edac_mc_sysfs.c 28.5 KB
Newer Older
1 2
/*
 * edac_mc kernel module
3 4
 * (C) 2005-2007 Linux Networx (http://lnxi.com)
 *
5 6 7
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
8
 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9
 *
10 11 12
 * (c) 2012 - Mauro Carvalho Chehab <mchehab@redhat.com>
 *	The entire API were re-written, and ported to use struct device
 *
13 14 15
 */

#include <linux/ctype.h>
16
#include <linux/slab.h>
17
#include <linux/edac.h>
18
#include <linux/bug.h>
19
#include <linux/pm_runtime.h>
20
#include <linux/uaccess.h>
21

22
#include "edac_core.h"
23 24 25
#include "edac_module.h"

/* MC EDAC Controls, setable by module parameter, and sysfs */
D
Dave Jiang 已提交
26 27
static int edac_mc_log_ue = 1;
static int edac_mc_log_ce = 1;
28
static int edac_mc_panic_on_ue;
D
Dave Jiang 已提交
29
static int edac_mc_poll_msec = 1000;
30 31

/* Getter functions for above */
D
Dave Jiang 已提交
32
int edac_mc_get_log_ue(void)
33
{
D
Dave Jiang 已提交
34
	return edac_mc_log_ue;
35 36
}

D
Dave Jiang 已提交
37
int edac_mc_get_log_ce(void)
38
{
D
Dave Jiang 已提交
39
	return edac_mc_log_ce;
40 41
}

D
Dave Jiang 已提交
42
int edac_mc_get_panic_on_ue(void)
43
{
D
Dave Jiang 已提交
44
	return edac_mc_panic_on_ue;
45 46
}

47 48 49
/* this is temporary */
int edac_mc_get_poll_msec(void)
{
D
Dave Jiang 已提交
50
	return edac_mc_poll_msec;
51 52
}

A
Arthur Jones 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
{
	long l;
	int ret;

	if (!val)
		return -EINVAL;

	ret = strict_strtol(val, 0, &l);
	if (ret == -EINVAL || ((int)l != l))
		return -EINVAL;
	*((int *)kp->arg) = l;

	/* notify edac_mc engine to reset the poll period */
	edac_mc_reset_delay_period(l);

	return 0;
}

72
/* Parameter declarations for above */
D
Dave Jiang 已提交
73 74 75 76
module_param(edac_mc_panic_on_ue, int, 0644);
MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
module_param(edac_mc_log_ue, int, 0644);
MODULE_PARM_DESC(edac_mc_log_ue,
77
		 "Log uncorrectable error to console: 0=off 1=on");
D
Dave Jiang 已提交
78 79
module_param(edac_mc_log_ce, int, 0644);
MODULE_PARM_DESC(edac_mc_log_ce,
80
		 "Log correctable error to console: 0=off 1=on");
A
Arthur Jones 已提交
81 82
module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
		  &edac_mc_poll_msec, 0644);
D
Dave Jiang 已提交
83
MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84

85
static struct device *mci_pdev;
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * various constants for Memory Controllers
 */
static const char *mem_types[] = {
	[MEM_EMPTY] = "Empty",
	[MEM_RESERVED] = "Reserved",
	[MEM_UNKNOWN] = "Unknown",
	[MEM_FPM] = "FPM",
	[MEM_EDO] = "EDO",
	[MEM_BEDO] = "BEDO",
	[MEM_SDR] = "Unbuffered-SDR",
	[MEM_RDR] = "Registered-SDR",
	[MEM_DDR] = "Unbuffered-DDR",
	[MEM_RDDR] = "Registered-DDR",
101 102 103
	[MEM_RMBS] = "RMBS",
	[MEM_DDR2] = "Unbuffered-DDR2",
	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
104
	[MEM_RDDR2] = "Registered-DDR2",
105 106 107
	[MEM_XDR] = "XDR",
	[MEM_DDR3] = "Unbuffered-DDR3",
	[MEM_RDDR3] = "Registered-DDR3"
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
};

static const char *dev_types[] = {
	[DEV_UNKNOWN] = "Unknown",
	[DEV_X1] = "x1",
	[DEV_X2] = "x2",
	[DEV_X4] = "x4",
	[DEV_X8] = "x8",
	[DEV_X16] = "x16",
	[DEV_X32] = "x32",
	[DEV_X64] = "x64"
};

static const char *edac_caps[] = {
	[EDAC_UNKNOWN] = "Unknown",
	[EDAC_NONE] = "None",
	[EDAC_RESERVED] = "Reserved",
	[EDAC_PARITY] = "PARITY",
	[EDAC_EC] = "EC",
	[EDAC_SECDED] = "SECDED",
	[EDAC_S2ECD2ED] = "S2ECD2ED",
	[EDAC_S4ECD4ED] = "S4ECD4ED",
	[EDAC_S8ECD8ED] = "S8ECD8ED",
	[EDAC_S16ECD16ED] = "S16ECD16ED"
};

