xhci-mem.c 64.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/dmapool.h>
27 28 29

#include "xhci.h"

30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	struct xhci_segment *seg;
	dma_addr_t	dma;

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
44
		return NULL;
45
	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46 47 48 49

	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
	if (!seg->trbs) {
		kfree(seg);
50
		return NULL;
51
	}
52 53
	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
			seg->trbs, (unsigned long long)dma);
54 55 56 57 58 59 60 61 62 63 64 65 66

	memset(seg->trbs, 0, SEGMENT_SIZE);
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (!seg)
		return;
	if (seg->trbs) {
67 68
		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
				seg->trbs, (unsigned long long)seg->dma);
69 70 71
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
72
	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
	kfree(seg);
}

/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
		struct xhci_segment *next, bool link_trbs)
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
	if (link_trbs) {
M
Matt Evans 已提交
92 93
		prev->trbs[TRBS_PER_SEGMENT-1].link.
			segment_ptr = cpu_to_le64(next->dma);
94 95

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
M
Matt Evans 已提交
96
		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
97 98
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
99 100 101
		/* Always set the chain bit with 0.95 hardware */
		if (xhci_link_trb_quirk(xhci))
			val |= TRB_CHAIN;
M
Matt Evans 已提交
102
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
103
	}
104 105 106
	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
			(unsigned long long)prev->dma,
			(unsigned long long)next->dma);
107 108 109
}

/* XXX: Do we need the hcd structure in all these functions? */
110
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111 112 113 114 115 116 117 118
{
	struct xhci_segment *seg;
	struct xhci_segment *first_seg;

	if (!ring || !ring->first_seg)
		return;
	first_seg = ring->first_seg;
	seg = first_seg->next;
119
	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
120 121 122 123 124 125 126 127 128 129
	while (seg != first_seg) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first_seg);
	ring->first_seg = NULL;
	kfree(ring);
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static void xhci_initialize_ring_info(struct xhci_ring *ring)
{
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
	 */
	ring->cycle_state = 1;
	/* Not necessary for new rings, but needed for re-initialized rings */
	ring->enq_updates = 0;
	ring->deq_updates = 0;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160
/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
		unsigned int num_segs, bool link_trbs, gfp_t flags)
{
	struct xhci_ring	*ring;
	struct xhci_segment	*prev;

	ring = kzalloc(sizeof *(ring), flags);
161
	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
162
	if (!ring)
163
		return NULL;
164

165
	INIT_LIST_HEAD(&ring->td_list);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	if (num_segs == 0)
		return ring;

	ring->first_seg = xhci_segment_alloc(xhci, flags);
	if (!ring->first_seg)
		goto fail;
	num_segs--;

	prev = ring->first_seg;
	while (num_segs > 0) {
		struct xhci_segment	*next;

		next = xhci_segment_alloc(xhci, flags);
		if (!next)
			goto fail;
		xhci_link_segments(xhci, prev, next, link_trbs);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);

	if (link_trbs) {
		/* See section 4.9.2.1 and 6.4.4.1 */
M
Matt Evans 已提交
190 191
		prev->trbs[TRBS_PER_SEGMENT-1].link.
			control |= cpu_to_le32(LINK_TOGGLE);
192
		xhci_dbg(xhci, "Wrote link toggle flag to"
193 194
				" segment %p (virtual), 0x%llx (DMA)\n",
				prev, (unsigned long long)prev->dma);
195
	}
196
	xhci_initialize_ring_info(ring);
197 198 199 200
	return ring;

fail:
	xhci_ring_free(xhci, ring);
201
	return NULL;
202 203
}

204 205 206 207 208 209 210 211 212 213
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		unsigned int ep_index)
{
	int rings_cached;

	rings_cached = virt_dev->num_rings_cached;
	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
		virt_dev->ring_cache[rings_cached] =
			virt_dev->eps[ep_index].ring;
214
		virt_dev->num_rings_cached++;
215 216
		xhci_dbg(xhci, "Cached old ring, "
				"%d ring%s cached\n",
217 218
				virt_dev->num_rings_cached,
				(virt_dev->num_rings_cached > 1) ? "s" : "");
219 220 221 222 223 224 225 226 227
	} else {
		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
		xhci_dbg(xhci, "Ring cache full (%d rings), "
				"freeing ring\n",
				virt_dev->num_rings_cached);
	}
	virt_dev->eps[ep_index].ring = NULL;
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 * pointers to the beginning of the ring.
 */
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
		struct xhci_ring *ring)
{
	struct xhci_segment	*seg = ring->first_seg;
	do {
		memset(seg->trbs, 0,
				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
		/* All endpoint rings have link TRBs */
		xhci_link_segments(xhci, seg, seg->next, 1);
		seg = seg->next;
	} while (seg != ring->first_seg);
	xhci_initialize_ring_info(ring);
	/* td list should be empty since all URBs have been cancelled,
	 * but just in case...
	 */
	INIT_LIST_HEAD(&ring->td_list);
}

