ar9003_mci.c 38.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (c) 2008-2011 Atheros Communications Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/export.h>
#include "hw.h"
19
#include "hw-ops.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "ar9003_phy.h"
#include "ar9003_mci.h"

static void ar9003_mci_reset_req_wakeup(struct ath_hw *ah)
{
	REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
		      AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 1);
	udelay(1);
	REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
		      AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 0);
}

static int ar9003_mci_wait_for_interrupt(struct ath_hw *ah, u32 address,
					u32 bit_position, int time_out)
{
	struct ath_common *common = ath9k_hw_common(ah);

	while (time_out) {
38 39 40
		if (!(REG_READ(ah, address) & bit_position)) {
			udelay(10);
			time_out -= 10;
41

42 43 44 45 46 47
			if (time_out < 0)
				break;
			else
				continue;
		}
		REG_WRITE(ah, address, bit_position);
48

49
		if (address != AR_MCI_INTERRUPT_RX_MSG_RAW)
50
			break;
51 52 53 54 55 56 57 58 59 60 61

		if (bit_position & AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)
			ar9003_mci_reset_req_wakeup(ah);

		if (bit_position & (AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING |
				    AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING))
			REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
				  AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);

		REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_RX_MSG);
		break;
62 63 64
	}

	if (time_out <= 0) {
65 66
		ath_dbg(common, MCI,
			"MCI Wait for Reg 0x%08x = 0x%08x timeout\n",
67
			address, bit_position);
68 69
		ath_dbg(common, MCI,
			"MCI INT_RAW = 0x%08x, RX_MSG_RAW = 0x%08x\n",
70 71 72 73 74 75 76 77
			REG_READ(ah, AR_MCI_INTERRUPT_RAW),
			REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
		time_out = 0;
	}

	return time_out;
}

78
static void ar9003_mci_remote_reset(struct ath_hw *ah, bool wait_done)
79 80 81 82 83 84 85 86
{
	u32 payload[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffff00};

	ar9003_mci_send_message(ah, MCI_REMOTE_RESET, 0, payload, 16,
				wait_done, false);
	udelay(5);
}

87
static void ar9003_mci_send_lna_transfer(struct ath_hw *ah, bool wait_done)
88 89 90 91 92 93 94 95 96 97 98 99 100 101
{
	u32 payload = 0x00000000;

	ar9003_mci_send_message(ah, MCI_LNA_TRANS, 0, &payload, 1,
				wait_done, false);
}

static void ar9003_mci_send_req_wake(struct ath_hw *ah, bool wait_done)
{
	ar9003_mci_send_message(ah, MCI_REQ_WAKE, MCI_FLAG_DISABLE_TIMESTAMP,
				NULL, 0, wait_done, false);
	udelay(5);
}

102
static void ar9003_mci_send_sys_waking(struct ath_hw *ah, bool wait_done)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
{
	ar9003_mci_send_message(ah, MCI_SYS_WAKING, MCI_FLAG_DISABLE_TIMESTAMP,
				NULL, 0, wait_done, false);
}

static void ar9003_mci_send_lna_take(struct ath_hw *ah, bool wait_done)
{
	u32 payload = 0x70000000;

	ar9003_mci_send_message(ah, MCI_LNA_TAKE, 0, &payload, 1,
				wait_done, false);
}

static void ar9003_mci_send_sys_sleeping(struct ath_hw *ah, bool wait_done)
{
	ar9003_mci_send_message(ah, MCI_SYS_SLEEPING,
				MCI_FLAG_DISABLE_TIMESTAMP,
				NULL, 0, wait_done, false);
}

static void ar9003_mci_send_coex_version_query(struct ath_hw *ah,
					       bool wait_done)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 payload[4] = {0, 0, 0, 0};

129 130 131 132 133 134 135
	if (mci->bt_version_known ||
	    (mci->bt_state == MCI_BT_SLEEP))
		return;

	MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
				MCI_GPM_COEX_VERSION_QUERY);
	ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
136 137 138
}

static void ar9003_mci_send_coex_version_response(struct ath_hw *ah,
139
						  bool wait_done)
140 141 142 143 144
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 payload[4] = {0, 0, 0, 0};

	MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
145
				MCI_GPM_COEX_VERSION_RESPONSE);
146 147 148 149 150 151 152 153
	*(((u8 *)payload) + MCI_GPM_COEX_B_MAJOR_VERSION) =
		mci->wlan_ver_major;
	*(((u8 *)payload) + MCI_GPM_COEX_B_MINOR_VERSION) =
		mci->wlan_ver_minor;
	ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
}

static void ar9003_mci_send_coex_wlan_channels(struct ath_hw *ah,
154
					       bool wait_done)
155 156 157 158
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 *payload = &mci->wlan_channels[0];

159 160 161 162 163 164 165 166
	if (!mci->wlan_channels_update ||
	    (mci->bt_state == MCI_BT_SLEEP))
		return;

	MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
				MCI_GPM_COEX_WLAN_CHANNELS);
	ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
	MCI_GPM_SET_TYPE_OPCODE(payload, 0xff, 0xff);
167 168 169 170 171 172 173
}

static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah,
						bool wait_done, u8 query_type)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 payload[4] = {0, 0, 0, 0};
174
	bool query_btinfo;
175

176 177
	if (mci->bt_state == MCI_BT_SLEEP)
		return;
178

179 180 181 182
	query_btinfo = !!(query_type & (MCI_GPM_COEX_QUERY_BT_ALL_INFO |
					MCI_GPM_COEX_QUERY_BT_TOPOLOGY));
	MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
				MCI_GPM_COEX_STATUS_QUERY);
183

184
	*(((u8 *)payload) + MCI_GPM_COEX_B_BT_BITMAP) = query_type;
185

186 187 188 189 190 191
	/*
	 * If bt_status_query message is  not sent successfully,
	 * then need_flush_btinfo should be set again.
	 */
	if (!ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
				wait_done, true)) {
192
		if (query_btinfo)
193
			mci->need_flush_btinfo = true;
194
	}
195 196 197

	if (query_btinfo)
		mci->query_bt = false;
198 199
}

200 201
static void ar9003_mci_send_coex_halt_bt_gpm(struct ath_hw *ah, bool halt,
					     bool wait_done)
202 203 204 205
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 payload[4] = {0, 0, 0, 0};

