bpf_jit_comp.c 25.8 KB
Newer Older
1 2
/* bpf_jit_comp.c : BPF JIT compiler
 *
3
 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4
 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */
#include <linux/netdevice.h>
#include <linux/filter.h>
13
#include <linux/if_vlan.h>
14
#include <asm/cacheflush.h>
15 16 17 18 19 20

int bpf_jit_enable __read_mostly;

/*
 * assembly code in arch/x86/net/bpf_jit.S
 */
21
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
22
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
23
extern u8 sk_load_byte_positive_offset[];
24
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
25
extern u8 sk_load_byte_negative_offset[];
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
{
	if (len == 1)
		*ptr = bytes;
	else if (len == 2)
		*(u16 *)ptr = bytes;
	else {
		*(u32 *)ptr = bytes;
		barrier();
	}
	return ptr + len;
}

#define EMIT(bytes, len)	do { prog = emit_code(prog, bytes, len); } while (0)

#define EMIT1(b1)		EMIT(b1, 1)
#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
46 47 48 49 50 51 52 53
#define EMIT1_off32(b1, off) \
	do {EMIT1(b1); EMIT(off, 4); } while (0)
#define EMIT2_off32(b1, b2, off) \
	do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
#define EMIT3_off32(b1, b2, b3, off) \
	do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
#define EMIT4_off32(b1, b2, b3, b4, off) \
	do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
54 55 56 57 58 59

static inline bool is_imm8(int value)
{
	return value <= 127 && value >= -128;
}

60
static inline bool is_simm32(s64 value)
61
{
62
	return value == (s64) (s32) value;
63 64
}

65 66 67 68
/* mov dst, src */
#define EMIT_mov(DST, SRC) \
	do {if (DST != SRC) \
		EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
	} while (0)

static int bpf_size_to_x86_bytes(int bpf_size)
{
	if (bpf_size == BPF_W)
		return 4;
	else if (bpf_size == BPF_H)
		return 2;
	else if (bpf_size == BPF_B)
		return 1;
	else if (bpf_size == BPF_DW)
		return 4; /* imm32 */
	else
		return 0;
}
84 85 86 87 88 89 90 91 92 93

/* list of x86 cond jumps opcodes (. + s8)
 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
 */
#define X86_JB  0x72
#define X86_JAE 0x73
#define X86_JE  0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA  0x77
94 95
#define X86_JGE 0x7D
#define X86_JG  0x7F
96 97 98 99 100 101 102 103 104 105 106

static inline void bpf_flush_icache(void *start, void *end)
{
	mm_segment_t old_fs = get_fs();

	set_fs(KERNEL_DS);
	smp_wmb();
	flush_icache_range((unsigned long)start, (unsigned long)end);
	set_fs(old_fs);
}

107 108
#define CHOOSE_LOAD_FUNC(K, func) \
	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/* pick a register outside of BPF range for JIT internal work */
#define AUX_REG (MAX_BPF_REG + 1)

/* the following table maps BPF registers to x64 registers.
 * x64 register r12 is unused, since if used as base address register
 * in load/store instructions, it always needs an extra byte of encoding
 */
static const int reg2hex[] = {
	[BPF_REG_0] = 0,  /* rax */
	[BPF_REG_1] = 7,  /* rdi */
	[BPF_REG_2] = 6,  /* rsi */
	[BPF_REG_3] = 2,  /* rdx */
	[BPF_REG_4] = 1,  /* rcx */
	[BPF_REG_5] = 0,  /* r8 */
	[BPF_REG_6] = 3,  /* rbx callee saved */
	[BPF_REG_7] = 5,  /* r13 callee saved */
	[BPF_REG_8] = 6,  /* r14 callee saved */
	[BPF_REG_9] = 7,  /* r15 callee saved */
	[BPF_REG_FP] = 5, /* rbp readonly */
	[AUX_REG] = 3,    /* r11 temp register */
};

