bpf_jit_comp.c 30.7 KB
Newer Older
1 2
/* bpf_jit_comp.c : BPF JIT compiler
 *
3
 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4
 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */
#include <linux/netdevice.h>
#include <linux/filter.h>
13
#include <linux/if_vlan.h>
14
#include <asm/cacheflush.h>
L
Laura Abbott 已提交
15
#include <asm/set_memory.h>
16
#include <linux/bpf.h>
17 18 19 20 21 22

int bpf_jit_enable __read_mostly;

/*
 * assembly code in arch/x86/net/bpf_jit.S
 */
23
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
24
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
25
extern u8 sk_load_byte_positive_offset[];
26
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
27
extern u8 sk_load_byte_negative_offset[];
28

29
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
30 31 32 33 34 35 36 37 38 39 40 41
{
	if (len == 1)
		*ptr = bytes;
	else if (len == 2)
		*(u16 *)ptr = bytes;
	else {
		*(u32 *)ptr = bytes;
		barrier();
	}
	return ptr + len;
}

42 43
#define EMIT(bytes, len) \
	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
44 45 46 47 48

#define EMIT1(b1)		EMIT(b1, 1)
#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
49 50 51 52 53 54 55 56
#define EMIT1_off32(b1, off) \
	do {EMIT1(b1); EMIT(off, 4); } while (0)
#define EMIT2_off32(b1, b2, off) \
	do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
#define EMIT3_off32(b1, b2, b3, off) \
	do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
#define EMIT4_off32(b1, b2, b3, b4, off) \
	do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
57

58
static bool is_imm8(int value)
59 60 61 62
{
	return value <= 127 && value >= -128;
}

63
static bool is_simm32(s64 value)
64
{
65
	return value == (s64) (s32) value;
66 67
}

68 69 70 71
/* mov dst, src */
#define EMIT_mov(DST, SRC) \
	do {if (DST != SRC) \
		EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
	} while (0)

static int bpf_size_to_x86_bytes(int bpf_size)
{
	if (bpf_size == BPF_W)
		return 4;
	else if (bpf_size == BPF_H)
		return 2;
	else if (bpf_size == BPF_B)
		return 1;
	else if (bpf_size == BPF_DW)
		return 4; /* imm32 */
	else
		return 0;
}
87 88 89 90 91 92 93 94 95 96

/* list of x86 cond jumps opcodes (. + s8)
 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
 */
#define X86_JB  0x72
#define X86_JAE 0x73
#define X86_JE  0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA  0x77
97 98
#define X86_JGE 0x7D
#define X86_JG  0x7F
99

100
static void bpf_flush_icache(void *start, void *end)
101 102 103 104 105 106 107 108 109
{
	mm_segment_t old_fs = get_fs();

	set_fs(KERNEL_DS);
	smp_wmb();
	flush_icache_range((unsigned long)start, (unsigned long)end);
	set_fs(old_fs);
}

110 111
#define CHOOSE_LOAD_FUNC(K, func) \
	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
112

113
/* pick a register outside of BPF range for JIT internal work */
114
#define AUX_REG (MAX_BPF_JIT_REG + 1)
115

116 117 118 119 120 121 122 123
/* The following table maps BPF registers to x64 registers.
 *
 * x64 register r12 is unused, since if used as base address
 * register in load/store instructions, it always needs an
 * extra byte of encoding and is callee saved.
 *
 *  r9 caches skb->len - skb->data_len
 * r10 caches skb->data, and used for blinding (if enabled)
124 125 126 127 128 129 130 131 132 133 134 135 136
 */
static const int reg2hex[] = {
	[BPF_REG_0] = 0,  /* rax */
	[BPF_REG_1] = 7,  /* rdi */
	[BPF_REG_2] = 6,  /* rsi */
	[BPF_REG_3] = 2,  /* rdx */
	[BPF_REG_4] = 1,  /* rcx */
	[BPF_REG_5] = 0,  /* r8 */
	[BPF_REG_6] = 3,  /* rbx callee saved */
	[BPF_REG_7] = 5,  /* r13 callee saved */
	[BPF_REG_8] = 6,  /* r14 callee saved */
	[BPF_REG_9] = 7,  /* r15 callee saved */
	[BPF_REG_FP] = 5, /* rbp readonly */
137
	[BPF_REG_AX] = 2, /* r10 temp register */
138 139 140 141 142 143 144
	[AUX_REG] = 3,    /* r11 temp register */
};

/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
 * which need extra byte of encoding.
 * rax,rcx,...,rbp have simpler encoding
 */
145
static bool is_ereg(u32 reg)
146
{
147 148 149 150
	return (1 << reg) & (BIT(BPF_REG_5) |
			     BIT(AUX_REG) |
			     BIT(BPF_REG_7) |
			     BIT(BPF_REG_8) |
151 152
			     BIT(BPF_REG_9) |
			     BIT(BPF_REG_AX));
153 154 155
}