249 250
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)

251
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
						    int type, gfp_t flags)
{
	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
	if (!ctx)
		return NULL;

	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
	memset(ctx->bytes, 0, ctx->size);
	return ctx;
}

269
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
270 271
			     struct xhci_container_ctx *ctx)
{
272 273
	if (!ctx)
		return;
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
					      struct xhci_container_ctx *ctx)
{
	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

308 309 310

/***************** Streams structures manipulation *************************/

311
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
		unsigned int num_stream_ctxs,
		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
		pci_free_consistent(pdev,
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
				stream_ctx, dma);
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_free(xhci->small_streams_pool,
				stream_ctx, dma);
	else
		return dma_pool_free(xhci->medium_streams_pool,
				stream_ctx, dma);
}

/*
 * The stream context array for each endpoint with bulk streams enabled can
 * vary in size, based on:
 *  - how many streams the endpoint supports,
 *  - the maximum primary stream array size the host controller supports,
 *  - and how many streams the device driver asks for.
 *
 * The stream context array must be a power of 2, and can be as small as
 * 64 bytes or as large as 1MB.
 */
339
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		unsigned int num_stream_ctxs, dma_addr_t *dma,
		gfp_t mem_flags)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
		return pci_alloc_consistent(pdev,
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
				dma);
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_alloc(xhci->small_streams_pool,
				mem_flags, dma);
	else
		return dma_pool_alloc(xhci->medium_streams_pool,
				mem_flags, dma);
}

357 358 359 360 361 362 363 364 365 366 367
struct xhci_ring *xhci_dma_to_transfer_ring(
		struct xhci_virt_ep *ep,
		u64 address)
{
	if (ep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&ep->stream_info->trb_address_map,
				address >> SEGMENT_SHIFT);
	return ep->ring;
}

/* Only use this when you know stream_info is valid */
368
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
369
static struct xhci_ring *dma_to_stream_ring(
370 371 372 373 374 375 376 377
		struct xhci_stream_info *stream_info,
		u64 address)
{
	return radix_tree_lookup(&stream_info->trb_address_map,
			address >> SEGMENT_SHIFT);
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
struct xhci_ring *xhci_stream_id_to_ring(
		struct xhci_virt_device *dev,
		unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep = &dev->eps[ep_index];

	if (stream_id == 0)
		return ep->ring;
	if (!ep->stream_info)
		return NULL;

	if (stream_id > ep->stream_info->num_streams)
		return NULL;
	return ep->stream_info->stream_rings[stream_id];
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
static int xhci_test_radix_tree(struct xhci_hcd *xhci,
		unsigned int num_streams,
		struct xhci_stream_info *stream_info)
{
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	u64 addr;

	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		struct xhci_ring *mapped_ring;
		int trb_size = sizeof(union xhci_trb);

		cur_ring = stream_info->stream_rings[cur_stream];
		for (addr = cur_ring->first_seg->dma;
				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
				addr += trb_size) {
			mapped_ring = dma_to_stream_ring(stream_info, addr);
			if (cur_ring != mapped_ring) {
				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
						"didn't map to stream ID %u; "
						"mapped to ring %p\n",
						(unsigned long long) addr,
						cur_stream,
						mapped_ring);
				return -EINVAL;
			}
		}
		/* One TRB after the end of the ring segment shouldn't return a
		 * pointer to the current ring (although it may be a part of a
		 * different ring).
		 */
		mapped_ring = dma_to_stream_ring(stream_info, addr);
		if (mapped_ring != cur_ring) {
			/* One TRB before should also fail */
			addr = cur_ring->first_seg->dma - trb_size;
			mapped_ring = dma_to_stream_ring(stream_info, addr);
		}
		if (mapped_ring == cur_ring) {
			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
					"mapped to valid stream ID %u; "
					"mapped ring = %p\n",
					(unsigned long long) addr,
					cur_stream,
					mapped_ring);
			return -EINVAL;
		}
	}
	return 0;
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

/*
 * Change an endpoint's internal structure so it supports stream IDs.  The
 * number of requested streams includes stream 0, which cannot be used by device
 * drivers.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use.  This is because the number of
 * stream context array entries must be a power of two.
 *
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to.  We need to do this because the host controller won't tell
 * us which stream ring the TRB came from.  We could store the stream ID in an
 * event data TRB, but that doesn't help us for the cancellation case, since the
 * endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses.  For example, say I
 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 * 	0x10c90fff >> 10 = 0x43243
 * 	0x10c912c0 >> 10 = 0x43244
 * 	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 */
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
		unsigned int num_streams, gfp_t mem_flags)
{
	struct xhci_stream_info *stream_info;
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	unsigned long key;
	u64 addr;
	int ret;

	xhci_dbg(xhci, "Allocating %u streams and %u "
			"stream context array entries.\n",
			num_streams, num_stream_ctxs);
	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
		return NULL;
	}
	xhci->cmd_ring_reserved_trbs++;