134
#ifdef CONFIG_EDAC_LEGACY_SYSFS
135 136 137 138 139 140 141 142 143
/*
 * EDAC sysfs CSROW data structures and methods
 */

#define to_csrow(k) container_of(k, struct csrow_info, dev)

/*
 * We need it to avoid namespace conflicts between the legacy API
 * and the per-dimm/per-rank one
144
 */
145 146 147 148 149 150 151 152 153 154 155 156 157
#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
	struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)

struct dev_ch_attribute {
	struct device_attribute attr;
	int channel;
};

#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
	struct dev_ch_attribute dev_attr_legacy_##_name = \
		{ __ATTR(_name, _mode, _show, _store), (_var) }

#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158 159

/* Set of more default csrow<id> attribute show/store functions */
160 161
static ssize_t csrow_ue_count_show(struct device *dev,
				   struct device_attribute *mattr, char *data)
162
{
163 164
	struct csrow_info *csrow = to_csrow(dev);

165
	return sprintf(data, "%u\n", csrow->ue_count);
166 167
}

168 169
static ssize_t csrow_ce_count_show(struct device *dev,
				   struct device_attribute *mattr, char *data)
170
{
171 172
	struct csrow_info *csrow = to_csrow(dev);

173
	return sprintf(data, "%u\n", csrow->ce_count);
174 175
}

176 177
static ssize_t csrow_size_show(struct device *dev,
			       struct device_attribute *mattr, char *data)
178
{
179
	struct csrow_info *csrow = to_csrow(dev);
180 181 182 183
	int i;
	u32 nr_pages = 0;

	for (i = 0; i < csrow->nr_channels; i++)
184
		nr_pages += csrow->channels[i]->dimm->nr_pages;
185
	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
186 187
}

188 189
static ssize_t csrow_mem_type_show(struct device *dev,
				   struct device_attribute *mattr, char *data)
190
{
191 192
	struct csrow_info *csrow = to_csrow(dev);

193
	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
194 195
}

196 197
static ssize_t csrow_dev_type_show(struct device *dev,
				   struct device_attribute *mattr, char *data)
198
{
199 200
	struct csrow_info *csrow = to_csrow(dev);

201
	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
202 203
}

204 205 206
static ssize_t csrow_edac_mode_show(struct device *dev,
				    struct device_attribute *mattr,
				    char *data)
207
{
208 209
	struct csrow_info *csrow = to_csrow(dev);

210
	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
211 212 213
}

/* show/store functions for DIMM Label attributes */
214 215 216
static ssize_t channel_dimm_label_show(struct device *dev,
				       struct device_attribute *mattr,
				       char *data)
217
{
218 219
	struct csrow_info *csrow = to_csrow(dev);
	unsigned chan = to_channel(mattr);
220
	struct rank_info *rank = csrow->channels[chan];
221

222
	/* if field has not been initialized, there is nothing to send */
223
	if (!rank->dimm->label[0])
224 225 226
		return 0;

	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
227
			rank->dimm->label);
228 229
}

230 231 232
static ssize_t channel_dimm_label_store(struct device *dev,
					struct device_attribute *mattr,
					const char *data, size_t count)
233
{
234 235
	struct csrow_info *csrow = to_csrow(dev);
	unsigned chan = to_channel(mattr);
236
	struct rank_info *rank = csrow->channels[chan];
237

238 239
	ssize_t max_size = 0;

240
	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
241 242
	strncpy(rank->dimm->label, data, max_size);
	rank->dimm->label[max_size] = '\0';
243 244 245 246 247

	return max_size;
}

/* show function for dynamic chX_ce_count attribute */
248 249
static ssize_t channel_ce_count_show(struct device *dev,
				     struct device_attribute *mattr, char *data)
250
{
251 252
	struct csrow_info *csrow = to_csrow(dev);
	unsigned chan = to_channel(mattr);
253
	struct rank_info *rank = csrow->channels[chan];
254 255

	return sprintf(data, "%u\n", rank->ce_count);
256 257
}

258 259 260 261 262 263 264
/* cwrow<id>/attribute files */
DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
265