/* add modifiers if 'reg' maps to x64 registers r8..r15 */
156
static u8 add_1mod(u8 byte, u32 reg)
157 158 159 160 161 162
{
	if (is_ereg(reg))
		byte |= 1;
	return byte;
}

163
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
164 165 166 167 168 169 170 171
{
	if (is_ereg(r1))
		byte |= 1;
	if (is_ereg(r2))
		byte |= 4;
	return byte;
}

172
/* encode 'dst_reg' register into x64 opcode 'byte' */
173
static u8 add_1reg(u8 byte, u32 dst_reg)
174
{
175
	return byte + reg2hex[dst_reg];
176 177
}

178
/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
179
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
180
{
181
	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
182 183
}

184 185 186 187 188 189
static void jit_fill_hole(void *area, unsigned int size)
{
	/* fill whole space with int3 instructions */
	memset(area, 0xcc, size);
}

190
struct jit_context {
191
	int cleanup_addr; /* epilogue code offset */
192
	bool seen_ld_abs;
193
	bool seen_ax_reg;
194 195
};

196 197 198 199
/* maximum number of bytes emitted while JITing one eBPF insn */
#define BPF_MAX_INSN_SIZE	128
#define BPF_INSN_SAFETY		64

200 201 202 203 204
#define STACKSIZE \
	(MAX_BPF_STACK + \
	 32 /* space for rbx, r13, r14, r15 */ + \
	 8 /* space for skb_copy_bits() buffer */)

205
#define PROLOGUE_SIZE 48
206 207 208 209 210

/* emit x64 prologue code for BPF program and check it's size.
 * bpf_tail_call helper will skip it while jumping into another program
 */
static void emit_prologue(u8 **pprog)
211
{
212 213
	u8 *prog = *pprog;
	int cnt = 0;
214

215 216
	EMIT1(0x55); /* push rbp */
	EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
217

218 219
	/* sub rsp, STACKSIZE */
	EMIT3_off32(0x48, 0x81, 0xEC, STACKSIZE);
220 221 222 223

	/* all classic BPF filters use R6(rbx) save it */

	/* mov qword ptr [rbp-X],rbx */
224
	EMIT3_off32(0x48, 0x89, 0x9D, -STACKSIZE);
225

226
	/* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
227 228 229 230 231 232 233 234
	 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
	 * R8(r14). R9(r15) spill could be made conditional, but there is only
	 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
	 * The overhead of extra spill is negligible for any filter other
	 * than synthetic ones. Therefore not worth adding complexity.
	 */

	/* mov qword ptr [rbp-X],r13 */
235
	EMIT3_off32(0x4C, 0x89, 0xAD, -STACKSIZE + 8);
236
	/* mov qword ptr [rbp-X],r14 */
237
	EMIT3_off32(0x4C, 0x89, 0xB5, -STACKSIZE + 16);
238
	/* mov qword ptr [rbp-X],r15 */
239
	EMIT3_off32(0x4C, 0x89, 0xBD, -STACKSIZE + 24);
240

241 242 243 244 245
	/* Clear the tail call counter (tail_call_cnt): for eBPF tail calls
	 * we need to reset the counter to 0. It's done in two instructions,
	 * resetting rax register to 0 (xor on eax gets 0 extended), and
	 * moving it to the counter location.
	 */
246

247 248 249
	/* xor eax, eax */
	EMIT2(0x31, 0xc0);
	/* mov qword ptr [rbp-X], rax */
250 251 252 253 254 255 256 257 258 259 260 261
	EMIT3_off32(0x48, 0x89, 0x85, -STACKSIZE + 32);

	BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
	*pprog = prog;
}

/* generate the following code:
 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 *   if (index >= array->map.max_entries)
 *     goto out;
 *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
 *     goto out;
262
 *   prog = array->ptrs[index];
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
 *   if (prog == NULL)
 *     goto out;
 *   goto *(prog->bpf_func + prologue_size);
 * out:
 */
static void emit_bpf_tail_call(u8 **pprog)
{
	u8 *prog = *pprog;
	int label1, label2, label3;
	int cnt = 0;

	/* rdi - pointer to ctx
	 * rsi - pointer to bpf_array
	 * rdx - index in bpf_array
	 */

	/* if (index >= array->map.max_entries)
	 *   goto out;
	 */
	EMIT4(0x48, 0x8B, 0x46,                   /* mov rax, qword ptr [rsi + 16] */
	      offsetof(struct bpf_array, map.max_entries));
	EMIT3(0x48, 0x39, 0xD0);                  /* cmp rax, rdx */
285
#define OFFSET1 47 /* number of bytes to jump */
286 287 288 289 290 291 292 293
	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
	label1 = cnt;