/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
 * which need extra byte of encoding.
 * rax,rcx,...,rbp have simpler encoding
 */
static inline bool is_ereg(u32 reg)
{
	if (reg == BPF_REG_5 || reg == AUX_REG ||
	    (reg >= BPF_REG_7 && reg <= BPF_REG_9))
		return true;
	else
		return false;
}

/* add modifiers if 'reg' maps to x64 registers r8..r15 */
static inline u8 add_1mod(u8 byte, u32 reg)
{
	if (is_ereg(reg))
		byte |= 1;
	return byte;
}

static inline u8 add_2mod(u8 byte, u32 r1, u32 r2)
{
	if (is_ereg(r1))
		byte |= 1;
	if (is_ereg(r2))
		byte |= 4;
	return byte;
}

162 163
/* encode 'dst_reg' register into x64 opcode 'byte' */
static inline u8 add_1reg(u8 byte, u32 dst_reg)
164
{
165
	return byte + reg2hex[dst_reg];
166 167
}

168 169
/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
static inline u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
170
{
171
	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
172 173
}

174 175 176 177 178 179
static void jit_fill_hole(void *area, unsigned int size)
{
	/* fill whole space with int3 instructions */
	memset(area, 0xcc, size);
}

180 181
struct jit_context {
	unsigned int cleanup_addr; /* epilogue code offset */
182
	bool seen_ld_abs;
183 184
};

185 186 187 188
/* maximum number of bytes emitted while JITing one eBPF insn */
#define BPF_MAX_INSN_SIZE	128
#define BPF_INSN_SAFETY		64

189
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
190
		  int oldproglen, struct jit_context *ctx)
191
{
192
	struct bpf_insn *insn = bpf_prog->insnsi;
193
	int insn_cnt = bpf_prog->len;
194 195
	bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
196 197 198 199 200 201
	int i;
	int proglen = 0;
	u8 *prog = temp;
	int stacksize = MAX_BPF_STACK +
		32 /* space for rbx, r13, r14, r15 */ +
		8 /* space for skb_copy_bits() buffer */;
202

203 204
	EMIT1(0x55); /* push rbp */
	EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
205

206 207 208 209 210 211 212 213
	/* sub rsp, stacksize */
	EMIT3_off32(0x48, 0x81, 0xEC, stacksize);

	/* all classic BPF filters use R6(rbx) save it */

	/* mov qword ptr [rbp-X],rbx */
	EMIT3_off32(0x48, 0x89, 0x9D, -stacksize);

214
	/* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
	 * R8(r14). R9(r15) spill could be made conditional, but there is only
	 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
	 * The overhead of extra spill is negligible for any filter other
	 * than synthetic ones. Therefore not worth adding complexity.
	 */

	/* mov qword ptr [rbp-X],r13 */
	EMIT3_off32(0x4C, 0x89, 0xAD, -stacksize + 8);
	/* mov qword ptr [rbp-X],r14 */
	EMIT3_off32(0x4C, 0x89, 0xB5, -stacksize + 16);
	/* mov qword ptr [rbp-X],r15 */
	EMIT3_off32(0x4C, 0x89, 0xBD, -stacksize + 24);

	/* clear A and X registers */
	EMIT2(0x31, 0xc0); /* xor eax, eax */
	EMIT3(0x4D, 0x31, 0xED); /* xor r13, r13 */