266 267 268 269 270 271 272 273 274 275
/* default attributes of the CSROW<id> object */
static struct attribute *csrow_attrs[] = {
	&dev_attr_legacy_dev_type.attr,
	&dev_attr_legacy_mem_type.attr,
	&dev_attr_legacy_edac_mode.attr,
	&dev_attr_legacy_size_mb.attr,
	&dev_attr_legacy_ue_count.attr,
	&dev_attr_legacy_ce_count.attr,
	NULL,
};
276

277 278 279
static struct attribute_group csrow_attr_grp = {
	.attrs	= csrow_attrs,
};
280

281 282 283 284
static const struct attribute_group *csrow_attr_groups[] = {
	&csrow_attr_grp,
	NULL
};
285

286
static void csrow_attr_release(struct device *dev)
287
{
288 289
	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);

290
	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
291
	kfree(csrow);
292 293
}

294 295 296
static struct device_type csrow_attr_type = {
	.groups		= csrow_attr_groups,
	.release	= csrow_attr_release,
297 298
};

299 300 301 302
/*
 * possible dynamic channel DIMM Label attribute files
 *
 */
303

304
#define EDAC_NR_CHANNELS	6
305

306
DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
307
	channel_dimm_label_show, channel_dimm_label_store, 0);
308
DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
309
	channel_dimm_label_show, channel_dimm_label_store, 1);
310
DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
311
	channel_dimm_label_show, channel_dimm_label_store, 2);
312
DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
313
	channel_dimm_label_show, channel_dimm_label_store, 3);
314
DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
315
	channel_dimm_label_show, channel_dimm_label_store, 4);
316
DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
317
	channel_dimm_label_show, channel_dimm_label_store, 5);
318 319

/* Total possible dynamic DIMM Label attribute file table */
320 321 322 323 324 325 326
static struct device_attribute *dynamic_csrow_dimm_attr[] = {
	&dev_attr_legacy_ch0_dimm_label.attr,
	&dev_attr_legacy_ch1_dimm_label.attr,
	&dev_attr_legacy_ch2_dimm_label.attr,
	&dev_attr_legacy_ch3_dimm_label.attr,
	&dev_attr_legacy_ch4_dimm_label.attr,
	&dev_attr_legacy_ch5_dimm_label.attr
327 328 329
};

/* possible dynamic channel ce_count attribute files */
330 331 332 333 334 335 336 337 338 339 340 341
DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 0);
DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 1);
DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 2);
DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 3);
DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 4);
DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
		   channel_ce_count_show, NULL, 5);
342 343

/* Total possible dynamic ce_count attribute file table */
344 345 346 347 348 349 350
static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
	&dev_attr_legacy_ch0_ce_count.attr,
	&dev_attr_legacy_ch1_ce_count.attr,
	&dev_attr_legacy_ch2_ce_count.attr,
	&dev_attr_legacy_ch3_ce_count.attr,
	&dev_attr_legacy_ch4_ce_count.attr,
	&dev_attr_legacy_ch5_ce_count.attr
351 352
};

353 354 355 356 357
static inline int nr_pages_per_csrow(struct csrow_info *csrow)
{
	int chan, nr_pages = 0;

	for (chan = 0; chan < csrow->nr_channels; chan++)
358
		nr_pages += csrow->channels[chan]->dimm->nr_pages;
359 360 361 362

	return nr_pages;
}

363 364 365
/* Create a CSROW object under specifed edac_mc_device */
static int edac_create_csrow_object(struct mem_ctl_info *mci,
				    struct csrow_info *csrow, int index)
366
{
367
	int err, chan;
368

369 370
	if (csrow->nr_channels >= EDAC_NR_CHANNELS)
		return -ENODEV;
371

372 373 374 375
	csrow->dev.type = &csrow_attr_type;
	csrow->dev.bus = &mci->bus;
	device_initialize(&csrow->dev);
	csrow->dev.parent = &mci->dev;
B
Borislav Petkov 已提交
376
	csrow->mci = mci;
377 378
	dev_set_name(&csrow->dev, "csrow%d", index);
	dev_set_drvdata(&csrow->dev, csrow);
379

380 381
	edac_dbg(0, "creating (virtual) csrow node %s\n",
		 dev_name(&csrow->dev));
382