	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
	 *   goto out;
	 */
	EMIT2_off32(0x8B, 0x85, -STACKSIZE + 36); /* mov eax, dword ptr [rbp - 516] */
	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
294
#define OFFSET2 36
295 296 297 298 299
	EMIT2(X86_JA, OFFSET2);                   /* ja out */
	label2 = cnt;
	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
	EMIT2_off32(0x89, 0x85, -STACKSIZE + 36); /* mov dword ptr [rbp - 516], eax */

300
	/* prog = array->ptrs[index]; */
301
	EMIT4_off32(0x48, 0x8D, 0x84, 0xD6,       /* lea rax, [rsi + rdx * 8 + offsetof(...)] */
302
		    offsetof(struct bpf_array, ptrs));
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	EMIT3(0x48, 0x8B, 0x00);                  /* mov rax, qword ptr [rax] */

	/* if (prog == NULL)
	 *   goto out;
	 */
	EMIT4(0x48, 0x83, 0xF8, 0x00);            /* cmp rax, 0 */
#define OFFSET3 10
	EMIT2(X86_JE, OFFSET3);                   /* je out */
	label3 = cnt;

	/* goto *(prog->bpf_func + prologue_size); */
	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
	      offsetof(struct bpf_prog, bpf_func));
	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */

	/* now we're ready to jump into next BPF program
	 * rdi == ctx (1st arg)
	 * rax == prog->bpf_func + prologue_size
	 */
	EMIT2(0xFF, 0xE0);                        /* jmp rax */

	/* out: */
	BUILD_BUG_ON(cnt - label1 != OFFSET1);
	BUILD_BUG_ON(cnt - label2 != OFFSET2);
	BUILD_BUG_ON(cnt - label3 != OFFSET3);
	*pprog = prog;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

static void emit_load_skb_data_hlen(u8 **pprog)
{
	u8 *prog = *pprog;
	int cnt = 0;

	/* r9d = skb->len - skb->data_len (headlen)
	 * r10 = skb->data
	 */
	/* mov %r9d, off32(%rdi) */
	EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len));

	/* sub %r9d, off32(%rdi) */
	EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len));

	/* mov %r10, off32(%rdi) */
	EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data));
	*pprog = prog;
}

351 352 353 354 355 356
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
		  int oldproglen, struct jit_context *ctx)
{
	struct bpf_insn *insn = bpf_prog->insnsi;
	int insn_cnt = bpf_prog->len;
	bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
357
	bool seen_ax_reg = ctx->seen_ax_reg | (oldproglen == 0);
358 359 360 361 362 363 364 365
	bool seen_exit = false;
	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
	int i, cnt = 0;
	int proglen = 0;
	u8 *prog = temp;

	emit_prologue(&prog);

366 367
	if (seen_ld_abs)
		emit_load_skb_data_hlen(&prog);
368 369

	for (i = 0; i < insn_cnt; i++, insn++) {
370 371 372
		const s32 imm32 = insn->imm;
		u32 dst_reg = insn->dst_reg;
		u32 src_reg = insn->src_reg;
373 374 375
		u8 b1 = 0, b2 = 0, b3 = 0;
		s64 jmp_offset;
		u8 jmp_cond;
376
		bool reload_skb_data;
377 378 379
		int ilen;
		u8 *func;

380 381 382
		if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
			ctx->seen_ax_reg = seen_ax_reg = true;

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		switch (insn->code) {
			/* ALU */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU64 | BPF_ADD | BPF_X:
		case BPF_ALU64 | BPF_SUB | BPF_X:
		case BPF_ALU64 | BPF_AND | BPF_X:
		case BPF_ALU64 | BPF_OR | BPF_X:
		case BPF_ALU64 | BPF_XOR | BPF_X:
			switch (BPF_OP(insn->code)) {
			case BPF_ADD: b2 = 0x01; break;
			case BPF_SUB: b2 = 0x29; break;
			case BPF_AND: b2 = 0x21; break;
			case BPF_OR: b2 = 0x09; break;
			case BPF_XOR: b2 = 0x31; break;
401
			}
402
			if (BPF_CLASS(insn->code) == BPF_ALU64)
403 404 405 406
				EMIT1(add_2mod(0x48, dst_reg, src_reg));
			else if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
407
			break;
408

409
			/* mov dst, src */
410
		case BPF_ALU64 | BPF_MOV | BPF_X:
411
			EMIT_mov(dst_reg, src_reg);
412 413
			break;

414
			/* mov32 dst, src */
415
		case BPF_ALU | BPF_MOV | BPF_X:
416 417 418
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
419
			break;
420

421
			/* neg dst */
422 423 424
		case BPF_ALU | BPF_NEG:
		case BPF_ALU64 | BPF_NEG:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
425 426 427 428
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
429 430 431 432 433 434 435 436 437 438 439 440 441
			break;