233
	if (seen_ld_abs) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
		/* r9d : skb->len - skb->data_len (headlen)
		 * r10 : skb->data
		 */
		if (is_imm8(offsetof(struct sk_buff, len)))
			/* mov %r9d, off8(%rdi) */
			EMIT4(0x44, 0x8b, 0x4f,
			      offsetof(struct sk_buff, len));
		else
			/* mov %r9d, off32(%rdi) */
			EMIT3_off32(0x44, 0x8b, 0x8f,
				    offsetof(struct sk_buff, len));

		if (is_imm8(offsetof(struct sk_buff, data_len)))
			/* sub %r9d, off8(%rdi) */
			EMIT4(0x44, 0x2b, 0x4f,
			      offsetof(struct sk_buff, data_len));
		else
			EMIT3_off32(0x44, 0x2b, 0x8f,
				    offsetof(struct sk_buff, data_len));

		if (is_imm8(offsetof(struct sk_buff, data)))
			/* mov %r10, off8(%rdi) */
			EMIT4(0x4c, 0x8b, 0x57,
			      offsetof(struct sk_buff, data));
		else
			/* mov %r10, off32(%rdi) */
			EMIT3_off32(0x4c, 0x8b, 0x97,
				    offsetof(struct sk_buff, data));
	}

	for (i = 0; i < insn_cnt; i++, insn++) {
265 266 267
		const s32 imm32 = insn->imm;
		u32 dst_reg = insn->dst_reg;
		u32 src_reg = insn->src_reg;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		u8 b1 = 0, b2 = 0, b3 = 0;
		s64 jmp_offset;
		u8 jmp_cond;
		int ilen;
		u8 *func;

		switch (insn->code) {
			/* ALU */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU64 | BPF_ADD | BPF_X:
		case BPF_ALU64 | BPF_SUB | BPF_X:
		case BPF_ALU64 | BPF_AND | BPF_X:
		case BPF_ALU64 | BPF_OR | BPF_X:
		case BPF_ALU64 | BPF_XOR | BPF_X:
			switch (BPF_OP(insn->code)) {
			case BPF_ADD: b2 = 0x01; break;
			case BPF_SUB: b2 = 0x29; break;
			case BPF_AND: b2 = 0x21; break;
			case BPF_OR: b2 = 0x09; break;
			case BPF_XOR: b2 = 0x31; break;
292
			}
293
			if (BPF_CLASS(insn->code) == BPF_ALU64)
294 295 296 297
				EMIT1(add_2mod(0x48, dst_reg, src_reg));
			else if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
298
			break;
299

300
			/* mov dst, src */
301
		case BPF_ALU64 | BPF_MOV | BPF_X:
302
			EMIT_mov(dst_reg, src_reg);
303 304
			break;

305
			/* mov32 dst, src */
306
		case BPF_ALU | BPF_MOV | BPF_X:
307 308 309
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
310
			break;
311

312
			/* neg dst */
313 314 315
		case BPF_ALU | BPF_NEG:
		case BPF_ALU64 | BPF_NEG:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
316 317 318 319
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
320 321 322 323 324 325 326 327 328 329 330 331 332
			break;

		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU64 | BPF_ADD | BPF_K:
		case BPF_ALU64 | BPF_SUB | BPF_K:
		case BPF_ALU64 | BPF_AND | BPF_K:
		case BPF_ALU64 | BPF_OR | BPF_K:
		case BPF_ALU64 | BPF_XOR | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
333 334 335
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
336 337 338 339 340 341 342 343 344

			switch (BPF_OP(insn->code)) {
			case BPF_ADD: b3 = 0xC0; break;
			case BPF_SUB: b3 = 0xE8; break;
			case BPF_AND: b3 = 0xE0; break;
			case BPF_OR: b3 = 0xC8; break;
			case BPF_XOR: b3 = 0xF0; break;
			}

345 346
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
347
			else
348
				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
349 350 351 352 353 354 355
			break;

		case BPF_ALU64 | BPF_MOV | BPF_K:
			/* optimization: if imm32 is positive,
			 * use 'mov eax, imm32' (which zero-extends imm32)
			 * to save 2 bytes
			 */
356
			if (imm32 < 0) {
357
				/* 'mov rax, imm32' sign extends imm32 */
358
				b1 = add_1mod(0x48, dst_reg);
359 360
				b2 = 0xC7;
				b3 = 0xC0;
361
				EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
362
				break;
363 364 365 366
			}

		case BPF_ALU | BPF_MOV | BPF_K:
			/* mov %eax, imm32 */
367 368 369
			if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
			EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
370 371
			break;