206 207
	MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
				MCI_GPM_COEX_HALT_BT_GPM);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

	if (halt) {
		mci->query_bt = true;
		/* Send next unhalt no matter halt sent or not */
		mci->unhalt_bt_gpm = true;
		mci->need_flush_btinfo = true;
		*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
			MCI_GPM_COEX_BT_GPM_HALT;
	} else
		*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
			MCI_GPM_COEX_BT_GPM_UNHALT;

	ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
}

static void ar9003_mci_prep_interface(struct ath_hw *ah)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 saved_mci_int_en;
	u32 mci_timeout = 150;

	mci->bt_state = MCI_BT_SLEEP;
	saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);

	REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
	REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
		  REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
	REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
		  REG_READ(ah, AR_MCI_INTERRUPT_RAW));

	ar9003_mci_remote_reset(ah, true);
	ar9003_mci_send_req_wake(ah, true);

242 243 244
	if (!ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
				  AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING, 500))
		goto clear_redunt;
245

246
	mci->bt_state = MCI_BT_AWAKE;
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	/*
	 * we don't need to send more remote_reset at this moment.
	 * If BT receive first remote_reset, then BT HW will
	 * be cleaned up and will be able to receive req_wake
	 * and BT HW will respond sys_waking.
	 * In this case, WLAN will receive BT's HW sys_waking.
	 * Otherwise, if BT SW missed initial remote_reset,
	 * that remote_reset will still clean up BT MCI RX,
	 * and the req_wake will wake BT up,
	 * and BT SW will respond this req_wake with a remote_reset and
	 * sys_waking. In this case, WLAN will receive BT's SW
	 * sys_waking. In either case, BT's RX is cleaned up. So we
	 * don't need to reply BT's remote_reset now, if any.
	 * Similarly, if in any case, WLAN can receive BT's sys_waking,
	 * that means WLAN's RX is also fine.
	 */
	ar9003_mci_send_sys_waking(ah, true);
	udelay(10);
266

267 268 269 270 271 272 273 274 275
	/*
	 * Set BT priority interrupt value to be 0xff to
	 * avoid having too many BT PRIORITY interrupts.
	 */
	REG_WRITE(ah, AR_MCI_BT_PRI0, 0xFFFFFFFF);
	REG_WRITE(ah, AR_MCI_BT_PRI1, 0xFFFFFFFF);
	REG_WRITE(ah, AR_MCI_BT_PRI2, 0xFFFFFFFF);
	REG_WRITE(ah, AR_MCI_BT_PRI3, 0xFFFFFFFF);
	REG_WRITE(ah, AR_MCI_BT_PRI, 0X000000FF);
276

277 278 279 280 281
	/*
	 * A contention reset will be received after send out
	 * sys_waking. Also BT priority interrupt bits will be set.
	 * Clear those bits before the next step.
	 */
282

283 284 285
	REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
		  AR_MCI_INTERRUPT_RX_MSG_CONT_RST);
	REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_BT_PRI);
286

287 288 289 290
	if (mci->is_2g) {
		ar9003_mci_send_lna_transfer(ah, true);
		udelay(5);
	}
291

292 293 294 295 296 297 298 299 300 301
	if ((mci->is_2g && !mci->update_2g5g)) {
		if (ar9003_mci_wait_for_interrupt(ah,
					AR_MCI_INTERRUPT_RX_MSG_RAW,
					AR_MCI_INTERRUPT_RX_MSG_LNA_INFO,
					mci_timeout))
			ath_dbg(common, MCI,
				"MCI WLAN has control over the LNA & BT obeys it\n");
		else
			ath_dbg(common, MCI,
				"MCI BT didn't respond to LNA_TRANS\n");
302 303
	}

304
clear_redunt:
305 306
	/* Clear the extra redundant SYS_WAKING from BT */
	if ((mci->bt_state == MCI_BT_AWAKE) &&
307 308
	    (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
			    AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) &&
309 310 311 312 313 314
	    (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
			    AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) == 0)) {
		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
			  AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING);
		REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
			  AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
315 316 317 318 319
	}

	REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);
}

320 321 322 323 324 325 326 327 328 329 330 331 332
void ar9003_mci_set_full_sleep(struct ath_hw *ah)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;

	if (ar9003_mci_state(ah, MCI_STATE_ENABLE, NULL) &&
	    (mci->bt_state != MCI_BT_SLEEP) &&
	    !mci->halted_bt_gpm) {
		ar9003_mci_send_coex_halt_bt_gpm(ah, true, true);
	}

	mci->ready = false;
}

333
static void ar9003_mci_disable_interrupt(struct ath_hw *ah)
334 335 336 337 338
{
	REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
	REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
}

339
static void ar9003_mci_enable_interrupt(struct ath_hw *ah)
340 341 342 343 344 345
{
	REG_WRITE(ah, AR_MCI_INTERRUPT_EN, AR_MCI_INTERRUPT_DEFAULT);
	REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
		  AR_MCI_INTERRUPT_RX_MSG_DEFAULT);
}

346
static bool ar9003_mci_check_int(struct ath_hw *ah, u32 ints)
347 348 349 350 351 352 353 354 355 356 357
{
	u32 intr;

	intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW);
	return ((intr & ints) == ints);
}

void ar9003_mci_get_interrupt(struct ath_hw *ah, u32 *raw_intr,
			      u32 *rx_msg_intr)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
358

359 360 361 362 363 364 365 366 367
	*raw_intr = mci->raw_intr;
	*rx_msg_intr = mci->rx_msg_intr;

	/* Clean int bits after the values are read. */
	mci->raw_intr = 0;
	mci->rx_msg_intr = 0;
}
EXPORT_SYMBOL(ar9003_mci_get_interrupt);

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
void ar9003_mci_get_isr(struct ath_hw *ah, enum ath9k_int *masked)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 raw_intr, rx_msg_intr;

	rx_msg_intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW);
	raw_intr = REG_READ(ah, AR_MCI_INTERRUPT_RAW);

	if ((raw_intr == 0xdeadbeef) || (rx_msg_intr == 0xdeadbeef)) {
		ath_dbg(common, MCI,
			"MCI gets 0xdeadbeef during int processing\n");
	} else {
		mci->rx_msg_intr |= rx_msg_intr;
		mci->raw_intr |= raw_intr;
		*masked |= ATH9K_INT_MCI;

		if (rx_msg_intr & AR_MCI_INTERRUPT_RX_MSG_CONT_INFO)
			mci->cont_status = REG_READ(ah, AR_MCI_CONT_STATUS);