		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU64 | BPF_ADD | BPF_K:
		case BPF_ALU64 | BPF_SUB | BPF_K:
		case BPF_ALU64 | BPF_AND | BPF_K:
		case BPF_ALU64 | BPF_OR | BPF_K:
		case BPF_ALU64 | BPF_XOR | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
442 443 444
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
445 446 447 448 449 450 451 452 453

			switch (BPF_OP(insn->code)) {
			case BPF_ADD: b3 = 0xC0; break;
			case BPF_SUB: b3 = 0xE8; break;
			case BPF_AND: b3 = 0xE0; break;
			case BPF_OR: b3 = 0xC8; break;
			case BPF_XOR: b3 = 0xF0; break;
			}

454 455
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
456
			else
457
				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
458 459 460 461 462 463 464
			break;

		case BPF_ALU64 | BPF_MOV | BPF_K:
			/* optimization: if imm32 is positive,
			 * use 'mov eax, imm32' (which zero-extends imm32)
			 * to save 2 bytes
			 */
465
			if (imm32 < 0) {
466
				/* 'mov rax, imm32' sign extends imm32 */
467
				b1 = add_1mod(0x48, dst_reg);
468 469
				b2 = 0xC7;
				b3 = 0xC0;
470
				EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
471
				break;
472 473 474
			}

		case BPF_ALU | BPF_MOV | BPF_K:
475 476 477 478 479 480 481 482 483 484 485 486
			/* optimization: if imm32 is zero, use 'xor <dst>,<dst>'
			 * to save 3 bytes.
			 */
			if (imm32 == 0) {
				if (is_ereg(dst_reg))
					EMIT1(add_2mod(0x40, dst_reg, dst_reg));
				b2 = 0x31; /* xor */
				b3 = 0xC0;
				EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
				break;
			}

487
			/* mov %eax, imm32 */
488 489 490
			if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
			EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
491 492
			break;

493
		case BPF_LD | BPF_IMM | BPF_DW:
494 495 496 497 498 499 500 501 502 503 504 505 506 507
			/* optimization: if imm64 is zero, use 'xor <dst>,<dst>'
			 * to save 7 bytes.
			 */
			if (insn[0].imm == 0 && insn[1].imm == 0) {
				b1 = add_2mod(0x48, dst_reg, dst_reg);
				b2 = 0x31; /* xor */
				b3 = 0xC0;
				EMIT3(b1, b2, add_2reg(b3, dst_reg, dst_reg));

				insn++;
				i++;
				break;
			}

508 509 510 511 512 513 514 515 516
			/* movabsq %rax, imm64 */
			EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
			EMIT(insn[0].imm, 4);
			EMIT(insn[1].imm, 4);

			insn++;
			i++;
			break;

517
			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
518 519 520 521 522 523 524 525 526 527 528 529
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU64 | BPF_MOD | BPF_X:
		case BPF_ALU64 | BPF_DIV | BPF_X:
		case BPF_ALU64 | BPF_MOD | BPF_K:
		case BPF_ALU64 | BPF_DIV | BPF_K:
			EMIT1(0x50); /* push rax */
			EMIT1(0x52); /* push rdx */

			if (BPF_SRC(insn->code) == BPF_X)
530 531
				/* mov r11, src_reg */
				EMIT_mov(AUX_REG, src_reg);
532
			else
533 534
				/* mov r11, imm32 */
				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
535

536 537
			/* mov rax, dst_reg */
			EMIT_mov(BPF_REG_0, dst_reg);
538 539 540 541 542 543 544

			/* xor edx, edx
			 * equivalent to 'xor rdx, rdx', but one byte less
			 */
			EMIT2(0x31, 0xd2);

			if (BPF_SRC(insn->code) == BPF_X) {
545
				/* if (src_reg == 0) return 0 */
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

				/* cmp r11, 0 */
				EMIT4(0x49, 0x83, 0xFB, 0x00);

				/* jne .+9 (skip over pop, pop, xor and jmp) */
				EMIT2(X86_JNE, 1 + 1 + 2 + 5);
				EMIT1(0x5A); /* pop rdx */
				EMIT1(0x58); /* pop rax */
				EMIT2(0x31, 0xc0); /* xor eax, eax */

				/* jmp cleanup_addr
				 * addrs[i] - 11, because there are 11 bytes
				 * after this insn: div, mov, pop, pop, mov
				 */
				jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
				EMIT1_off32(0xE9, jmp_offset);
			}

			if (BPF_CLASS(insn->code) == BPF_ALU64)
				/* div r11 */
				EMIT3(0x49, 0xF7, 0xF3);
			else
				/* div r11d */
				EMIT3(0x41, 0xF7, 0xF3);

			if (BPF_OP(insn->code) == BPF_MOD)
				/* mov r11, rdx */
				EMIT3(0x49, 0x89, 0xD3);
			else
				/* mov r11, rax */
				EMIT3(0x49, 0x89, 0xC3);