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
		case BPF_LD | BPF_IMM | BPF_DW:
			if (insn[1].code != 0 || insn[1].src_reg != 0 ||
			    insn[1].dst_reg != 0 || insn[1].off != 0) {
				/* verifier must catch invalid insns */
				pr_err("invalid BPF_LD_IMM64 insn\n");
				return -EINVAL;
			}

			/* movabsq %rax, imm64 */
			EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
			EMIT(insn[0].imm, 4);
			EMIT(insn[1].imm, 4);

			insn++;
			i++;
			break;

389
			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
390 391 392 393 394 395 396 397 398 399 400 401
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU64 | BPF_MOD | BPF_X:
		case BPF_ALU64 | BPF_DIV | BPF_X:
		case BPF_ALU64 | BPF_MOD | BPF_K:
		case BPF_ALU64 | BPF_DIV | BPF_K:
			EMIT1(0x50); /* push rax */
			EMIT1(0x52); /* push rdx */

			if (BPF_SRC(insn->code) == BPF_X)
402 403
				/* mov r11, src_reg */
				EMIT_mov(AUX_REG, src_reg);
404
			else
405 406
				/* mov r11, imm32 */
				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
407

408 409
			/* mov rax, dst_reg */
			EMIT_mov(BPF_REG_0, dst_reg);
410 411 412 413 414 415 416

			/* xor edx, edx
			 * equivalent to 'xor rdx, rdx', but one byte less
			 */
			EMIT2(0x31, 0xd2);

			if (BPF_SRC(insn->code) == BPF_X) {
417
				/* if (src_reg == 0) return 0 */
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

				/* cmp r11, 0 */
				EMIT4(0x49, 0x83, 0xFB, 0x00);

				/* jne .+9 (skip over pop, pop, xor and jmp) */
				EMIT2(X86_JNE, 1 + 1 + 2 + 5);
				EMIT1(0x5A); /* pop rdx */
				EMIT1(0x58); /* pop rax */
				EMIT2(0x31, 0xc0); /* xor eax, eax */

				/* jmp cleanup_addr
				 * addrs[i] - 11, because there are 11 bytes
				 * after this insn: div, mov, pop, pop, mov
				 */
				jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
				EMIT1_off32(0xE9, jmp_offset);
			}

			if (BPF_CLASS(insn->code) == BPF_ALU64)
				/* div r11 */
				EMIT3(0x49, 0xF7, 0xF3);
			else
				/* div r11d */
				EMIT3(0x41, 0xF7, 0xF3);

			if (BPF_OP(insn->code) == BPF_MOD)
				/* mov r11, rdx */
				EMIT3(0x49, 0x89, 0xD3);
			else
				/* mov r11, rax */
				EMIT3(0x49, 0x89, 0xC3);

			EMIT1(0x5A); /* pop rdx */
			EMIT1(0x58); /* pop rax */

453 454
			/* mov dst_reg, r11 */
			EMIT_mov(dst_reg, AUX_REG);
455 456 457 458 459 460 461 462 463
			break;

		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU64 | BPF_MUL | BPF_K:
		case BPF_ALU64 | BPF_MUL | BPF_X:
			EMIT1(0x50); /* push rax */
			EMIT1(0x52); /* push rdx */

464 465
			/* mov r11, dst_reg */
			EMIT_mov(AUX_REG, dst_reg);
466 467

			if (BPF_SRC(insn->code) == BPF_X)
468 469
				/* mov rax, src_reg */
				EMIT_mov(BPF_REG_0, src_reg);
470
			else
471 472
				/* mov rax, imm32 */
				EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
473 474 475 476 477 478 479 480 481 482 483 484 485 486

			if (BPF_CLASS(insn->code) == BPF_ALU64)
				EMIT1(add_1mod(0x48, AUX_REG));
			else if (is_ereg(AUX_REG))
				EMIT1(add_1mod(0x40, AUX_REG));
			/* mul(q) r11 */
			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));

