mci->layers[lay].type],
					dimm->location[lay]);
			printk(KERN_CONT "\n");
1033
		}
1034
#endif
1035 1036
		err = edac_create_dimm_object(mci, dimm, i);
		if (err) {
1037
			edac_dbg(1, "failure: create dimm %d obj\n", i);
1038 1039
			goto fail;
		}
1040 1041
	}

1042
#ifdef CONFIG_EDAC_LEGACY_SYSFS
1043 1044 1045
	err = edac_create_csrow_objects(mci);
	if (err < 0)
		goto fail;
1046
#endif
1047

1048 1049 1050
#ifdef CONFIG_EDAC_DEBUG
	edac_create_debug_nodes(mci);
#endif
1051 1052
	return 0;

1053
fail:
1054
	for (i--; i >= 0; i--) {
1055
		struct dimm_info *dimm = mci->dimms[i];
1056 1057 1058 1059
		if (dimm->nr_pages == 0)
			continue;
		put_device(&dimm->dev);
		device_del(&dimm->dev);
1060
	}
1061 1062 1063 1064
	put_device(&mci->dev);
	device_del(&mci->dev);
	bus_unregister(&mci->bus);
	kfree(mci->bus.name);
1065 1066 1067 1068 1069 1070 1071 1072
	return err;
}

/*
 * remove a Memory Controller instance
 */
void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
{
1073
	int i;
1074

1075
	edac_dbg(0, "\n");
1076

1077 1078 1079
#ifdef CONFIG_EDAC_DEBUG
	debugfs_remove(mci->debugfs);
#endif
1080
#ifdef CONFIG_EDAC_LEGACY_SYSFS
1081
	edac_delete_csrow_objects(mci);
1082
#endif
1083

1084
	for (i = 0; i < mci->tot_dimms; i++) {
1085
		struct dimm_info *dimm = mci->dimms[i];
1086 1087
		if (dimm->nr_pages == 0)
			continue;
1088
		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1089 1090
		put_device(&dimm->dev);
		device_del(&dimm->dev);
1091
	}
1092
}
1093

1094 1095
void edac_unregister_sysfs(struct mem_ctl_info *mci)
{
1096
	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1097 1098 1099 1100 1101
	put_device(&mci->dev);
	device_del(&mci->dev);
	bus_unregister(&mci->bus);
	kfree(mci->bus.name);
}
1102

1103
static void mc_attr_release(struct device *dev)
1104
{
1105 1106 1107 1108 1109
	/*
	 * There's no container structure here, as this is just the mci
	 * parent device, used to create the /sys/devices/mc sysfs node.
	 * So, there are no attributes on it.
	 */
1110
	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1111
	kfree(dev);
1112
}
1113

1114 1115 1116
static struct device_type mc_attr_type = {
	.release	= mc_attr_release,
};
1117
/*
1118
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1119
 */
1120
int __init edac_mc_sysfs_init(void)
1121
{
1122
	struct bus_type *edac_subsys;
1123
	int err;
1124

1125 1126 1127
	/* get the /sys/devices/system/edac subsys reference */
	edac_subsys = edac_get_sysfs_subsys();
	if (edac_subsys == NULL) {
1128
		edac_dbg(1, "no edac_subsys\n");
1129
		return -EINVAL;
1130 1131
	}

1132 1133 1134 1135 1136 1137
	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);

	mci_pdev->bus = edac_subsys;
	mci_pdev->type = &mc_attr_type;
	device_initialize(mci_pdev);
	dev_set_name(mci_pdev, "mc");
1138

1139
	err = device_add(mci_pdev);
1140 1141
	if (err < 0)
		return err;
1142

1143
	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1144

1145 1146 1147
	return 0;
}

1148
void __exit edac_mc_sysfs_exit(void)
1149
{
1150 1151
	put_device(mci_pdev);
	device_del(mci_pdev);
1152
	edac_put_sysfs_subsys();
1153
}