			EMIT1(0x5A); /* pop rdx */
			EMIT1(0x58); /* pop rax */

581 582
			/* mov dst_reg, r11 */
			EMIT_mov(dst_reg, AUX_REG);
583 584 585 586 587 588 589 590 591
			break;

		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU64 | BPF_MUL | BPF_K:
		case BPF_ALU64 | BPF_MUL | BPF_X:
			EMIT1(0x50); /* push rax */
			EMIT1(0x52); /* push rdx */

592 593
			/* mov r11, dst_reg */
			EMIT_mov(AUX_REG, dst_reg);
594 595

			if (BPF_SRC(insn->code) == BPF_X)
596 597
				/* mov rax, src_reg */
				EMIT_mov(BPF_REG_0, src_reg);
598
			else
599 600
				/* mov rax, imm32 */
				EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
601 602 603 604 605 606 607 608 609 610 611 612 613 614

			if (BPF_CLASS(insn->code) == BPF_ALU64)
				EMIT1(add_1mod(0x48, AUX_REG));
			else if (is_ereg(AUX_REG))
				EMIT1(add_1mod(0x40, AUX_REG));
			/* mul(q) r11 */
			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));

			/* mov r11, rax */
			EMIT_mov(AUX_REG, BPF_REG_0);

			EMIT1(0x5A); /* pop rdx */
			EMIT1(0x58); /* pop rax */

615 616
			/* mov dst_reg, r11 */
			EMIT_mov(dst_reg, AUX_REG);
617 618 619 620 621 622 623 624 625 626
			break;

			/* shifts */
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_ARSH | BPF_K:
		case BPF_ALU64 | BPF_LSH | BPF_K:
		case BPF_ALU64 | BPF_RSH | BPF_K:
		case BPF_ALU64 | BPF_ARSH | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
627 628 629
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
630 631 632 633 634 635

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
636
			EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
637 638
			break;

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_ARSH | BPF_X:
		case BPF_ALU64 | BPF_LSH | BPF_X:
		case BPF_ALU64 | BPF_RSH | BPF_X:
		case BPF_ALU64 | BPF_ARSH | BPF_X:

			/* check for bad case when dst_reg == rcx */
			if (dst_reg == BPF_REG_4) {
				/* mov r11, dst_reg */
				EMIT_mov(AUX_REG, dst_reg);
				dst_reg = AUX_REG;
			}

			if (src_reg != BPF_REG_4) { /* common case */
				EMIT1(0x51); /* push rcx */

				/* mov rcx, src_reg */
				EMIT_mov(BPF_REG_4, src_reg);
			}

			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
			if (BPF_CLASS(insn->code) == BPF_ALU64)
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
			EMIT2(0xD3, add_1reg(b3, dst_reg));

			if (src_reg != BPF_REG_4)
				EMIT1(0x59); /* pop rcx */

			if (insn->dst_reg == BPF_REG_4)
				/* mov dst_reg, r11 */
				EMIT_mov(insn->dst_reg, AUX_REG);
			break;

681
		case BPF_ALU | BPF_END | BPF_FROM_BE:
682
			switch (imm32) {
683 684 685
			case 16:
				/* emit 'ror %ax, 8' to swap lower 2 bytes */
				EMIT1(0x66);
686
				if (is_ereg(dst_reg))
687
					EMIT1(0x41);
688
				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
689 690 691 692 693 694 695

				/* emit 'movzwl eax, ax' */
				if (is_ereg(dst_reg))
					EMIT3(0x45, 0x0F, 0xB7);
				else
					EMIT2(0x0F, 0xB7);
				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
696 697 698
				break;
			case 32:
				/* emit 'bswap eax' to swap lower 4 bytes */
699
				if (is_ereg(dst_reg))
700
					EMIT2(0x41, 0x0F);
701
				else
702
					EMIT1(0x0F);
703
				EMIT1(add_1reg(0xC8, dst_reg));
704
				break;
705 706
			case 64:
				/* emit 'bswap rax' to swap 8 bytes */
707 708
				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
				      add_1reg(0xC8, dst_reg));
709 710
				break;
			}
711 712 713
			break;

		case BPF_ALU | BPF_END | BPF_FROM_LE:
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
			switch (imm32) {
			case 16:
				/* emit 'movzwl eax, ax' to zero extend 16-bit
				 * into 64 bit
				 */
				if (is_ereg(dst_reg))
					EMIT3(0x45, 0x0F, 0xB7);
				else
					EMIT2(0x0F, 0xB7);
				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
				break;
			case 32:
				/* emit 'mov eax, eax' to clear upper 32-bits */
				if (is_ereg(dst_reg))
					EMIT1(0x45);
				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
				break;
			case 64:
				/* nop */
				break;
			}
735 736
			break;