			/* mov r11, rax */
			EMIT_mov(AUX_REG, BPF_REG_0);

			EMIT1(0x5A); /* pop rdx */
			EMIT1(0x58); /* pop rax */

487 488
			/* mov dst_reg, r11 */
			EMIT_mov(dst_reg, AUX_REG);
489 490 491 492 493 494 495 496 497 498
			break;

			/* shifts */
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_ARSH | BPF_K:
		case BPF_ALU64 | BPF_LSH | BPF_K:
		case BPF_ALU64 | BPF_RSH | BPF_K:
		case BPF_ALU64 | BPF_ARSH | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
499 500 501
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
502 503 504 505 506 507

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
508
			EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
509 510
			break;

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_ARSH | BPF_X:
		case BPF_ALU64 | BPF_LSH | BPF_X:
		case BPF_ALU64 | BPF_RSH | BPF_X:
		case BPF_ALU64 | BPF_ARSH | BPF_X:

			/* check for bad case when dst_reg == rcx */
			if (dst_reg == BPF_REG_4) {
				/* mov r11, dst_reg */
				EMIT_mov(AUX_REG, dst_reg);
				dst_reg = AUX_REG;
			}

			if (src_reg != BPF_REG_4) { /* common case */
				EMIT1(0x51); /* push rcx */

				/* mov rcx, src_reg */
				EMIT_mov(BPF_REG_4, src_reg);
			}

			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
			if (BPF_CLASS(insn->code) == BPF_ALU64)
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
			EMIT2(0xD3, add_1reg(b3, dst_reg));

			if (src_reg != BPF_REG_4)
				EMIT1(0x59); /* pop rcx */

			if (insn->dst_reg == BPF_REG_4)
				/* mov dst_reg, r11 */
				EMIT_mov(insn->dst_reg, AUX_REG);
			break;

553
		case BPF_ALU | BPF_END | BPF_FROM_BE:
554
			switch (imm32) {
555 556 557
			case 16:
				/* emit 'ror %ax, 8' to swap lower 2 bytes */
				EMIT1(0x66);
558
				if (is_ereg(dst_reg))
559
					EMIT1(0x41);
560
				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
561 562 563
				break;
			case 32:
				/* emit 'bswap eax' to swap lower 4 bytes */
564
				if (is_ereg(dst_reg))
565
					EMIT2(0x41, 0x0F);
566
				else
567
					EMIT1(0x0F);
568
				EMIT1(add_1reg(0xC8, dst_reg));
569
				break;
570 571
			case 64:
				/* emit 'bswap rax' to swap 8 bytes */
572 573
				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
				      add_1reg(0xC8, dst_reg));
574 575
				break;
			}
576 577 578 579 580
			break;

		case BPF_ALU | BPF_END | BPF_FROM_LE:
			break;

581
			/* ST: *(u8*)(dst_reg + off) = imm */
582
		case BPF_ST | BPF_MEM | BPF_B:
583
			if (is_ereg(dst_reg))
584 585 586 587 588
				EMIT2(0x41, 0xC6);
			else
				EMIT1(0xC6);
			goto st;
		case BPF_ST | BPF_MEM | BPF_H:
589
			if (is_ereg(dst_reg))
590 591 592 593 594
				EMIT3(0x66, 0x41, 0xC7);
			else
				EMIT2(0x66, 0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_W:
595
			if (is_ereg(dst_reg))
596 597 598 599 600
				EMIT2(0x41, 0xC7);
			else
				EMIT1(0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_DW:
601
			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
602 603

st:			if (is_imm8(insn->off))
604
				EMIT2(add_1reg(0x40, dst_reg), insn->off);
605
			else
606
				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
607