	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
	if (!stream_info)
		goto cleanup_trbs;

	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kzalloc(
			sizeof(struct xhci_ring *)*num_streams,
			mem_flags);
	if (!stream_info->stream_rings)
		goto cleanup_info;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
			num_stream_ctxs, &stream_info->ctx_array_dma,
			mem_flags);
	if (!stream_info->stream_ctx_array)
		goto cleanup_ctx;
	memset(stream_info->stream_ctx_array, 0,
			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);

	/* Allocate everything needed to free the stream rings later */
	stream_info->free_streams_command =
		xhci_alloc_command(xhci, true, true, mem_flags);
	if (!stream_info->free_streams_command)
		goto cleanup_ctx;

	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);

	/* Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		stream_info->stream_rings[cur_stream] =
			xhci_ring_alloc(xhci, 1, true, mem_flags);
		cur_ring = stream_info->stream_rings[cur_stream];
		if (!cur_ring)
			goto cleanup_rings;
547
		cur_ring->stream_id = cur_stream;
548 549 550 551
		/* Set deq ptr, cycle bit, and stream context type */
		addr = cur_ring->first_seg->dma |
			SCT_FOR_CTX(SCT_PRI_TR) |
			cur_ring->cycle_state;
M
Matt Evans 已提交
552 553
		stream_info->stream_ctx_array[cur_stream].
			stream_ring = cpu_to_le64(addr);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
				cur_stream, (unsigned long long) addr);

		key = (unsigned long)
			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
		ret = radix_tree_insert(&stream_info->trb_address_map,
				key, cur_ring);
		if (ret) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
			goto cleanup_rings;
		}
	}
	/* Leave the other unused stream ring pointers in the stream context
	 * array initialized to zero.  This will cause the xHC to give us an
	 * error if the device asks for a stream ID we don't have setup (if it
	 * was any other way, the host controller would assume the ring is
	 * "empty" and wait forever for data to be queued to that stream ID).
	 */
#if XHCI_DEBUG
	/* Do a little test on the radix tree to make sure it returns the
	 * correct values.
	 */
	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
		goto cleanup_rings;
#endif

	return stream_info;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
					addr >> SEGMENT_SHIFT);
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
	kfree(stream_info->stream_rings);
cleanup_info:
	kfree(stream_info);
cleanup_trbs:
	xhci->cmd_ring_reserved_trbs--;
	return NULL;
}
/*
 * Sets the MaxPStreams field and the Linear Stream Array field.
 * Sets the dequeue pointer to the stream context array.
 */
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_stream_info *stream_info)
{
	u32 max_primary_streams;
	/* MaxPStreams is the number of stream context array entries, not the
	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
	 */
	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
			1 << (max_primary_streams + 1));
M
Matt Evans 已提交
619 620 621 622
	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
				       | EP_HAS_LSA);
	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
623 624 625 626 627 628 629 630 631 632 633 634
}

/*
 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 * not at the beginning of the ring).
 */
void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_virt_ep *ep)
{
	dma_addr_t addr;
M
Matt Evans 已提交
635
	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
636
	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
M
Matt Evans 已提交
637
	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
}

/* Frees all stream contexts associated with the endpoint,
 *
 * Caller should fix the endpoint context streams fields.
 */
void xhci_free_stream_info(struct xhci_hcd *xhci,
		struct xhci_stream_info *stream_info)
{
	int cur_stream;
	struct xhci_ring *cur_ring;
	dma_addr_t addr;

	if (!stream_info)
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
			cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
					addr >> SEGMENT_SHIFT);
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
	xhci->cmd_ring_reserved_trbs--;
	if (stream_info->stream_ctx_array)
		xhci_free_stream_ctx(xhci,
				stream_info->num_stream_ctxs,
				stream_info->stream_ctx_array,
				stream_info->ctx_array_dma);

	if (stream_info)
		kfree(stream_info->stream_rings);
	kfree(stream_info);
}


/***************** Device context manipulation *************************/

681 682 683 684 685 686 687 688 689
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
		struct xhci_virt_ep *ep)
{
	init_timer(&ep->stop_cmd_timer);
	ep->stop_cmd_timer.data = (unsigned long) ep;
	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
	ep->xhci = xhci;
}

690
/* All the xhci_tds in the ring's TD list should be freed at this point */
691 692 693 694 695 696 697 698 699 700
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
701
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
702 703 704
	if (!dev)
		return;

705
	for (i = 0; i < 31; ++i) {
706 707
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);
708 709 710 711
		if (dev->eps[i].stream_info)
			xhci_free_stream_info(xhci,
					dev->eps[i].stream_info);
	}
712

713 714 715 716 717 718
	if (dev->ring_cache) {
		for (i = 0; i < dev->num_rings_cached; i++)
			xhci_ring_free(xhci, dev->ring_cache[i]);
		kfree(dev->ring_cache);
	}