737
			/* ST: *(u8*)(dst_reg + off) = imm */
738
		case BPF_ST | BPF_MEM | BPF_B:
739
			if (is_ereg(dst_reg))
740 741 742 743 744
				EMIT2(0x41, 0xC6);
			else
				EMIT1(0xC6);
			goto st;
		case BPF_ST | BPF_MEM | BPF_H:
745
			if (is_ereg(dst_reg))
746 747 748 749 750
				EMIT3(0x66, 0x41, 0xC7);
			else
				EMIT2(0x66, 0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_W:
751
			if (is_ereg(dst_reg))
752 753 754 755 756
				EMIT2(0x41, 0xC7);
			else
				EMIT1(0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_DW:
757
			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
758 759

st:			if (is_imm8(insn->off))
760
				EMIT2(add_1reg(0x40, dst_reg), insn->off);
761
			else
762
				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
763

764
			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
765 766
			break;

767
			/* STX: *(u8*)(dst_reg + off) = src_reg */
768 769
		case BPF_STX | BPF_MEM | BPF_B:
			/* emit 'mov byte ptr [rax + off], al' */
770
			if (is_ereg(dst_reg) || is_ereg(src_reg) ||
771
			    /* have to add extra byte for x86 SIL, DIL regs */
772 773
			    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
774 775 776 777
			else
				EMIT1(0x88);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_H:
778 779
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
780 781 782 783
			else
				EMIT2(0x66, 0x89);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_W:
784 785
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
786 787 788 789
			else
				EMIT1(0x89);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_DW:
790
			EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
791
stx:			if (is_imm8(insn->off))
792
				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
793
			else
794
				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
795 796 797
					    insn->off);
			break;

798
			/* LDX: dst_reg = *(u8*)(src_reg + off) */
799 800
		case BPF_LDX | BPF_MEM | BPF_B:
			/* emit 'movzx rax, byte ptr [rax + off]' */
801
			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
802 803 804
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_H:
			/* emit 'movzx rax, word ptr [rax + off]' */
805
			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
806 807 808
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_W:
			/* emit 'mov eax, dword ptr [rax+0x14]' */
809 810
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
811 812 813 814 815
			else
				EMIT1(0x8B);
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_DW:
			/* emit 'mov rax, qword ptr [rax+0x14]' */
816
			EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
817 818 819 820 821
ldx:			/* if insn->off == 0 we can save one extra byte, but
			 * special case of x86 r13 which always needs an offset
			 * is not worth the hassle
			 */
			if (is_imm8(insn->off))
822
				EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
823
			else
824
				EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
825 826 827
					    insn->off);
			break;

828
			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
829 830
		case BPF_STX | BPF_XADD | BPF_W:
			/* emit 'lock add dword ptr [rax + off], eax' */
831 832
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
833 834 835 836
			else
				EMIT2(0xF0, 0x01);
			goto xadd;
		case BPF_STX | BPF_XADD | BPF_DW:
837
			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
838
xadd:			if (is_imm8(insn->off))
839
				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
840
			else
841
				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
842 843 844 845 846
					    insn->off);
			break;

			/* call */
		case BPF_JMP | BPF_CALL:
847
			func = (u8 *) __bpf_call_base + imm32;
848
			jmp_offset = func - (image + addrs[i]);
849
			if (seen_ld_abs) {
850
				reload_skb_data = bpf_helper_changes_pkt_data(func);
851 852 853 854 855 856 857 858 859 860 861
				if (reload_skb_data) {
					EMIT1(0x57); /* push %rdi */
					jmp_offset += 22; /* pop, mov, sub, mov */
				} else {
					EMIT2(0x41, 0x52); /* push %r10 */
					EMIT2(0x41, 0x51); /* push %r9 */
					/* need to adjust jmp offset, since
					 * pop %r9, pop %r10 take 4 bytes after call insn
					 */
					jmp_offset += 4;
				}
862
			}
863
			if (!imm32 || !is_simm32(jmp_offset)) {
864
				pr_err("unsupported bpf func %d addr %p image %p\n",
865
				       imm32, func, image);
866 867 868
				return -EINVAL;
			}
			EMIT1_off32(0xE8, jmp_offset);
869
			if (seen_ld_abs) {
870 871 872 873 874 875 876
				if (reload_skb_data) {
					EMIT1(0x5F); /* pop %rdi */
					emit_load_skb_data_hlen(&prog);
				} else {
					EMIT2(0x41, 0x59); /* pop %r9 */
					EMIT2(0x41, 0x5A); /* pop %r10 */
				}
877 878 879
			}
			break;

880 881 882 883
		case BPF_JMP | BPF_CALL | BPF_X:
			emit_bpf_tail_call(&prog);
			break;