		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, rx_msg_intr);
		REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, raw_intr);
	}
}

393
static void ar9003_mci_2g5g_changed(struct ath_hw *ah, bool is_2g)
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;

	if (!mci->update_2g5g &&
	    (mci->is_2g != is_2g))
		mci->update_2g5g = true;

	mci->is_2g = is_2g;
}

static bool ar9003_mci_is_gpm_valid(struct ath_hw *ah, u32 msg_index)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 *payload;
	u32 recv_type, offset;

	if (msg_index == MCI_GPM_INVALID)
		return false;

	offset = msg_index << 4;

	payload = (u32 *)(mci->gpm_buf + offset);
	recv_type = MCI_GPM_TYPE(payload);

418
	if (recv_type == MCI_GPM_RSVD_PATTERN)
419 420 421 422 423 424 425 426 427
		return false;

	return true;
}

static void ar9003_mci_observation_set_up(struct ath_hw *ah)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;

428 429
	if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MCI) {
		ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
		ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK);
		ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
		ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
	} else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_TXRX) {
		ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_WL_IN_TX);
		ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_WL_IN_RX);
		ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
		ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
		ath9k_hw_cfg_output(ah, 5, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
	} else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_BT) {
		ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
		ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
		ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
		ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
	} else
		return;

	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);

449 450 451
	REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL, AR_GLB_DS_JTAG_DISABLE, 1);
	REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL, AR_GLB_WLAN_UART_INTF_EN, 0);
	REG_SET_BIT(ah, AR_GLB_GPIO_CONTROL, ATH_MCI_CONFIG_MCI_OBS_GPIO);
452 453 454 455 456 457 458 459 460 461 462 463 464

	REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_GPIO_OBS_SEL, 0);
	REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_MAC_BB_OBS_SEL, 1);
	REG_WRITE(ah, AR_OBS, 0x4b);
	REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL1, 0x03);
	REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL2, 0x01);
	REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_LSB, 0x02);
	REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_MSB, 0x03);
	REG_RMW_FIELD(ah, AR_PHY_TEST_CTL_STATUS,
		      AR_PHY_TEST_CTL_DEBUGPORT_SEL, 0x07);
}

static bool ar9003_mci_send_coex_bt_flags(struct ath_hw *ah, bool wait_done,
465
					  u8 opcode, u32 bt_flags)
466 467 468
{
	u32 pld[4] = {0, 0, 0, 0};

469 470
	MCI_GPM_SET_TYPE_OPCODE(pld, MCI_GPM_COEX_AGENT,
				MCI_GPM_COEX_BT_UPDATE_FLAGS);
471 472 473 474 475 476 477 478

	*(((u8 *)pld) + MCI_GPM_COEX_B_BT_FLAGS_OP)  = opcode;
	*(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 0) = bt_flags & 0xFF;
	*(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 1) = (bt_flags >> 8) & 0xFF;
	*(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 2) = (bt_flags >> 16) & 0xFF;
	*(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 3) = (bt_flags >> 24) & 0xFF;

	return ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16,
479
				       wait_done, true);
480 481
}

482 483 484 485 486 487 488
static void ar9003_mci_sync_bt_state(struct ath_hw *ah)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 cur_bt_state;

	cur_bt_state = ar9003_mci_state(ah, MCI_STATE_REMOTE_SLEEP, NULL);

489
	if (mci->bt_state != cur_bt_state)
490 491 492 493 494 495 496
		mci->bt_state = cur_bt_state;

	if (mci->bt_state != MCI_BT_SLEEP) {

		ar9003_mci_send_coex_version_query(ah, true);
		ar9003_mci_send_coex_wlan_channels(ah, true);

497
		if (mci->unhalt_bt_gpm == true)
498 499 500 501
			ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);
	}
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
void ar9003_mci_check_bt(struct ath_hw *ah)
{
	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;

	if (!mci_hw->ready)
		return;

	/*
	 * check BT state again to make
	 * sure it's not changed.
	 */
	ar9003_mci_sync_bt_state(ah);
	ar9003_mci_2g5g_switch(ah, true);

	if ((mci_hw->bt_state == MCI_BT_AWAKE) &&
	    (mci_hw->query_bt == true)) {
		mci_hw->need_flush_btinfo = true;
	}
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static void ar9003_mci_process_gpm_extra(struct ath_hw *ah, u8 gpm_type,
					 u8 gpm_opcode, u32 *p_gpm)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u8 *p_data = (u8 *) p_gpm;

	if (gpm_type != MCI_GPM_COEX_AGENT)
		return;

	switch (gpm_opcode) {
	case MCI_GPM_COEX_VERSION_QUERY:
		ath_dbg(common, MCI, "MCI Recv GPM COEX Version Query\n");
		ar9003_mci_send_coex_version_response(ah, true);
		break;
	case MCI_GPM_COEX_VERSION_RESPONSE:
		ath_dbg(common, MCI, "MCI Recv GPM COEX Version Response\n");
		mci->bt_ver_major =
			*(p_data + MCI_GPM_COEX_B_MAJOR_VERSION);
		mci->bt_ver_minor =
			*(p_data + MCI_GPM_COEX_B_MINOR_VERSION);
		mci->bt_version_known = true;
		ath_dbg(common, MCI, "MCI BT Coex version: %d.%d\n",
			mci->bt_ver_major, mci->bt_ver_minor);
		break;
	case MCI_GPM_COEX_STATUS_QUERY:
		ath_dbg(common, MCI,
			"MCI Recv GPM COEX Status Query = 0x%02X\n",
			*(p_data + MCI_GPM_COEX_B_WLAN_BITMAP));
		mci->wlan_channels_update = true;
		ar9003_mci_send_coex_wlan_channels(ah, true);
		break;
	case MCI_GPM_COEX_BT_PROFILE_INFO:
		mci->query_bt = true;
		ath_dbg(common, MCI, "MCI Recv GPM COEX BT_Profile_Info\n");
		break;
	case MCI_GPM_COEX_BT_STATUS_UPDATE:
		mci->query_bt = true;
		ath_dbg(common, MCI,
			"MCI Recv GPM COEX BT_Status_Update SEQ=%d (drop&query)\n",
			*(p_gpm + 3));
		break;
	default:
		break;
	}
}