719
	if (dev->in_ctx)
720
		xhci_free_container_ctx(xhci, dev->in_ctx);
721
	if (dev->out_ctx)
722 723
		xhci_free_container_ctx(xhci, dev->out_ctx);

724
	kfree(xhci->devs[slot_id]);
725
	xhci->devs[slot_id] = NULL;
726 727 728 729 730 731
}

int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
732
	int i;
733 734 735 736 737 738 739 740 741 742 743 744

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

745 746
	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
747 748
	if (!dev->out_ctx)
		goto fail;
749

750
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
751
			(unsigned long long)dev->out_ctx->dma);
752 753

	/* Allocate the (input) device context for address device command */
754
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
755 756
	if (!dev->in_ctx)
		goto fail;
757

758
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
759
			(unsigned long long)dev->in_ctx->dma);
760

761 762 763
	/* Initialize the cancellation list and watchdog timers for each ep */
	for (i = 0; i < 31; i++) {
		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
764
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
765
	}
766

767
	/* Allocate endpoint 0 ring */
768 769
	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
	if (!dev->eps[0].ring)
770 771
		goto fail;

772 773 774 775 776 777 778 779
	/* Allocate pointers to the ring cache */
	dev->ring_cache = kzalloc(
			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
			flags);
	if (!dev->ring_cache)
		goto fail;
	dev->num_rings_cached = 0;

780
	init_completion(&dev->cmd_completion);
781
	INIT_LIST_HEAD(&dev->cmd_list);
782
	dev->udev = udev;
783

784
	/* Point to output device context in dcbaa. */
M
Matt Evans 已提交
785
	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
786
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
M
Matt Evans 已提交
787 788 789
		 slot_id,
		 &xhci->dcbaa->dev_context_ptrs[slot_id],
		 (unsigned long long) le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
790 791 792 793 794 795 796

	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct xhci_ring	*ep_ring;

	virt_dev = xhci->devs[udev->slot_id];
	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
	ep_ring = virt_dev->eps[0].ring;
	/*
	 * FIXME we don't keep track of the dequeue pointer very well after a
	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
	 * host to our enqueue pointer.  This should only be called after a
	 * configured device has reset, so all control transfers should have
	 * been completed or cancelled before the reset.
	 */
M
Matt Evans 已提交
814 815 816
	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
							ep_ring->enqueue)
				   | ep_ring->cycle_state);
817 818
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * The xHCI roothub may have ports of differing speeds in any order in the port
 * status registers.  xhci->port_array provides an array of the port speed for
 * each offset into the port status registers.
 *
 * The xHCI hardware wants to know the roothub port number that the USB device
 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 * know is the index of that port under either the USB 2.0 or the USB 3.0
 * roothub, but that doesn't give us the real index into the HW port status
 * registers.  Scan through the xHCI roothub port array, looking for the Nth
 * entry of the correct port speed.  Return the port number of that entry.
 */
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct usb_device *top_dev;
	unsigned int num_similar_speed_ports;
	unsigned int faked_port_num;
	int i;

	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
	faked_port_num = top_dev->portnum;
	for (i = 0, num_similar_speed_ports = 0;
			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
		u8 port_speed = xhci->port_array[i];

		/*
		 * Skip ports that don't have known speeds, or have duplicate
		 * Extended Capabilities port speed entries.
		 */
851
		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
			continue;

		/*
		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
		 * matches the device speed, it's a similar speed port.
		 */
		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
			num_similar_speed_ports++;
		if (num_similar_speed_ports == faked_port_num)
			/* Roothub ports are numbered from 1 to N */
			return i+1;
	}
	return 0;
}

868 869 870 871 872
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
873 874
	struct xhci_slot_ctx    *slot_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;
875 876
	u32			port_num;
	struct usb_device *top_dev;
877 878 879 880 881 882 883 884

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
885 886 887
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
888 889

	/* 2) New slot context and endpoint 0 context are valid*/
M
Matt Evans 已提交
890
	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
891 892

	/* 3) Only the control endpoint is valid - one endpoint context */
M
Matt Evans 已提交
893
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | (u32) udev->route);
894 895
	switch (udev->speed) {
	case USB_SPEED_SUPER:
M
Matt Evans 已提交
896
		slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_SS);
897 898
		break;
	case USB_SPEED_HIGH:
M
Matt Evans 已提交
899
		slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_HS);
900 901
		break;
	case USB_SPEED_FULL:
M
Matt Evans 已提交
902
		slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_FS);
903 904
		break;
	case USB_SPEED_LOW:
M
Matt Evans 已提交
905
		slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_LS);
906
		break;
907
	case USB_SPEED_WIRELESS:
908 909 910 911 912 913 914 915
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
		BUG();
	}
	/* Find the root hub port this device is under */
916 917 918
	port_num = xhci_find_real_port_number(xhci, udev);
	if (!port_num)
		return -EINVAL;
M
Matt Evans 已提交
919
	slot_ctx->dev_info2 |= cpu_to_le32((u32) ROOT_HUB_PORT(port_num));
920
	/* Set the port number in the virtual_device to the faked port number */
921 922 923
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
924
	dev->port = top_dev->portnum;
925 926
	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
927