383 384 385
	err = device_add(&csrow->dev);
	if (err < 0)
		return err;
386

387
	for (chan = 0; chan < csrow->nr_channels; chan++) {
388
		/* Only expose populated DIMMs */
389
		if (!csrow->channels[chan]->dimm->nr_pages)
390
			continue;
391 392 393 394 395 396 397 398 399 400 401 402
		err = device_create_file(&csrow->dev,
					 dynamic_csrow_dimm_attr[chan]);
		if (err < 0)
			goto error;
		err = device_create_file(&csrow->dev,
					 dynamic_csrow_ce_count_attr[chan]);
		if (err < 0) {
			device_remove_file(&csrow->dev,
					   dynamic_csrow_dimm_attr[chan]);
			goto error;
		}
	}
403

404
	return 0;
405

406 407 408 409 410 411 412 413
error:
	for (--chan; chan >= 0; chan--) {
		device_remove_file(&csrow->dev,
					dynamic_csrow_dimm_attr[chan]);
		device_remove_file(&csrow->dev,
					   dynamic_csrow_ce_count_attr[chan]);
	}
	put_device(&csrow->dev);
414

415 416
	return err;
}
417 418

/* Create a CSROW object under specifed edac_mc_device */
419
static int edac_create_csrow_objects(struct mem_ctl_info *mci)
420
{
421 422
	int err, i, chan;
	struct csrow_info *csrow;
423

424
	for (i = 0; i < mci->nr_csrows; i++) {
425
		csrow = mci->csrows[i];
426 427
		if (!nr_pages_per_csrow(csrow))
			continue;
428
		err = edac_create_csrow_object(mci, mci->csrows[i], i);
429 430 431 432
		if (err < 0)
			goto error;
	}
	return 0;
433

434 435
error:
	for (--i; i >= 0; i--) {
436
		csrow = mci->csrows[i];
437 438
		if (!nr_pages_per_csrow(csrow))
			continue;
439
		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
440
			if (!csrow->channels[chan]->dimm->nr_pages)
441
				continue;
442 443 444 445 446
			device_remove_file(&csrow->dev,
						dynamic_csrow_dimm_attr[chan]);
			device_remove_file(&csrow->dev,
						dynamic_csrow_ce_count_attr[chan]);
		}
447
		put_device(&mci->csrows[i]->dev);
448
	}
449

450 451
	return err;
}
452

453 454 455 456
static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
{
	int i, chan;
	struct csrow_info *csrow;
457

458
	for (i = mci->nr_csrows - 1; i >= 0; i--) {
459
		csrow = mci->csrows[i];
460 461
		if (!nr_pages_per_csrow(csrow))
			continue;
462
		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
463
			if (!csrow->channels[chan]->dimm->nr_pages)
464
				continue;
465 466
			edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
				 i, chan);
467 468 469 470
			device_remove_file(&csrow->dev,
						dynamic_csrow_dimm_attr[chan]);
			device_remove_file(&csrow->dev,
						dynamic_csrow_ce_count_attr[chan]);
471
		}
472 473
		put_device(&mci->csrows[i]->dev);
		device_del(&mci->csrows[i]->dev);
474 475
	}
}
476 477 478 479 480 481 482 483 484 485 486 487 488 489
#endif

/*
 * Per-dimm (or per-rank) devices
 */

#define to_dimm(k) container_of(k, struct dimm_info, dev)

/* show/store functions for DIMM Label attributes */
static ssize_t dimmdev_location_show(struct device *dev,
				     struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

490
	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
}

static ssize_t dimmdev_label_show(struct device *dev,
				  struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	/* if field has not been initialized, there is nothing to send */
	if (!dimm->label[0])
		return 0;

	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
}

static ssize_t dimmdev_label_store(struct device *dev,
				   struct device_attribute *mattr,
				   const char *data,
				   size_t count)
{
	struct dimm_info *dimm = to_dimm(dev);

	ssize_t max_size = 0;

	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
	strncpy(dimm->label, data, max_size);
	dimm->label[max_size] = '\0';

	return max_size;
}

static ssize_t dimmdev_size_show(struct device *dev,
				 struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
}

static ssize_t dimmdev_mem_type_show(struct device *dev,
				     struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
}

static ssize_t dimmdev_dev_type_show(struct device *dev,
				     struct device_attribute *mattr, char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
}

static ssize_t dimmdev_edac_mode_show(struct device *dev,
				      struct device_attribute *mattr,
				      char *data)
{
	struct dimm_info *dimm = to_dimm(dev);