608
			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
609 610
			break;

611
			/* STX: *(u8*)(dst_reg + off) = src_reg */
612 613
		case BPF_STX | BPF_MEM | BPF_B:
			/* emit 'mov byte ptr [rax + off], al' */
614
			if (is_ereg(dst_reg) || is_ereg(src_reg) ||
615
			    /* have to add extra byte for x86 SIL, DIL regs */
616 617
			    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
618 619 620 621
			else
				EMIT1(0x88);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_H:
622 623
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
624 625 626 627
			else
				EMIT2(0x66, 0x89);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_W:
628 629
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
630 631 632 633
			else
				EMIT1(0x89);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_DW:
634
			EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
635
stx:			if (is_imm8(insn->off))
636
				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
637
			else
638
				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
639 640 641
					    insn->off);
			break;

642
			/* LDX: dst_reg = *(u8*)(src_reg + off) */
643 644
		case BPF_LDX | BPF_MEM | BPF_B:
			/* emit 'movzx rax, byte ptr [rax + off]' */
645
			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
646 647 648
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_H:
			/* emit 'movzx rax, word ptr [rax + off]' */
649
			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
650 651 652
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_W:
			/* emit 'mov eax, dword ptr [rax+0x14]' */
653 654
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
655 656 657 658 659
			else
				EMIT1(0x8B);
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_DW:
			/* emit 'mov rax, qword ptr [rax+0x14]' */
660
			EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
661 662 663 664 665
ldx:			/* if insn->off == 0 we can save one extra byte, but
			 * special case of x86 r13 which always needs an offset
			 * is not worth the hassle
			 */
			if (is_imm8(insn->off))
666
				EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
667
			else
668
				EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
669 670 671
					    insn->off);
			break;

672
			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
673 674
		case BPF_STX | BPF_XADD | BPF_W:
			/* emit 'lock add dword ptr [rax + off], eax' */
675 676
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
677 678 679 680
			else
				EMIT2(0xF0, 0x01);
			goto xadd;
		case BPF_STX | BPF_XADD | BPF_DW:
681
			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
682
xadd:			if (is_imm8(insn->off))
683
				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
684
			else
685
				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
686 687 688 689 690
					    insn->off);
			break;

			/* call */
		case BPF_JMP | BPF_CALL:
691
			func = (u8 *) __bpf_call_base + imm32;
692
			jmp_offset = func - (image + addrs[i]);
693
			if (seen_ld_abs) {
694 695 696 697 698 699 700
				EMIT2(0x41, 0x52); /* push %r10 */
				EMIT2(0x41, 0x51); /* push %r9 */
				/* need to adjust jmp offset, since
				 * pop %r9, pop %r10 take 4 bytes after call insn
				 */
				jmp_offset += 4;
			}
701
			if (!imm32 || !is_simm32(jmp_offset)) {
702
				pr_err("unsupported bpf func %d addr %p image %p\n",
703
				       imm32, func, image);
704 705 706
				return -EINVAL;
			}
			EMIT1_off32(0xE8, jmp_offset);
707
			if (seen_ld_abs) {
708 709 710 711 712 713 714 715 716 717 718 719
				EMIT2(0x41, 0x59); /* pop %r9 */
				EMIT2(0x41, 0x5A); /* pop %r10 */
			}
			break;

			/* cond jump */
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JNE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JSGT | BPF_X:
		case BPF_JMP | BPF_JSGE | BPF_X:
720 721 722
			/* cmp dst_reg, src_reg */
			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
			      add_2reg(0xC0, dst_reg, src_reg));
723 724 725
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_X:
726 727 728
			/* test dst_reg, src_reg */
			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
			      add_2reg(0xC0, dst_reg, src_reg));
729 730 731
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_K:
732 733 734
			/* test dst_reg, imm32 */
			EMIT1(add_1mod(0x48, dst_reg));
			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
735 736 737 738 739 740 741 742
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JNE | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JSGT | BPF_K:
		case BPF_JMP | BPF_JSGE | BPF_K:
743 744
			/* cmp dst_reg, imm8/32 */
			EMIT1(add_1mod(0x48, dst_reg));
745