884 885 886 887 888 889 890
			/* cond jump */
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JNE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JSGT | BPF_X:
		case BPF_JMP | BPF_JSGE | BPF_X:
891 892 893
			/* cmp dst_reg, src_reg */
			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
			      add_2reg(0xC0, dst_reg, src_reg));
894 895 896
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_X:
897 898 899
			/* test dst_reg, src_reg */
			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
			      add_2reg(0xC0, dst_reg, src_reg));
900 901 902
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_K:
903 904 905
			/* test dst_reg, imm32 */
			EMIT1(add_1mod(0x48, dst_reg));
			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
906 907 908 909 910 911 912 913
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JNE | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JSGT | BPF_K:
		case BPF_JMP | BPF_JSGE | BPF_K:
914 915
			/* cmp dst_reg, imm8/32 */
			EMIT1(add_1mod(0x48, dst_reg));
916

917 918
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
919
			else
920
				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

emit_cond_jmp:		/* convert BPF opcode to x86 */
			switch (BPF_OP(insn->code)) {
			case BPF_JEQ:
				jmp_cond = X86_JE;
				break;
			case BPF_JSET:
			case BPF_JNE:
				jmp_cond = X86_JNE;
				break;
			case BPF_JGT:
				/* GT is unsigned '>', JA in x86 */
				jmp_cond = X86_JA;
				break;
			case BPF_JGE:
				/* GE is unsigned '>=', JAE in x86 */
				jmp_cond = X86_JAE;
				break;
			case BPF_JSGT:
				/* signed '>', GT in x86 */
				jmp_cond = X86_JG;
				break;
			case BPF_JSGE:
				/* signed '>=', GE in x86 */
				jmp_cond = X86_JGE;
				break;
			default: /* to silence gcc warning */
				return -EFAULT;
			}
			jmp_offset = addrs[i + insn->off] - addrs[i];
			if (is_imm8(jmp_offset)) {
				EMIT2(jmp_cond, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
			} else {
				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}

			break;
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
		case BPF_JMP | BPF_JA:
			jmp_offset = addrs[i + insn->off] - addrs[i];
			if (!jmp_offset)
				/* optimize out nop jumps */
				break;
emit_jmp:
			if (is_imm8(jmp_offset)) {
				EMIT2(0xEB, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT1_off32(0xE9, jmp_offset);
			} else {
				pr_err("jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}
			break;

		case BPF_LD | BPF_IND | BPF_W:
			func = sk_load_word;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_W:
982
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
983 984
common_load:
			ctx->seen_ld_abs = seen_ld_abs = true;
985 986 987
			jmp_offset = func - (image + addrs[i]);
			if (!func || !is_simm32(jmp_offset)) {
				pr_err("unsupported bpf func %d addr %p image %p\n",
988
				       imm32, func, image);
989 990 991 992
				return -EINVAL;
			}
			if (BPF_MODE(insn->code) == BPF_ABS) {
				/* mov %esi, imm32 */
993
				EMIT1_off32(0xBE, imm32);
994
			} else {
995 996 997 998
				/* mov %rsi, src_reg */
				EMIT_mov(BPF_REG_2, src_reg);
				if (imm32) {
					if (is_imm8(imm32))
999
						/* add %esi, imm8 */
1000
						EMIT3(0x83, 0xC6, imm32);
1001
					else
1002
						/* add %esi, imm32 */
1003
						EMIT2_off32(0x81, 0xC6, imm32);
1004
				}
1005 1006 1007 1008 1009 1010
			}
			/* skb pointer is in R6 (%rbx), it will be copied into
			 * %rdi if skb_copy_bits() call is necessary.
			 * sk_load_* helpers also use %r10 and %r9d.
			 * See bpf_jit.S
			 */
1011 1012 1013 1014
			if (seen_ax_reg)
				/* r10 = skb->data, mov %r10, off32(%rbx) */
				EMIT3_off32(0x4c, 0x8b, 0x93,
					    offsetof(struct sk_buff, data));
1015 1016 1017 1018 1019 1020 1021
			EMIT1_off32(0xE8, jmp_offset); /* call */
			break;

		case BPF_LD | BPF_IND | BPF_H:
			func = sk_load_half;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_H:
1022
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
1023 1024 1025 1026 1027
			goto common_load;
		case BPF_LD | BPF_IND | BPF_B:
			func = sk_load_byte;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_B:
1028
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
1029 1030 1031
			goto common_load;