	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
}

/* dimm/rank attribute files */
static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
		   dimmdev_label_show, dimmdev_label_store);
static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);

/* attributes of the dimm<id>/rank<id> object */
static struct attribute *dimm_attrs[] = {
	&dev_attr_dimm_label.attr,
	&dev_attr_dimm_location.attr,
	&dev_attr_size.attr,
	&dev_attr_dimm_mem_type.attr,
	&dev_attr_dimm_dev_type.attr,
	&dev_attr_dimm_edac_mode.attr,
	NULL,
};

static struct attribute_group dimm_attr_grp = {
	.attrs	= dimm_attrs,
};

static const struct attribute_group *dimm_attr_groups[] = {
	&dimm_attr_grp,
	NULL
};

583
static void dimm_attr_release(struct device *dev)
584
{
585 586
	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);

587
	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
588
	kfree(dimm);
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
}

static struct device_type dimm_attr_type = {
	.groups		= dimm_attr_groups,
	.release	= dimm_attr_release,
};

/* Create a DIMM object under specifed memory controller device */
static int edac_create_dimm_object(struct mem_ctl_info *mci,
				   struct dimm_info *dimm,
				   int index)
{
	int err;
	dimm->mci = mci;

	dimm->dev.type = &dimm_attr_type;
	dimm->dev.bus = &mci->bus;
	device_initialize(&dimm->dev);

	dimm->dev.parent = &mci->dev;
	if (mci->mem_is_per_rank)
		dev_set_name(&dimm->dev, "rank%d", index);
	else
		dev_set_name(&dimm->dev, "dimm%d", index);
	dev_set_drvdata(&dimm->dev, dimm);
	pm_runtime_forbid(&mci->dev);

	err =  device_add(&dimm->dev);

618
	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
619 620 621

	return err;
}
622

623 624 625 626 627
/*
 * Memory controller device
 */

#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
628

629 630
static ssize_t mci_reset_counters_store(struct device *dev,
					struct device_attribute *mattr,
631
					const char *data, size_t count)
632
{
633 634
	struct mem_ctl_info *mci = to_mci(dev);
	int cnt, row, chan, i;
635 636
	mci->ue_mc = 0;
	mci->ce_mc = 0;
637 638
	mci->ue_noinfo_count = 0;
	mci->ce_noinfo_count = 0;
639 640

	for (row = 0; row < mci->nr_csrows; row++) {
641
		struct csrow_info *ri = mci->csrows[row];
642 643 644 645 646

		ri->ue_count = 0;
		ri->ce_count = 0;

		for (chan = 0; chan < ri->nr_channels; chan++)
647
			ri->channels[chan]->ce_count = 0;
648 649
	}

650 651 652 653 654 655 656
	cnt = 1;
	for (i = 0; i < mci->n_layers; i++) {
		cnt *= mci->layers[i].size;
		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
	}

657 658 659 660
	mci->start_time = jiffies;
	return count;
}

661 662 663 664 665 666 667 668 669
/* Memory scrubbing interface:
 *
 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
 *
 * Negative value still means that an error has occurred while setting
 * the scrub rate.
 */
670 671
static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
					  struct device_attribute *mattr,
672
					  const char *data, size_t count)
673
{
674
	struct mem_ctl_info *mci = to_mci(dev);
675
	unsigned long bandwidth = 0;
676
	int new_bw = 0;
677

678
	if (!mci->set_sdram_scrub_rate)
B
Borislav Petkov 已提交
679
		return -ENODEV;
680

681 682
	if (strict_strtoul(data, 10, &bandwidth) < 0)
		return -EINVAL;
683

684
	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
685 686 687 688
	if (new_bw < 0) {
		edac_printk(KERN_WARNING, EDAC_MC,
			    "Error setting scrub rate to: %lu\n", bandwidth);
		return -EINVAL;
689
	}
690

691
	return count;
692 693
}

694 695 696
/*
 * ->get_sdram_scrub_rate() return value semantics same as above.
 */
697 698 699
static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
					 struct device_attribute *mattr,
					 char *data)
700
{
701
	struct mem_ctl_info *mci = to_mci(dev);
702
	int bandwidth = 0;
703

704
	if (!mci->get_sdram_scrub_rate)
B
Borislav Petkov 已提交
705
		return -ENODEV;
706