S
Sarah Sharp 已提交
928 929
	/* Is this a LS/FS device under an external HS hub? */
	if (udev->tt && udev->tt->hub->parent) {
M
Matt Evans 已提交
930 931
		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
						(udev->ttport << 8));
932
		if (udev->tt->multi)
M
Matt Evans 已提交
933
			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
934
	}
935
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
936 937 938 939
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
M
Matt Evans 已提交
940
	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
941 942 943
	/*
	 * XXX: Not sure about wireless USB devices.
	 */
944 945
	switch (udev->speed) {
	case USB_SPEED_SUPER:
M
Matt Evans 已提交
946
		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
947 948 949 950
		break;
	case USB_SPEED_HIGH:
	/* USB core guesses at a 64-byte max packet first for FS devices */
	case USB_SPEED_FULL:
M
Matt Evans 已提交
951
		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
952 953
		break;
	case USB_SPEED_LOW:
M
Matt Evans 已提交
954
		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
955
		break;
956
	case USB_SPEED_WIRELESS:
957 958 959 960 961 962 963
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* New speed? */
		BUG();
	}
964
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
M
Matt Evans 已提交
965
	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
966

M
Matt Evans 已提交
967 968
	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
				   dev->eps[0].ring->cycle_state);
969 970 971 972 973 974

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

975 976 977 978 979 980 981 982 983 984 985 986 987
/*
 * Convert interval expressed as 2^(bInterval - 1) == interval into
 * straight exponent value 2^n == interval.
 *
 */
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
	if (interval != ep->desc.bInterval - 1)
		dev_warn(&udev->dev,
988
			 "ep %#x - rounding interval to %d %sframes\n",
989
			 ep->desc.bEndpointAddress,
990 991 992 993 994 995 996 997 998 999 1000
			 1 << interval,
			 udev->speed == USB_SPEED_FULL ? "" : "micro");

	if (udev->speed == USB_SPEED_FULL) {
		/*
		 * Full speed isoc endpoints specify interval in frames,
		 * not microframes. We are using microframes everywhere,
		 * so adjust accordingly.
		 */
		interval += 3;	/* 1 frame = 2^3 uframes */
	}
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	return interval;
}

/*
 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
 * microframes, rounded down to nearest power of 2.
 */
static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = fls(8 * ep->desc.bInterval) - 1;
	interval = clamp_val(interval, 3, 10);
	if ((1 << interval) != 8 * ep->desc.bInterval)
		dev_warn(&udev->dev,
			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
			 ep->desc.bEndpointAddress,
			 1 << interval,
			 8 * ep->desc.bInterval);

	return interval;
}

1026 1027 1028 1029 1030 1031 1032 1033
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
1034
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035 1036 1037 1038 1039 1040 1041 1042
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
1043
		    usb_endpoint_xfer_bulk(&ep->desc)) {
1044
			interval = ep->desc.bInterval;
1045 1046
			break;
		}
1047
		/* Fall through - SS and HS isoc/int have same decoding */
1048

1049 1050
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1051 1052
		    usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = xhci_parse_exponent_interval(udev, ep);
1053 1054
		}
		break;
1055

1056
	case USB_SPEED_FULL:
1057
		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058 1059 1060 1061
			interval = xhci_parse_exponent_interval(udev, ep);
			break;
		}
		/*
1062
		 * Fall through for interrupt endpoint interval decoding
1063 1064 1065 1066
		 * since it uses the same rules as low speed interrupt
		 * endpoints.
		 */

1067 1068
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1069 1070 1071
		    usb_endpoint_xfer_isoc(&ep->desc)) {

			interval = xhci_parse_frame_interval(udev, ep);
1072 1073
		}
		break;
1074

1075 1076 1077 1078 1079 1080
	default:
		BUG();
	}
	return EP_INTERVAL(interval);
}

1081
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082 1083 1084 1085
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
1086
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087 1088
		struct usb_host_endpoint *ep)
{
1089 1090
	if (udev->speed != USB_SPEED_SUPER ||
			!usb_endpoint_xfer_isoc(&ep->desc))
1091
		return 0;
1092
	return ep->ss_ep_comp.bmAttributes;
1093 1094
}