		case BPF_JMP | BPF_EXIT:
1032
			if (seen_exit) {
1033 1034 1035
				jmp_offset = ctx->cleanup_addr - addrs[i];
				goto emit_jmp;
			}
1036
			seen_exit = true;
1037 1038 1039
			/* update cleanup_addr */
			ctx->cleanup_addr = proglen;
			/* mov rbx, qword ptr [rbp-X] */
1040
			EMIT3_off32(0x48, 0x8B, 0x9D, -STACKSIZE);
1041
			/* mov r13, qword ptr [rbp-X] */
1042
			EMIT3_off32(0x4C, 0x8B, 0xAD, -STACKSIZE + 8);
1043
			/* mov r14, qword ptr [rbp-X] */
1044
			EMIT3_off32(0x4C, 0x8B, 0xB5, -STACKSIZE + 16);
1045
			/* mov r15, qword ptr [rbp-X] */
1046
			EMIT3_off32(0x4C, 0x8B, 0xBD, -STACKSIZE + 24);
1047 1048 1049 1050 1051

			EMIT1(0xC9); /* leave */
			EMIT1(0xC3); /* ret */
			break;

1052
		default:
1053 1054 1055
			/* By design x64 JIT should support all BPF instructions
			 * This error will be seen if new instruction was added
			 * to interpreter, but not to JIT
1056
			 * or if there is junk in bpf_prog
1057 1058
			 */
			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1059 1060
			return -EINVAL;
		}
1061

1062
		ilen = prog - temp;
1063
		if (ilen > BPF_MAX_INSN_SIZE) {
1064
			pr_err("bpf_jit: fatal insn size error\n");
1065 1066 1067
			return -EFAULT;
		}

1068 1069
		if (image) {
			if (unlikely(proglen + ilen > oldproglen)) {
1070
				pr_err("bpf_jit: fatal error\n");
1071
				return -EFAULT;
1072
			}
1073
			memcpy(image + proglen, temp, ilen);
1074
		}
1075 1076 1077 1078 1079 1080 1081
		proglen += ilen;
		addrs[i] = proglen;
		prog = temp;
	}
	return proglen;
}

1082
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1083 1084
{
	struct bpf_binary_header *header = NULL;
1085
	struct bpf_prog *tmp, *orig_prog = prog;
1086 1087
	int proglen, oldproglen = 0;
	struct jit_context ctx = {};
1088
	bool tmp_blinded = false;
1089 1090 1091 1092 1093 1094
	u8 *image = NULL;
	int *addrs;
	int pass;
	int i;

	if (!bpf_jit_enable)
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		return orig_prog;

	tmp = bpf_jit_blind_constants(prog);
	/* If blinding was requested and we failed during blinding,
	 * we must fall back to the interpreter.
	 */
	if (IS_ERR(tmp))
		return orig_prog;
	if (tmp != prog) {
		tmp_blinded = true;
		prog = tmp;
	}
1107

1108
	addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
1109 1110 1111 1112
	if (!addrs) {
		prog = orig_prog;
		goto out;
	}
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	/* Before first pass, make a rough estimation of addrs[]
	 * each bpf instruction is translated to less than 64 bytes
	 */
	for (proglen = 0, i = 0; i < prog->len; i++) {
		proglen += 64;
		addrs[i] = proglen;
	}
	ctx.cleanup_addr = proglen;

1123 1124 1125 1126 1127 1128
	/* JITed image shrinks with every pass and the loop iterates
	 * until the image stops shrinking. Very large bpf programs
	 * may converge on the last pass. In such case do one more
	 * pass to emit the final image
	 */
	for (pass = 0; pass < 10 || image; pass++) {
1129 1130 1131 1132
		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
		if (proglen <= 0) {
			image = NULL;
			if (header)
1133
				bpf_jit_binary_free(header);
1134 1135
			prog = orig_prog;
			goto out_addrs;
1136
		}
1137
		if (image) {
1138
			if (proglen != oldproglen) {
1139 1140
				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
				       proglen, oldproglen);
1141 1142
				prog = orig_prog;
				goto out_addrs;
1143
			}
1144 1145 1146
			break;
		}
		if (proglen == oldproglen) {
1147 1148
			header = bpf_jit_binary_alloc(proglen, &image,
						      1, jit_fill_hole);
1149 1150 1151 1152
			if (!header) {
				prog = orig_prog;
				goto out_addrs;
			}
1153 1154 1155
		}
		oldproglen = proglen;
	}
1156

1157
	if (bpf_jit_enable > 1)
1158
		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1159 1160

	if (image) {
1161
		bpf_flush_icache(header, image + proglen);
1162
		bpf_jit_binary_lock_ro(header);
1163
		prog->bpf_func = (void *)image;
1164
		prog->jited = 1;
1165 1166
	} else {
		prog = orig_prog;
1167
	}
1168 1169

out_addrs:
1170
	kfree(addrs);
1171 1172 1173 1174
out:
	if (tmp_blinded)
		bpf_jit_prog_release_other(prog, prog == orig_prog ?
					   tmp : orig_prog);
1175
	return prog;
1176
}