static u32 ar9003_mci_wait_for_gpm(struct ath_hw *ah, u8 gpm_type,
				   u8 gpm_opcode, int time_out)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 *p_gpm = NULL, mismatch = 0, more_data;
	u32 offset;
	u8 recv_type = 0, recv_opcode = 0;
	bool b_is_bt_cal_done = (gpm_type == MCI_GPM_BT_CAL_DONE);

	more_data = time_out ? MCI_GPM_NOMORE : MCI_GPM_MORE;

	while (time_out > 0) {
		if (p_gpm) {
			MCI_GPM_RECYCLE(p_gpm);
			p_gpm = NULL;
		}

		if (more_data != MCI_GPM_MORE)
			time_out = ar9003_mci_wait_for_interrupt(ah,
					AR_MCI_INTERRUPT_RX_MSG_RAW,
					AR_MCI_INTERRUPT_RX_MSG_GPM,
					time_out);

		if (!time_out)
			break;

596
		offset = ar9003_mci_get_next_gpm_offset(ah, false, &more_data);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

		if (offset == MCI_GPM_INVALID)
			continue;

		p_gpm = (u32 *) (mci->gpm_buf + offset);
		recv_type = MCI_GPM_TYPE(p_gpm);
		recv_opcode = MCI_GPM_OPCODE(p_gpm);

		if (MCI_GPM_IS_CAL_TYPE(recv_type)) {
			if (recv_type == gpm_type) {
				if ((gpm_type == MCI_GPM_BT_CAL_DONE) &&
				    !b_is_bt_cal_done) {
					gpm_type = MCI_GPM_BT_CAL_GRANT;
					continue;
				}
				break;
			}
614 615
		} else if ((recv_type == gpm_type) &&
			   (recv_opcode == gpm_opcode))
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
			break;

		/*
		 * check if it's cal_grant
		 *
		 * When we're waiting for cal_grant in reset routine,
		 * it's possible that BT sends out cal_request at the
		 * same time. Since BT's calibration doesn't happen
		 * that often, we'll let BT completes calibration then
		 * we continue to wait for cal_grant from BT.
		 * Orginal: Wait BT_CAL_GRANT.
		 * New: Receive BT_CAL_REQ -> send WLAN_CAL_GRANT->wait
		 * BT_CAL_DONE -> Wait BT_CAL_GRANT.
		 */

		if ((gpm_type == MCI_GPM_BT_CAL_GRANT) &&
		    (recv_type == MCI_GPM_BT_CAL_REQ)) {

			u32 payload[4] = {0, 0, 0, 0};

			gpm_type = MCI_GPM_BT_CAL_DONE;
			MCI_GPM_SET_CAL_TYPE(payload,
638
					     MCI_GPM_WLAN_CAL_GRANT);
639 640 641 642 643 644 645 646
			ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
						false, false);
			continue;
		} else {
			ath_dbg(common, MCI, "MCI GPM subtype not match 0x%x\n",
				*(p_gpm + 1));
			mismatch++;
			ar9003_mci_process_gpm_extra(ah, recv_type,
647
						     recv_opcode, p_gpm);
648 649
		}
	}
650

651 652 653 654 655
	if (p_gpm) {
		MCI_GPM_RECYCLE(p_gpm);
		p_gpm = NULL;
	}

656
	if (time_out <= 0)
657 658 659
		time_out = 0;

	while (more_data == MCI_GPM_MORE) {
660
		offset = ar9003_mci_get_next_gpm_offset(ah, false, &more_data);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
		if (offset == MCI_GPM_INVALID)
			break;

		p_gpm = (u32 *) (mci->gpm_buf + offset);
		recv_type = MCI_GPM_TYPE(p_gpm);
		recv_opcode = MCI_GPM_OPCODE(p_gpm);

		if (!MCI_GPM_IS_CAL_TYPE(recv_type))
			ar9003_mci_process_gpm_extra(ah, recv_type,
						     recv_opcode, p_gpm);

		MCI_GPM_RECYCLE(p_gpm);
	}

	return time_out;
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
bool ar9003_mci_start_reset(struct ath_hw *ah, struct ath9k_channel *chan)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
	u32 payload[4] = {0, 0, 0, 0};

	ar9003_mci_2g5g_changed(ah, IS_CHAN_2GHZ(chan));

	if (mci_hw->bt_state != MCI_BT_CAL_START)
		return false;

	mci_hw->bt_state = MCI_BT_CAL;

	/*
	 * MCI FIX: disable mci interrupt here. This is to avoid
	 * SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and
	 * lead to mci_intr reentry.
	 */
	ar9003_mci_disable_interrupt(ah);

	MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
	ar9003_mci_send_message(ah, MCI_GPM, 0, payload,
				16, true, false);

	/* Wait BT calibration to be completed for 25ms */

	if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE,
				    0, 25000))
706
		ath_dbg(common, MCI, "MCI BT_CAL_DONE received\n");
707 708
	else
		ath_dbg(common, MCI,
709
			"MCI BT_CAL_DONE not received\n");
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

	mci_hw->bt_state = MCI_BT_AWAKE;
	/* MCI FIX: enable mci interrupt here */
	ar9003_mci_enable_interrupt(ah);

	return true;
}

int ar9003_mci_end_reset(struct ath_hw *ah, struct ath9k_channel *chan,
			 struct ath9k_hw_cal_data *caldata)
{
	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;

	if (!mci_hw->ready)
		return 0;

	if (!IS_CHAN_2GHZ(chan) || (mci_hw->bt_state != MCI_BT_SLEEP))
		goto exit;

729 730 731
	if (!ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) &&
	    !ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE))
		goto exit;
732

733 734 735 736 737 738 739 740 741
	/*
	 * BT is sleeping. Check if BT wakes up during
	 * WLAN calibration. If BT wakes up during
	 * WLAN calibration, need to go through all
	 * message exchanges again and recal.
	 */
	REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
		  (AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
		   AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE));
742