1095
static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		struct usb_host_endpoint *ep)
{
	int in;
	u32 type;

	in = usb_endpoint_dir_in(&ep->desc);
	if (usb_endpoint_xfer_control(&ep->desc)) {
		type = EP_TYPE(CTRL_EP);
	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
		if (in)
			type = EP_TYPE(BULK_IN_EP);
		else
			type = EP_TYPE(BULK_OUT_EP);
	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
		if (in)
			type = EP_TYPE(ISOC_IN_EP);
		else
			type = EP_TYPE(ISOC_OUT_EP);
	} else if (usb_endpoint_xfer_int(&ep->desc)) {
		if (in)
			type = EP_TYPE(INT_IN_EP);
		else
			type = EP_TYPE(INT_OUT_EP);
	} else {
		BUG();
	}
	return type;
}

1125 1126 1127 1128
/* Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
1129
static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	int max_burst;
	int max_packet;

	/* Only applies for interrupt or isochronous endpoints */
	if (usb_endpoint_xfer_control(&ep->desc) ||
			usb_endpoint_xfer_bulk(&ep->desc))
		return 0;

1141
	if (udev->speed == USB_SPEED_SUPER)
1142
		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143

M
Matt Evans 已提交
1144 1145
	max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
	max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146 1147 1148 1149
	/* A 0 in max burst means 1 transfer per ESIT */
	return max_packet * (max_burst + 1);
}

1150 1151 1152
/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
 * Drivers will have to call usb_alloc_streams() to do that.
 */
1153 1154 1155
int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
1156 1157
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
1158 1159 1160 1161 1162 1163
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
	unsigned int max_burst;
1164
	u32 max_esit_payload;
1165 1166

	ep_index = xhci_get_endpoint_index(&ep->desc);
1167
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168 1169

	/* Set up the endpoint ring */
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	/*
	 * Isochronous endpoint ring needs bigger size because one isoc URB
	 * carries multiple packets and it will insert multiple tds to the
	 * ring.
	 * This should be replaced with dynamic ring resizing in the future.
	 */
	if (usb_endpoint_xfer_isoc(&ep->desc))
		virt_dev->eps[ep_index].new_ring =
			xhci_ring_alloc(xhci, 8, true, mem_flags);
	else
		virt_dev->eps[ep_index].new_ring =
			xhci_ring_alloc(xhci, 1, true, mem_flags);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	if (!virt_dev->eps[ep_index].new_ring) {
		/* Attempt to use the ring cache */
		if (virt_dev->num_rings_cached == 0)
			return -ENOMEM;
		virt_dev->eps[ep_index].new_ring =
			virt_dev->ring_cache[virt_dev->num_rings_cached];
		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
		virt_dev->num_rings_cached--;
		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
	}
1192
	virt_dev->eps[ep_index].skip = false;
1193
	ep_ring = virt_dev->eps[ep_index].new_ring;
M
Matt Evans 已提交
1194
	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195

M
Matt Evans 已提交
1196 1197
	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1198 1199 1200

	/* FIXME dig Mult and streams info out of ep companion desc */

1201
	/* Allow 3 retries for everything but isoc;
1202
	 * CErr shall be set to 0 for Isoch endpoints.
1203
	 */
1204
	if (!usb_endpoint_xfer_isoc(&ep->desc))
M
Matt Evans 已提交
1205
		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206
	else
1207
		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1208

M
Matt Evans 已提交
1209
	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1210 1211 1212 1213

	/* Set the max packet size and max burst */
	switch (udev->speed) {
	case USB_SPEED_SUPER:
M
Matt Evans 已提交
1214 1215
		max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
S
Sarah Sharp 已提交
1216
		/* dig out max burst from ep companion desc */
1217 1218 1219
		max_packet = ep->ss_ep_comp.bMaxBurst;
		if (!max_packet)
			xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
M
Matt Evans 已提交
1220
		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1221 1222 1223 1224 1225 1226 1227
		break;
	case USB_SPEED_HIGH:
		/* bits 11:12 specify the number of additional transaction
		 * opportunities per microframe (USB 2.0, section 9.6.6)
		 */
		if (usb_endpoint_xfer_isoc(&ep->desc) ||
				usb_endpoint_xfer_int(&ep->desc)) {
M
Matt Evans 已提交
1228 1229 1230
			max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
				     & 0x1800) >> 11;
			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1231 1232 1233 1234
		}
		/* Fall through */
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
M
Matt Evans 已提交
1235 1236
		max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1237 1238 1239 1240
		break;
	default:
		BUG();
	}
1241
	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
M
Matt Evans 已提交
1242
	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	/*
	 * XXX no idea how to calculate the average TRB buffer length for bulk
	 * endpoints, as the driver gives us no clue how big each scatter gather
	 * list entry (or buffer) is going to be.
	 *
	 * For isochronous and interrupt endpoints, we set it to the max
	 * available, until we have new API in the USB core to allow drivers to
	 * declare how much bandwidth they actually need.
	 *
	 * Normally, it would be calculated by taking the total of the buffer
	 * lengths in the TD and then dividing by the number of TRBs in a TD,
	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
	 * use Event Data TRBs, and we don't chain in a link TRB on short
	 * transfers, we're basically dividing by 1.
1258 1259 1260
	 *
	 * xHCI 1.0 specification indicates that the Average TRB Length should
	 * be set to 8 for control endpoints.
1261
	 */
1262 1263 1264 1265 1266
	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
	else
		ep_ctx->tx_info |=
			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
1280
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1281 1282 1283