707 708
	bandwidth = mci->get_sdram_scrub_rate(mci);
	if (bandwidth < 0) {
709
		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
710
		return bandwidth;
711
	}
712 713

	return sprintf(data, "%d\n", bandwidth);
714 715 716
}

/* default attribute files for the MCI object */
717 718 719
static ssize_t mci_ue_count_show(struct device *dev,
				 struct device_attribute *mattr,
				 char *data)
720
{
721 722
	struct mem_ctl_info *mci = to_mci(dev);

723
	return sprintf(data, "%d\n", mci->ue_mc);
724 725
}

726 727 728
static ssize_t mci_ce_count_show(struct device *dev,
				 struct device_attribute *mattr,
				 char *data)
729
{
730 731
	struct mem_ctl_info *mci = to_mci(dev);

732
	return sprintf(data, "%d\n", mci->ce_mc);
733 734
}

735 736 737
static ssize_t mci_ce_noinfo_show(struct device *dev,
				  struct device_attribute *mattr,
				  char *data)
738
{
739 740
	struct mem_ctl_info *mci = to_mci(dev);

741
	return sprintf(data, "%d\n", mci->ce_noinfo_count);
742 743
}

744 745 746
static ssize_t mci_ue_noinfo_show(struct device *dev,
				  struct device_attribute *mattr,
				  char *data)
747
{
748 749
	struct mem_ctl_info *mci = to_mci(dev);

750
	return sprintf(data, "%d\n", mci->ue_noinfo_count);
751 752
}

753 754 755
static ssize_t mci_seconds_show(struct device *dev,
				struct device_attribute *mattr,
				char *data)
756
{
757 758
	struct mem_ctl_info *mci = to_mci(dev);

759
	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
760 761
}

762 763 764
static ssize_t mci_ctl_name_show(struct device *dev,
				 struct device_attribute *mattr,
				 char *data)
765
{
766 767
	struct mem_ctl_info *mci = to_mci(dev);

768
	return sprintf(data, "%s\n", mci->ctl_name);
769 770
}

771 772 773
static ssize_t mci_size_mb_show(struct device *dev,
				struct device_attribute *mattr,
				char *data)
774
{
775
	struct mem_ctl_info *mci = to_mci(dev);
776
	int total_pages = 0, csrow_idx, j;
777

778
	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
779
		struct csrow_info *csrow = mci->csrows[csrow_idx];
780

781
		for (j = 0; j < csrow->nr_channels; j++) {
782
			struct dimm_info *dimm = csrow->channels[j]->dimm;
783

784 785
			total_pages += dimm->nr_pages;
		}
786 787
	}

788
	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
static ssize_t mci_max_location_show(struct device *dev,
				     struct device_attribute *mattr,
				     char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);
	int i;
	char *p = data;

	for (i = 0; i < mci->n_layers; i++) {
		p += sprintf(p, "%s %d ",
			     edac_layer_name[mci->layers[i].type],
			     mci->layers[i].size - 1);
	}

	return p - data;
}

808 809 810 811 812 813 814 815
#ifdef CONFIG_EDAC_DEBUG
static ssize_t edac_fake_inject_write(struct file *file,
				      const char __user *data,
				      size_t count, loff_t *ppos)
{
	struct device *dev = file->private_data;
	struct mem_ctl_info *mci = to_mci(dev);
	static enum hw_event_mc_err_type type;
816 817 818 819
	u16 errcount = mci->fake_inject_count;

	if (!errcount)
		errcount = 1;
820 821 822 823 824

	type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
				   : HW_EVENT_ERR_CORRECTED;

	printk(KERN_DEBUG
825 826
	       "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
		errcount,
827
		(type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
828
		errcount > 1 ? "s" : "",
829 830 831 832
		mci->fake_inject_layer[0],
		mci->fake_inject_layer[1],
		mci->fake_inject_layer[2]
	       );
833
	edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
834 835 836
			     mci->fake_inject_layer[0],
			     mci->fake_inject_layer[1],
			     mci->fake_inject_layer[2],
837
			     "FAKE ERROR", "for EDAC testing only");
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

	return count;
}

static int debugfs_open(struct inode *inode, struct file *file)
{
	file->private_data = inode->i_private;
	return 0;
}

static const struct file_operations debug_fake_inject_fops = {
	.open = debugfs_open,
	.write = edac_fake_inject_write,
	.llseek = generic_file_llseek,
};
#endif

855
/* default Control file */
856
DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
857 858