743 744 745
	ar9003_mci_remote_reset(ah, true);
	ar9003_mci_send_sys_waking(ah, true);
	udelay(1);
746

747 748
	if (IS_CHAN_2GHZ(chan))
		ar9003_mci_send_lna_transfer(ah, true);
749

750
	mci_hw->bt_state = MCI_BT_AWAKE;
751

752 753 754 755 756
	if (caldata) {
		caldata->done_txiqcal_once = false;
		caldata->done_txclcal_once = false;
		caldata->rtt_done = false;
	}
757

758 759
	if (!ath9k_hw_init_cal(ah, chan))
		return -EIO;
760 761 762 763 764 765

exit:
	ar9003_mci_enable_interrupt(ah);
	return 0;
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static void ar9003_mci_mute_bt(struct ath_hw *ah)
{
	/* disable all MCI messages */
	REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE, 0xffff0000);
	REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS0, 0xffffffff);
	REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS1, 0xffffffff);
	REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS2, 0xffffffff);
	REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS3, 0xffffffff);
	REG_SET_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);

	/* wait pending HW messages to flush out */
	udelay(10);

	/*
	 * Send LNA_TAKE and SYS_SLEEPING when
	 * 1. reset not after resuming from full sleep
	 * 2. before reset MCI RX, to quiet BT and avoid MCI RX misalignment
	 */
	ar9003_mci_send_lna_take(ah, true);

	udelay(5);

	ar9003_mci_send_sys_sleeping(ah, true);
}

791 792 793 794 795
static void ar9003_mci_osla_setup(struct ath_hw *ah, bool enable)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 thresh;

796
	if (!enable) {
797 798
		REG_CLR_BIT(ah, AR_BTCOEX_CTRL,
			    AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
799
		return;
800
	}
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2, AR_MCI_SCHD_TABLE_2_HW_BASED, 1);
	REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
		      AR_MCI_SCHD_TABLE_2_MEM_BASED, 1);

	if (!(mci->config & ATH_MCI_CONFIG_DISABLE_AGGR_THRESH)) {
		thresh = MS(mci->config, ATH_MCI_CONFIG_AGGR_THRESH);
		REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
			      AR_BTCOEX_CTRL_AGGR_THRESH, thresh);
		REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
			      AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 1);
	} else
		REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
			      AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 0);

	REG_RMW_FIELD(ah, AR_BTCOEX_CTRL,
		      AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN, 1);
817 818
}

819 820 821 822 823
void ar9003_mci_reset(struct ath_hw *ah, bool en_int, bool is_2g,
		      bool is_full_sleep)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
824
	u32 regval;
825

826
	ath_dbg(common, MCI, "MCI Reset (full_sleep = %d, is_2g = %d)\n",
827 828 829
		is_full_sleep, is_2g);

	if (!mci->gpm_addr && !mci->sched_addr) {
830 831
		ath_dbg(common, MCI,
			"MCI GPM and schedule buffers are not allocated\n");
832 833 834 835
		return;
	}

	if (REG_READ(ah, AR_BTCOEX_CTRL) == 0xdeadbeef) {
836
		ath_dbg(common, MCI, "BTCOEX control register is dead\n");
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
		return;
	}

	/* Program MCI DMA related registers */
	REG_WRITE(ah, AR_MCI_GPM_0, mci->gpm_addr);
	REG_WRITE(ah, AR_MCI_GPM_1, mci->gpm_len);
	REG_WRITE(ah, AR_MCI_SCHD_TABLE_0, mci->sched_addr);

	/*
	* To avoid MCI state machine be affected by incoming remote MCI msgs,
	* MCI mode will be enabled later, right before reset the MCI TX and RX.
	*/

	regval = SM(1, AR_BTCOEX_CTRL_AR9462_MODE) |
		 SM(1, AR_BTCOEX_CTRL_WBTIMER_EN) |
		 SM(1, AR_BTCOEX_CTRL_PA_SHARED) |
		 SM(1, AR_BTCOEX_CTRL_LNA_SHARED) |
		 SM(2, AR_BTCOEX_CTRL_NUM_ANTENNAS) |
		 SM(3, AR_BTCOEX_CTRL_RX_CHAIN_MASK) |
		 SM(0, AR_BTCOEX_CTRL_1_CHAIN_ACK) |
		 SM(0, AR_BTCOEX_CTRL_1_CHAIN_BCN) |
		 SM(0, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);

	REG_WRITE(ah, AR_BTCOEX_CTRL, regval);

862 863 864 865 866 867 868 869 870
	if (is_2g && !(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA))
		ar9003_mci_osla_setup(ah, true);
	else
		ar9003_mci_osla_setup(ah, false);

	REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
		    AR_BTCOEX_CTRL_SPDT_ENABLE);
	REG_RMW_FIELD(ah, AR_BTCOEX_CTRL3,
		      AR_BTCOEX_CTRL3_CONT_INFO_TIMEOUT, 20);
871 872 873 874

	REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_RX_DEWEIGHT, 1);
	REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);

875 876
	regval = MS(mci->config, ATH_MCI_CONFIG_CLK_DIV);
	REG_RMW_FIELD(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_CLK_DIV, regval);
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	REG_SET_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_MCI_MODE_EN);

	/* Resetting the Rx and Tx paths of MCI */
	regval = REG_READ(ah, AR_MCI_COMMAND2);
	regval |= SM(1, AR_MCI_COMMAND2_RESET_TX);
	REG_WRITE(ah, AR_MCI_COMMAND2, regval);

	udelay(1);

	regval &= ~SM(1, AR_MCI_COMMAND2_RESET_TX);
	REG_WRITE(ah, AR_MCI_COMMAND2, regval);

	if (is_full_sleep) {
		ar9003_mci_mute_bt(ah);
		udelay(100);
	}

894
	/* Check pending GPM msg before MCI Reset Rx */
895
	ar9003_mci_check_gpm_offset(ah);
896

897 898 899 900 901 902
	regval |= SM(1, AR_MCI_COMMAND2_RESET_RX);
	REG_WRITE(ah, AR_MCI_COMMAND2, regval);
	udelay(1);
	regval &= ~SM(1, AR_MCI_COMMAND2_RESET_RX);
	REG_WRITE(ah, AR_MCI_COMMAND2, regval);