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
1284
	ep_ctx->deq = 0;
1285 1286 1287 1288 1289 1290
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

1291 1292 1293 1294 1295
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
1296 1297 1298
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
1299 1300 1301 1302
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

1303 1304
	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
1317 1318 1319
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
1320 1321 1322 1323
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

1324 1325
	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1326 1327 1328 1329 1330 1331 1332

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

	xhci->scratchpad->sp_array =
		pci_alloc_consistent(to_pci_dev(dev),
				     num_sp * sizeof(u64),
				     &xhci->scratchpad->sp_dma);
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

	xhci->scratchpad->sp_dma_buffers =
		kzalloc(sizeof(dma_addr_t) * num_sp, flags);

	if (!xhci->scratchpad->sp_dma_buffers)
		goto fail_sp4;

M
Matt Evans 已提交
1366
	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
		void *buf = pci_alloc_consistent(to_pci_dev(dev),
						 xhci->page_size, &dma);
		if (!buf)
			goto fail_sp5;

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
		xhci->scratchpad->sp_dma_buffers[i] = dma;
	}

	return 0;

 fail_sp5:
	for (i = i - 1; i >= 0; i--) {
		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);

 fail_sp4:
	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
		pci_free_consistent(pdev, xhci->page_size,
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);
	kfree(xhci->scratchpad->sp_buffers);
	pci_free_consistent(pdev, num_sp * sizeof(u64),
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

1430
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1431 1432
		bool allocate_in_ctx, bool allocate_completion,
		gfp_t mem_flags)
1433 1434 1435 1436 1437 1438 1439
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

1440 1441 1442 1443 1444 1445 1446 1447
	if (allocate_in_ctx) {
		command->in_ctx =
			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
					mem_flags);
		if (!command->in_ctx) {
			kfree(command);
			return NULL;
		}
1448
	}
1449 1450 1451 1452 1453 1454

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
1455
			kfree(command);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
{
	int last;

	if (!urb_priv)
		return;

	last = urb_priv->length - 1;
	if (last >= 0) {
		int	i;
		for (i = 0; i <= last; i++)
			kfree(urb_priv->td[i]);
	}
	kfree(urb_priv);
}

1482 1483 1484 1485 1486 1487 1488 1489 1490
void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

1491 1492
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
1493 1494
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
	int size;
1495
	int i;
1496 1497

	/* Free the Event Ring Segment Table and the actual Event Ring */
1498 1499 1500 1501 1502
	if (xhci->ir_set) {
		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
	}
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
		pci_free_consistent(pdev, size,
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
	xhci_dbg(xhci, "Freed ERST\n");
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
	xhci_dbg(xhci, "Freed event ring\n");

1514
	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1515 1516 1517 1518
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
	xhci_dbg(xhci, "Freed command ring\n");
1519 1520 1521 1522

	for (i = 1; i < MAX_HC_SLOTS; ++i)
		xhci_free_virt_device(xhci, i);

1523 1524 1525 1526
	if (xhci->segment_pool)
		dma_pool_destroy(xhci->segment_pool);
	xhci->segment_pool = NULL;
	xhci_dbg(xhci, "Freed segment pool\n");
1527 1528 1529 1530 1531 1532

	if (xhci->device_pool)
		dma_pool_destroy(xhci->device_pool);
	xhci->device_pool = NULL;
	xhci_dbg(xhci, "Freed device context pool\n");

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	if (xhci->small_streams_pool)
		dma_pool_destroy(xhci->small_streams_pool);
	xhci->small_streams_pool = NULL;
	xhci_dbg(xhci, "Freed small stream array pool\n");

	if (xhci->medium_streams_pool)
		dma_pool_destroy(xhci->medium_streams_pool);
	xhci->medium_streams_pool = NULL;
	xhci_dbg(xhci, "Freed medium stream array pool\n");

1543
	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1544 1545 1546 1547
	if (xhci->dcbaa)
		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
1548

1549
	scratchpad_free(xhci);
1550 1551 1552 1553 1554 1555 1556

	xhci->num_usb2_ports = 0;
	xhci->num_usb3_ports = 0;
	kfree(xhci->usb2_ports);
	kfree(xhci->usb3_ports);
	kfree(xhci->port_array);

1557 1558
	xhci->page_size = 0;
	xhci->page_shift = 0;
1559
	xhci->bus_state[0].bus_suspended = 0;
1560
	xhci->bus_state[1].bus_suspended = 0;
1561 1562
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
		struct xhci_segment *input_seg,
		union xhci_trb *start_trb,
		union xhci_trb *end_trb,
		dma_addr_t input_dma,
		struct xhci_segment *result_seg,
		char *test_name, int test_number)
{
	unsigned long long start_dma;
	unsigned long long end_dma;
	struct xhci_segment *seg;