746 747
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
748
			else
749
				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

emit_cond_jmp:		/* convert BPF opcode to x86 */
			switch (BPF_OP(insn->code)) {
			case BPF_JEQ:
				jmp_cond = X86_JE;
				break;
			case BPF_JSET:
			case BPF_JNE:
				jmp_cond = X86_JNE;
				break;
			case BPF_JGT:
				/* GT is unsigned '>', JA in x86 */
				jmp_cond = X86_JA;
				break;
			case BPF_JGE:
				/* GE is unsigned '>=', JAE in x86 */
				jmp_cond = X86_JAE;
				break;
			case BPF_JSGT:
				/* signed '>', GT in x86 */
				jmp_cond = X86_JG;
				break;
			case BPF_JSGE:
				/* signed '>=', GE in x86 */
				jmp_cond = X86_JGE;
				break;
			default: /* to silence gcc warning */
				return -EFAULT;
			}
			jmp_offset = addrs[i + insn->off] - addrs[i];
			if (is_imm8(jmp_offset)) {
				EMIT2(jmp_cond, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
			} else {
				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}

			break;
790

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
		case BPF_JMP | BPF_JA:
			jmp_offset = addrs[i + insn->off] - addrs[i];
			if (!jmp_offset)
				/* optimize out nop jumps */
				break;
emit_jmp:
			if (is_imm8(jmp_offset)) {
				EMIT2(0xEB, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT1_off32(0xE9, jmp_offset);
			} else {
				pr_err("jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}
			break;

		case BPF_LD | BPF_IND | BPF_W:
			func = sk_load_word;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_W:
811
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
812 813
common_load:
			ctx->seen_ld_abs = seen_ld_abs = true;
814 815 816
			jmp_offset = func - (image + addrs[i]);
			if (!func || !is_simm32(jmp_offset)) {
				pr_err("unsupported bpf func %d addr %p image %p\n",
817
				       imm32, func, image);
818 819 820 821
				return -EINVAL;
			}
			if (BPF_MODE(insn->code) == BPF_ABS) {
				/* mov %esi, imm32 */
822
				EMIT1_off32(0xBE, imm32);
823
			} else {
824 825 826 827
				/* mov %rsi, src_reg */
				EMIT_mov(BPF_REG_2, src_reg);
				if (imm32) {
					if (is_imm8(imm32))
828
						/* add %esi, imm8 */
829
						EMIT3(0x83, 0xC6, imm32);
830
					else
831
						/* add %esi, imm32 */
832
						EMIT2_off32(0x81, 0xC6, imm32);
833
				}
834 835 836 837 838 839 840 841 842 843 844 845 846
			}
			/* skb pointer is in R6 (%rbx), it will be copied into
			 * %rdi if skb_copy_bits() call is necessary.
			 * sk_load_* helpers also use %r10 and %r9d.
			 * See bpf_jit.S
			 */
			EMIT1_off32(0xE8, jmp_offset); /* call */
			break;

		case BPF_LD | BPF_IND | BPF_H:
			func = sk_load_half;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_H:
847
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
848 849 850 851 852
			goto common_load;
		case BPF_LD | BPF_IND | BPF_B:
			func = sk_load_byte;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_B:
853
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
			goto common_load;

		case BPF_JMP | BPF_EXIT:
			if (i != insn_cnt - 1) {
				jmp_offset = ctx->cleanup_addr - addrs[i];
				goto emit_jmp;
			}
			/* update cleanup_addr */
			ctx->cleanup_addr = proglen;
			/* mov rbx, qword ptr [rbp-X] */
			EMIT3_off32(0x48, 0x8B, 0x9D, -stacksize);
			/* mov r13, qword ptr [rbp-X] */
			EMIT3_off32(0x4C, 0x8B, 0xAD, -stacksize + 8);
			/* mov r14, qword ptr [rbp-X] */
			EMIT3_off32(0x4C, 0x8B, 0xB5, -stacksize + 16);
			/* mov r15, qword ptr [rbp-X] */
			EMIT3_off32(0x4C, 0x8B, 0xBD, -stacksize + 24);