/* default Attribute files */
859 860 861 862 863 864 865
DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
866
DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
867 868

/* memory scrubber attribute file */
869
DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
870
	mci_sdram_scrub_rate_store);
871

872 873 874 875 876 877 878 879 880 881
static struct attribute *mci_attrs[] = {
	&dev_attr_reset_counters.attr,
	&dev_attr_mc_name.attr,
	&dev_attr_size_mb.attr,
	&dev_attr_seconds_since_reset.attr,
	&dev_attr_ue_noinfo_count.attr,
	&dev_attr_ce_noinfo_count.attr,
	&dev_attr_ue_count.attr,
	&dev_attr_ce_count.attr,
	&dev_attr_sdram_scrub_rate.attr,
882
	&dev_attr_max_location.attr,
883 884 885
	NULL
};

886 887
static struct attribute_group mci_attr_grp = {
	.attrs	= mci_attrs,
888 889
};

890 891 892
static const struct attribute_group *mci_attr_groups[] = {
	&mci_attr_grp,
	NULL
893 894
};

895
static void mci_attr_release(struct device *dev)
896
{
897 898
	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);

899
	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
900
	kfree(mci);
901 902
}

903 904 905 906
static struct device_type mci_attr_type = {
	.groups		= mci_attr_groups,
	.release	= mci_attr_release,
};
907

908
#ifdef CONFIG_EDAC_DEBUG
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static struct dentry *edac_debugfs;

int __init edac_debugfs_init(void)
{
	edac_debugfs = debugfs_create_dir("edac", NULL);
	if (IS_ERR(edac_debugfs)) {
		edac_debugfs = NULL;
		return -ENOMEM;
	}
	return 0;
}

void __exit edac_debugfs_exit(void)
{
	debugfs_remove(edac_debugfs);
}

926 927 928 929 930 931
int edac_create_debug_nodes(struct mem_ctl_info *mci)
{
	struct dentry *d, *parent;
	char name[80];
	int i;

932 933 934 935
	if (!edac_debugfs)
		return -ENODEV;

	d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	if (!d)
		return -ENOMEM;
	parent = d;

	for (i = 0; i < mci->n_layers; i++) {
		sprintf(name, "fake_inject_%s",
			     edac_layer_name[mci->layers[i].type]);
		d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
				      &mci->fake_inject_layer[i]);
		if (!d)
			goto nomem;
	}

	d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
				&mci->fake_inject_ue);
	if (!d)
		goto nomem;

954 955 956 957 958
	d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
				&mci->fake_inject_count);
	if (!d)
		goto nomem;

959 960 961 962 963 964
	d = debugfs_create_file("fake_inject", S_IWUSR, parent,
				&mci->dev,
				&debug_fake_inject_fops);
	if (!d)
		goto nomem;

965
	mci->debugfs = parent;
966 967 968 969 970 971 972
	return 0;
nomem:
	debugfs_remove(mci->debugfs);
	return -ENOMEM;
}
#endif

973 974 975 976 977 978 979 980 981 982
/*
 * Create a new Memory Controller kobject instance,
 *	mc<id> under the 'mc' directory
 *
 * Return:
 *	0	Success
 *	!0	Failure
 */
int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
{
983
	int i, err;
984

985 986 987 988 989 990 991
	/*
	 * The memory controller needs its own bus, in order to avoid
	 * namespace conflicts at /sys/bus/edac.
	 */
	mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
	if (!mci->bus.name)
		return -ENOMEM;
992
	edac_dbg(0, "creating bus %s\n", mci->bus.name);
993 994 995
	err = bus_register(&mci->bus);
	if (err < 0)
		return err;
996

997 998 999
	/* get the /sys/devices/system/edac subsys reference */
	mci->dev.type = &mci_attr_type;
	device_initialize(&mci->dev);
1000

1001
	mci->dev.parent = mci_pdev;
1002 1003 1004 1005 1006
	mci->dev.bus = &mci->bus;
	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
	dev_set_drvdata(&mci->dev, mci);
	pm_runtime_forbid(&mci->dev);

1007
	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1008 1009 1010 1011 1012
	err = device_add(&mci->dev);
	if (err < 0) {
		bus_unregister(&mci->bus);
		kfree(mci->bus.name);
		return err;
1013 1014
	}