903
	ar9003_mci_get_next_gpm_offset(ah, true, NULL);
904

905 906 907 908 909
	REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE,
		  (SM(0xe801, AR_MCI_MSG_ATTRIBUTES_TABLE_INVALID_HDR) |
		   SM(0x0000, AR_MCI_MSG_ATTRIBUTES_TABLE_CHECKSUM)));

	REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
910
		    AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
911

912
	ar9003_mci_observation_set_up(ah);
913 914 915 916 917 918 919 920

	mci->ready = true;
	ar9003_mci_prep_interface(ah);

	if (en_int)
		ar9003_mci_enable_interrupt(ah);
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
void ar9003_mci_stop_bt(struct ath_hw *ah, bool save_fullsleep)
{
	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;

	ar9003_mci_disable_interrupt(ah);

	if (mci_hw->ready && !save_fullsleep) {
		ar9003_mci_mute_bt(ah);
		udelay(20);
		REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
	}

	mci_hw->bt_state = MCI_BT_SLEEP;
	mci_hw->ready = false;
}

937 938 939 940 941
static void ar9003_mci_send_2g5g_status(struct ath_hw *ah, bool wait_done)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 new_flags, to_set, to_clear;

942 943
	if (!mci->update_2g5g || (mci->bt_state == MCI_BT_SLEEP))
		return;
944

945 946 947 948 949 950 951 952 953 954 955 956
	if (mci->is_2g) {
		new_flags = MCI_2G_FLAGS;
		to_clear = MCI_2G_FLAGS_CLEAR_MASK;
		to_set = MCI_2G_FLAGS_SET_MASK;
	} else {
		new_flags = MCI_5G_FLAGS;
		to_clear = MCI_5G_FLAGS_CLEAR_MASK;
		to_set = MCI_5G_FLAGS_SET_MASK;
	}

	if (to_clear)
		ar9003_mci_send_coex_bt_flags(ah, wait_done,
957 958
					      MCI_GPM_COEX_BT_FLAGS_CLEAR,
					      to_clear);
959 960
	if (to_set)
		ar9003_mci_send_coex_bt_flags(ah, wait_done,
961 962
					      MCI_GPM_COEX_BT_FLAGS_SET,
					      to_set);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
}

static void ar9003_mci_queue_unsent_gpm(struct ath_hw *ah, u8 header,
					u32 *payload, bool queue)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u8 type, opcode;

	/* check if the message is to be queued */
	if (header != MCI_GPM)
		return;

	type = MCI_GPM_TYPE(payload);
	opcode = MCI_GPM_OPCODE(payload);

	if (type != MCI_GPM_COEX_AGENT)
		return;

	switch (opcode) {
	case MCI_GPM_COEX_BT_UPDATE_FLAGS:
		if (*(((u8 *)payload) + MCI_GPM_COEX_B_BT_FLAGS_OP) ==
984
		    MCI_GPM_COEX_BT_FLAGS_READ)
985 986 987 988 989 990 991 992 993 994
			break;

		mci->update_2g5g = queue;

		break;
	case MCI_GPM_COEX_WLAN_CHANNELS:
		mci->wlan_channels_update = queue;
		break;
	case MCI_GPM_COEX_HALT_BT_GPM:
		if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
995
		    MCI_GPM_COEX_BT_GPM_UNHALT) {
996 997
			mci->unhalt_bt_gpm = queue;

998
			if (!queue)
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
				mci->halted_bt_gpm = false;
		}

		if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
				MCI_GPM_COEX_BT_GPM_HALT) {

			mci->halted_bt_gpm = !queue;
		}

		break;
	default:
		break;
	}
}

1014
void ar9003_mci_2g5g_switch(struct ath_hw *ah, bool force)
1015 1016 1017
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;

1018
	if (!mci->update_2g5g && !force)
1019
		return;
1020

1021 1022
	if (mci->is_2g) {
		ar9003_mci_send_2g5g_status(ah, true);
1023

1024
		REG_SET_BIT(ah, AR_MCI_TX_CTRL,
1025 1026 1027 1028 1029
			    AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
		REG_CLR_BIT(ah, AR_PHY_GLB_CONTROL,
			    AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);

		if (!(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA))
1030
			ar9003_mci_osla_setup(ah, true);
1031 1032 1033 1034 1035 1036
	} else {
		REG_SET_BIT(ah, AR_MCI_TX_CTRL,
			    AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
			    AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);

1037 1038 1039
		ar9003_mci_osla_setup(ah, false);
		if (!force)
			ar9003_mci_send_2g5g_status(ah, true);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	}
}

bool ar9003_mci_send_message(struct ath_hw *ah, u8 header, u32 flag,
			     u32 *payload, u8 len, bool wait_done,
			     bool check_bt)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	bool msg_sent = false;
	u32 regval;
	u32 saved_mci_int_en;
	int i;

	saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);
	regval = REG_READ(ah, AR_BTCOEX_CTRL);

	if ((regval == 0xdeadbeef) || !(regval & AR_BTCOEX_CTRL_MCI_MODE_EN)) {
1058 1059
		ath_dbg(common, MCI,
			"MCI Not sending 0x%x. MCI is not enabled. full_sleep = %d\n",
1060
			header, (ah->power_mode == ATH9K_PM_FULL_SLEEP) ? 1 : 0);
1061 1062 1063
		ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
		return false;
	} else if (check_bt && (mci->bt_state == MCI_BT_SLEEP)) {
1064 1065 1066
		ath_dbg(common, MCI,
			"MCI Don't send message 0x%x. BT is in sleep state\n",
			header);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
		return false;
	}

	if (wait_done)
		REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);

	/* Need to clear SW_MSG_DONE raw bit before wait */

	REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
		  (AR_MCI_INTERRUPT_SW_MSG_DONE |
		   AR_MCI_INTERRUPT_MSG_FAIL_MASK));

	if (payload) {
		for (i = 0; (i * 4) < len; i++)
			REG_WRITE(ah, (AR_MCI_TX_PAYLOAD0 + i * 4),
				  *(payload + i));
	}