			EMIT1(0xC9); /* leave */
			EMIT1(0xC3); /* ret */
			break;

876
		default:
877 878 879
			/* By design x64 JIT should support all BPF instructions
			 * This error will be seen if new instruction was added
			 * to interpreter, but not to JIT
880
			 * or if there is junk in bpf_prog
881 882
			 */
			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
883 884
			return -EINVAL;
		}
885

886
		ilen = prog - temp;
887 888 889 890 891
		if (ilen > BPF_MAX_INSN_SIZE) {
			pr_err("bpf_jit_compile fatal insn size error\n");
			return -EFAULT;
		}

892 893
		if (image) {
			if (unlikely(proglen + ilen > oldproglen)) {
894
				pr_err("bpf_jit_compile fatal error\n");
895
				return -EFAULT;
896
			}
897
			memcpy(image + proglen, temp, ilen);
898
		}
899 900 901 902 903 904 905
		proglen += ilen;
		addrs[i] = proglen;
		prog = temp;
	}
	return proglen;
}

906
void bpf_jit_compile(struct bpf_prog *prog)
907 908 909
{
}

910
void bpf_int_jit_compile(struct bpf_prog *prog)
911 912 913 914 915 916 917 918 919 920 921
{
	struct bpf_binary_header *header = NULL;
	int proglen, oldproglen = 0;
	struct jit_context ctx = {};
	u8 *image = NULL;
	int *addrs;
	int pass;
	int i;

	if (!bpf_jit_enable)
		return;
922

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	if (!prog || !prog->len)
		return;

	addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
	if (!addrs)
		return;

	/* Before first pass, make a rough estimation of addrs[]
	 * each bpf instruction is translated to less than 64 bytes
	 */
	for (proglen = 0, i = 0; i < prog->len; i++) {
		proglen += 64;
		addrs[i] = proglen;
	}
	ctx.cleanup_addr = proglen;

	for (pass = 0; pass < 10; pass++) {
		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
		if (proglen <= 0) {
			image = NULL;
			if (header)
944
				bpf_jit_binary_free(header);
945 946
			goto out;
		}
947
		if (image) {
948
			if (proglen != oldproglen) {
949 950
				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
				       proglen, oldproglen);
951 952
				goto out;
			}
953 954 955
			break;
		}
		if (proglen == oldproglen) {
956 957
			header = bpf_jit_binary_alloc(proglen, &image,
						      1, jit_fill_hole);
958
			if (!header)
959 960 961 962
				goto out;
		}
		oldproglen = proglen;
	}
963

964
	if (bpf_jit_enable > 1)
965
		bpf_jit_dump(prog->len, proglen, 0, image);
966 967

	if (image) {
968 969
		bpf_flush_icache(header, image + proglen);
		set_memory_ro((unsigned long)header, header->pages);
970
		prog->bpf_func = (void *)image;
971
		prog->jited = true;
972 973 974 975 976
	}
out:
	kfree(addrs);
}

977
void bpf_jit_free(struct bpf_prog *fp)
978 979 980 981
{
	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
	struct bpf_binary_header *header = (void *)addr;

982 983 984
	if (!fp->jited)
		goto free_filter;

985
	set_memory_rw(addr, header->pages);
986
	bpf_jit_binary_free(header);
987

988 989
free_filter:
	bpf_prog_unlock_free(fp);
990
}