1015 1016
	/*
	 * Create the dimm/rank devices
1017
	 */
1018
	for (i = 0; i < mci->tot_dimms; i++) {
1019
		struct dimm_info *dimm = mci->dimms[i];
1020 1021 1022 1023
		/* Only expose populated DIMMs */
		if (dimm->nr_pages == 0)
			continue;
#ifdef CONFIG_EDAC_DEBUG
1024
		edac_dbg(1, "creating dimm%d, located at ", i);
1025 1026 1027 1028 1029 1030 1031
		if (edac_debug_level >= 1) {
			int lay;
			for (lay = 0; lay < mci->n_layers; lay++)
				printk(KERN_CONT "%s %d ",
					edac_layer_name[mci->layers[lay].type],
					dimm->location[lay]);
			printk(KERN_CONT "\n");
1032
		}
1033
#endif
1034 1035
		err = edac_create_dimm_object(mci, dimm, i);
		if (err) {
1036
			edac_dbg(1, "failure: create dimm %d obj\n", i);
1037 1038
			goto fail;
		}
1039 1040
	}

1041
#ifdef CONFIG_EDAC_LEGACY_SYSFS
1042 1043 1044
	err = edac_create_csrow_objects(mci);
	if (err < 0)
		goto fail;
1045
#endif
1046

1047 1048 1049
#ifdef CONFIG_EDAC_DEBUG
	edac_create_debug_nodes(mci);
#endif
1050 1051
	return 0;

1052
fail:
1053
	for (i--; i >= 0; i--) {
1054
		struct dimm_info *dimm = mci->dimms[i];
1055 1056 1057 1058
		if (dimm->nr_pages == 0)
			continue;
		put_device(&dimm->dev);
		device_del(&dimm->dev);
1059
	}
1060 1061 1062 1063
	put_device(&mci->dev);
	device_del(&mci->dev);
	bus_unregister(&mci->bus);
	kfree(mci->bus.name);
1064 1065 1066 1067 1068 1069 1070 1071
	return err;
}

/*
 * remove a Memory Controller instance
 */
void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
{
1072
	int i;
1073

1074
	edac_dbg(0, "\n");
1075

1076 1077 1078
#ifdef CONFIG_EDAC_DEBUG
	debugfs_remove(mci->debugfs);
#endif
1079
#ifdef CONFIG_EDAC_LEGACY_SYSFS
1080
	edac_delete_csrow_objects(mci);
1081
#endif
1082

1083
	for (i = 0; i < mci->tot_dimms; i++) {
1084
		struct dimm_info *dimm = mci->dimms[i];
1085 1086
		if (dimm->nr_pages == 0)
			continue;
1087
		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1088 1089
		put_device(&dimm->dev);
		device_del(&dimm->dev);
1090
	}
1091
}
1092

1093 1094
void edac_unregister_sysfs(struct mem_ctl_info *mci)
{
1095
	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1096 1097 1098 1099 1100
	put_device(&mci->dev);
	device_del(&mci->dev);
	bus_unregister(&mci->bus);
	kfree(mci->bus.name);
}
1101

1102
static void mc_attr_release(struct device *dev)
1103
{
1104 1105 1106 1107 1108
	/*
	 * There's no container structure here, as this is just the mci
	 * parent device, used to create the /sys/devices/mc sysfs node.
	 * So, there are no attributes on it.
	 */
1109
	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1110
	kfree(dev);
1111
}
1112

1113 1114 1115
static struct device_type mc_attr_type = {
	.release	= mc_attr_release,
};
1116
/*
1117
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1118
 */
1119
int __init edac_mc_sysfs_init(void)
1120
{
1121
	struct bus_type *edac_subsys;
1122
	int err;
1123

1124 1125 1126
	/* get the /sys/devices/system/edac subsys reference */
	edac_subsys = edac_get_sysfs_subsys();
	if (edac_subsys == NULL) {
1127
		edac_dbg(1, "no edac_subsys\n");
1128
		return -EINVAL;
1129 1130
	}

1131 1132 1133 1134 1135 1136
	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);

	mci_pdev->bus = edac_subsys;
	mci_pdev->type = &mc_attr_type;
	device_initialize(mci_pdev);
	dev_set_name(mci_pdev, "mc");
1137

1138
	err = device_add(mci_pdev);
1139 1140
	if (err < 0)
		return err;
1141

1142
	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1143

1144 1145 1146
	return 0;
}

1147
void __exit edac_mc_sysfs_exit(void)
1148
{
1149 1150
	put_device(mci_pdev);
	device_del(mci_pdev);
1151
	edac_put_sysfs_subsys();
1152
}