	REG_WRITE(ah, AR_MCI_COMMAND0,
		  (SM((flag & MCI_FLAG_DISABLE_TIMESTAMP),
		      AR_MCI_COMMAND0_DISABLE_TIMESTAMP) |
		   SM(len, AR_MCI_COMMAND0_LEN) |
		   SM(header, AR_MCI_COMMAND0_HEADER)));

	if (wait_done &&
	    !(ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RAW,
1094
					    AR_MCI_INTERRUPT_SW_MSG_DONE, 500)))
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
	else {
		ar9003_mci_queue_unsent_gpm(ah, header, payload, false);
		msg_sent = true;
	}

	if (wait_done)
		REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);

	return msg_sent;
}
EXPORT_SYMBOL(ar9003_mci_send_message);

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
void ar9003_mci_init_cal_req(struct ath_hw *ah, bool *is_reusable)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
	u32 pld[4] = {0, 0, 0, 0};

	if ((mci_hw->bt_state != MCI_BT_AWAKE) ||
	    (mci_hw->config & ATH_MCI_CONFIG_DISABLE_MCI_CAL))
		return;

	MCI_GPM_SET_CAL_TYPE(pld, MCI_GPM_WLAN_CAL_REQ);
	pld[MCI_GPM_WLAN_CAL_W_SEQUENCE] = mci_hw->wlan_cal_seq++;

	ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16, true, false);

	if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_GRANT, 0, 50000)) {
1124
		ath_dbg(common, MCI, "MCI BT_CAL_GRANT received\n");
1125
	} else {
S
Sujith Manoharan 已提交
1126
		*is_reusable = false;
1127
		ath_dbg(common, MCI, "MCI BT_CAL_GRANT not received\n");
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	}
}

void ar9003_mci_init_cal_done(struct ath_hw *ah)
{
	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
	u32 pld[4] = {0, 0, 0, 0};

	if ((mci_hw->bt_state != MCI_BT_AWAKE) ||
	    (mci_hw->config & ATH_MCI_CONFIG_DISABLE_MCI_CAL))
		return;

	MCI_GPM_SET_CAL_TYPE(pld, MCI_GPM_WLAN_CAL_DONE);
	pld[MCI_GPM_WLAN_CAL_W_SEQUENCE] = mci_hw->wlan_cal_done++;
	ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16, true, false);
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
void ar9003_mci_setup(struct ath_hw *ah, u32 gpm_addr, void *gpm_buf,
		      u16 len, u32 sched_addr)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;

	mci->gpm_addr = gpm_addr;
	mci->gpm_buf = gpm_buf;
	mci->gpm_len = len;
	mci->sched_addr = sched_addr;

	ar9003_mci_reset(ah, true, true, true);
}
EXPORT_SYMBOL(ar9003_mci_setup);

void ar9003_mci_cleanup(struct ath_hw *ah)
{
	/* Turn off MCI and Jupiter mode. */
	REG_WRITE(ah, AR_BTCOEX_CTRL, 0x00);
	ar9003_mci_disable_interrupt(ah);
}
EXPORT_SYMBOL(ar9003_mci_cleanup);

u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type, u32 *p_data)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
1170
	u32 value = 0;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	u8 query_type;

	switch (state_type) {
	case MCI_STATE_ENABLE:
		if (mci->ready) {
			value = REG_READ(ah, AR_BTCOEX_CTRL);

			if ((value == 0xdeadbeef) || (value == 0xffffffff))
				value = 0;
		}
		value &= AR_BTCOEX_CTRL_MCI_MODE_EN;
1182
		break;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	case MCI_STATE_LAST_SCHD_MSG_OFFSET:
		value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
				    AR_MCI_RX_LAST_SCHD_MSG_INDEX);
		/* Make it in bytes */
		value <<= 4;
		break;
	case MCI_STATE_REMOTE_SLEEP:
		value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
			   AR_MCI_RX_REMOTE_SLEEP) ?
			MCI_BT_SLEEP : MCI_BT_AWAKE;
		break;
	case MCI_STATE_CONT_RSSI_POWER:
		value = MS(mci->cont_status, AR_MCI_CONT_RSSI_POWER);
1196
		break;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	case MCI_STATE_CONT_PRIORITY:
		value = MS(mci->cont_status, AR_MCI_CONT_RRIORITY);
		break;
	case MCI_STATE_CONT_TXRX:
		value = MS(mci->cont_status, AR_MCI_CONT_TXRX);
		break;
	case MCI_STATE_BT:
		value = mci->bt_state;
		break;
	case MCI_STATE_SET_BT_SLEEP:
		mci->bt_state = MCI_BT_SLEEP;
		break;
	case MCI_STATE_SET_BT_AWAKE:
		mci->bt_state = MCI_BT_AWAKE;
		ar9003_mci_send_coex_version_query(ah, true);
		ar9003_mci_send_coex_wlan_channels(ah, true);

1214
		if (mci->unhalt_bt_gpm)
1215 1216
			ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);

1217
		ar9003_mci_2g5g_switch(ah, false);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		break;
	case MCI_STATE_SET_BT_CAL_START:
		mci->bt_state = MCI_BT_CAL_START;
		break;
	case MCI_STATE_SET_BT_CAL:
		mci->bt_state = MCI_BT_CAL;
		break;
	case MCI_STATE_RESET_REQ_WAKE:
		ar9003_mci_reset_req_wakeup(ah);
		mci->update_2g5g = true;

1229
		if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MASK) {
1230 1231
			/* Check if we still have control of the GPIOs */
			if ((REG_READ(ah, AR_GLB_GPIO_CONTROL) &
1232 1233
			     ATH_MCI_CONFIG_MCI_OBS_GPIO) !=
			    ATH_MCI_CONFIG_MCI_OBS_GPIO) {
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
				ar9003_mci_observation_set_up(ah);
			}
		}
		break;
	case MCI_STATE_SEND_WLAN_COEX_VERSION:
		ar9003_mci_send_coex_version_response(ah, true);
		break;
	case MCI_STATE_SEND_VERSION_QUERY:
		ar9003_mci_send_coex_version_query(ah, true);
		break;
	case MCI_STATE_SEND_STATUS_QUERY:
1245
		query_type = MCI_GPM_COEX_QUERY_BT_TOPOLOGY;
1246 1247 1248 1249 1250 1251 1252
		ar9003_mci_send_coex_bt_status_query(ah, true, query_type);
		break;
	case MCI_STATE_RECOVER_RX:
		ar9003_mci_prep_interface(ah);
		mci->query_bt = true;
		mci->need_flush_btinfo = true;
		ar9003_mci_send_coex_wlan_channels(ah, true);
1253
		ar9003_mci_2g5g_switch(ah, false);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		break;
	case MCI_STATE_NEED_FTP_STOMP:
		value = !(mci->config & ATH_MCI_CONFIG_DISABLE_FTP_STOMP);
		break;
	default:
		break;
	}

	return value;
}
EXPORT_SYMBOL(ar9003_mci_state);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

void ar9003_mci_bt_gain_ctrl(struct ath_hw *ah)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;

	ath_dbg(common, MCI, "Give LNA and SPDT control to BT\n");

	REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
	mci->is_2g = false;
	mci->update_2g5g = true;
	ar9003_mci_send_2g5g_status(ah, true);

	/* Force another 2g5g update at next scanning */
	mci->update_2g5g = true;
}
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

void ar9003_mci_set_power_awake(struct ath_hw *ah)
{
	u32 btcoex_ctrl2, diag_sw;
	int i;
	u8 lna_ctrl, bt_sleep;

	for (i = 0; i < AH_WAIT_TIMEOUT; i++) {
		btcoex_ctrl2 = REG_READ(ah, AR_BTCOEX_CTRL2);
		if (btcoex_ctrl2 != 0xdeadbeef)
			break;
		udelay(AH_TIME_QUANTUM);
	}
	REG_WRITE(ah, AR_BTCOEX_CTRL2, (btcoex_ctrl2 | BIT(23)));

	for (i = 0; i < AH_WAIT_TIMEOUT; i++) {
		diag_sw = REG_READ(ah, AR_DIAG_SW);
		if (diag_sw != 0xdeadbeef)
			break;
		udelay(AH_TIME_QUANTUM);
	}
	REG_WRITE(ah, AR_DIAG_SW, (diag_sw | BIT(27) | BIT(19) | BIT(18)));
	lna_ctrl = REG_READ(ah, AR_OBS_BUS_CTRL) & 0x3;
	bt_sleep = REG_READ(ah, AR_MCI_RX_STATUS) & AR_MCI_RX_REMOTE_SLEEP;

	REG_WRITE(ah, AR_BTCOEX_CTRL2, btcoex_ctrl2);
	REG_WRITE(ah, AR_DIAG_SW, diag_sw);

	if (bt_sleep && (lna_ctrl == 2)) {
		REG_SET_BIT(ah, AR_BTCOEX_RC, 0x1);
		REG_CLR_BIT(ah, AR_BTCOEX_RC, 0x1);
		udelay(50);
	}
}
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

void ar9003_mci_check_gpm_offset(struct ath_hw *ah)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 offset;

	/*
	 * This should only be called before "MAC Warm Reset" or "MCI Reset Rx".
	 */
	offset = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
	if (mci->gpm_idx == offset)
		return;
	ath_dbg(common, MCI, "GPM cached write pointer mismatch %d %d\n",
		mci->gpm_idx, offset);
	mci->query_bt = true;
	mci->need_flush_btinfo = true;
	mci->gpm_idx = 0;
}

u32 ar9003_mci_get_next_gpm_offset(struct ath_hw *ah, bool first, u32 *more)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
	u32 offset, more_gpm = 0, gpm_ptr;

	if (first) {
		gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
		mci->gpm_idx = gpm_ptr;
		return gpm_ptr;
	}

	/*
	 * This could be useful to avoid new GPM message interrupt which
	 * may lead to spurious interrupt after power sleep, or multiple
	 * entry of ath_mci_intr().
	 * Adding empty GPM check by returning HAL_MCI_GPM_INVALID can
	 * alleviate this effect, but clearing GPM RX interrupt bit is
	 * safe, because whether this is called from hw or driver code
	 * there must be an interrupt bit set/triggered initially
	 */
	REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
			AR_MCI_INTERRUPT_RX_MSG_GPM);

	gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
	offset = gpm_ptr;

	if (!offset)
		offset = mci->gpm_len - 1;
	else if (offset >= mci->gpm_len) {
		if (offset != 0xFFFF)
			offset = 0;
	} else {
		offset--;
	}

	if ((offset == 0xFFFF) || (gpm_ptr == mci->gpm_idx)) {
		offset = MCI_GPM_INVALID;
		more_gpm = MCI_GPM_NOMORE;
		goto out;
	}
	for (;;) {
		u32 temp_index;

		/* skip reserved GPM if any */

		if (offset != mci->gpm_idx)
			more_gpm = MCI_GPM_MORE;
		else
			more_gpm = MCI_GPM_NOMORE;

		temp_index = mci->gpm_idx;
		mci->gpm_idx++;

		if (mci->gpm_idx >= mci->gpm_len)
			mci->gpm_idx = 0;

		if (ar9003_mci_is_gpm_valid(ah, temp_index)) {
			offset = temp_index;
			break;
		}

		if (more_gpm == MCI_GPM_NOMORE) {
			offset = MCI_GPM_INVALID;
			break;
		}
	}

	if (offset != MCI_GPM_INVALID)
		offset <<= 4;
out:
	if (more)
		*more = more_gpm;

	return offset;
}
EXPORT_SYMBOL(ar9003_mci_get_next_gpm_offset);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

void ar9003_mci_set_bt_version(struct ath_hw *ah, u8 major, u8 minor)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;

	mci->bt_ver_major = major;
	mci->bt_ver_minor = minor;
	mci->bt_version_known = true;
	ath_dbg(ath9k_hw_common(ah), MCI, "MCI BT version set: %d.%d\n",
		mci->bt_ver_major, mci->bt_ver_minor);
}
EXPORT_SYMBOL(ar9003_mci_set_bt_version);
1423 1424 1425 1426 1427 1428 1429 1430 1431

void ar9003_mci_send_wlan_channels(struct ath_hw *ah)
{
	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;

	mci->wlan_channels_update = true;
	ar9003_mci_send_coex_wlan_channels(ah, true);
}
EXPORT_SYMBOL(ar9003_mci_send_wlan_channels);