	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);

	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
	if (seg != result_seg) {
		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
				test_name, test_number);
		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
				"input DMA 0x%llx\n",
				input_seg,
				(unsigned long long) input_dma);
		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
				"ending TRB %p (0x%llx DMA)\n",
				start_trb, start_dma,
				end_trb, end_dma);
		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
				result_seg, seg);
		return -1;
	}
	return 0;
}

/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
{
	struct {
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} simple_test_vector [] = {
		/* A zeroed DMA field should fail */
		{ 0, NULL },
		/* One TRB before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 16, NULL },
		/* One byte before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 1, NULL },
		/* Starting TRB should succeed */
		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
		/* Ending TRB should succeed */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
			xhci->event_ring->first_seg },
		/* One byte after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
		/* One TRB after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
		/* An address of all ones should fail */
		{ (dma_addr_t) (~0), NULL },
	};
	struct {
		struct xhci_segment	*input_seg;
		union xhci_trb		*start_trb;
		union xhci_trb		*end_trb;
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} complex_test_vector [] = {
		/* Test feeding a valid DMA address from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid start and end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->cmd_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[0],
			.end_trb = &xhci->event_ring->first_seg->trbs[3],
			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[3],
			.end_trb = &xhci->event_ring->first_seg->trbs[6],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
			.result_seg = NULL,
		},
		/* TRB not in this ring, and we have a wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
	};

	unsigned int num_tests;
	int i, ret;

1690
	num_tests = ARRAY_SIZE(simple_test_vector);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				xhci->event_ring->first_seg,
				xhci->event_ring->first_seg->trbs,
				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
				simple_test_vector[i].input_dma,
				simple_test_vector[i].result_seg,
				"Simple", i);
		if (ret < 0)
			return ret;
	}

1703
	num_tests = ARRAY_SIZE(complex_test_vector);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				complex_test_vector[i].input_seg,
				complex_test_vector[i].start_trb,
				complex_test_vector[i].end_trb,
				complex_test_vector[i].input_dma,
				complex_test_vector[i].result_seg,
				"Complex", i);
		if (ret < 0)
			return ret;
	}
	xhci_dbg(xhci, "TRB math tests passed.\n");
	return 0;
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
	u64 temp;
	dma_addr_t deq;

	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
			xhci->event_ring->dequeue);
	if (deq == 0 && !in_interrupt())
		xhci_warn(xhci, "WARN something wrong with SW event ring "
				"dequeue ptr.\n");
	/* Update HC event ring dequeue pointer */
	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
	temp &= ERST_PTR_MASK;
	/* Don't clear the EHB bit (which is RW1C) because
	 * there might be more events to service.
	 */
	temp &= ~ERST_EHB;
	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
			"preserving EHB bit\n");
	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
			&xhci->ir_set->erst_dequeue);
}

1742
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
M
Matt Evans 已提交
1743
		__le32 __iomem *addr, u8 major_revision)
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
{
	u32 temp, port_offset, port_count;
	int i;

	if (major_revision > 0x03) {
		xhci_warn(xhci, "Ignoring unknown port speed, "
				"Ext Cap %p, revision = 0x%x\n",
				addr, major_revision);
		/* Ignoring port protocol we can't understand. FIXME */
		return;
	}

	/* Port offset and count in the third dword, see section 7.2 */
	temp = xhci_readl(xhci, addr + 2);
	port_offset = XHCI_EXT_PORT_OFF(temp);
	port_count = XHCI_EXT_PORT_COUNT(temp);
	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
			"count = %u, revision = 0x%x\n",
			addr, port_offset, port_count, major_revision);
	/* Port count includes the current port offset */
	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
		/* WTF? "Valid values are ‘1’ to MaxPorts" */
		return;
	port_offset--;
	for (i = port_offset; i < (port_offset + port_count); i++) {
		/* Duplicate entry.  Ignore the port if the revisions differ. */
		if (xhci->port_array[i] != 0) {
			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
					" port %u\n", addr, i);
			xhci_warn(xhci, "Port was marked as USB %u, "
					"duplicated as USB %u\n",
					xhci->port_array[i], major_revision);
			/* Only adjust the roothub port counts if we haven't
			 * found a similar duplicate.
			 */
			if (xhci->port_array[i] != major_revision &&
1780
				xhci->port_array[i] != DUPLICATE_ENTRY) {
1781 1782 1783 1784
				if (xhci->port_array[i] == 0x03)
					xhci->num_usb3_ports--;
				else
					xhci->num_usb2_ports--;
1785
				xhci->port_array[i] = DUPLICATE_ENTRY;
1786 1787
			}
			/* FIXME: Should we disable the port? */
1788
			continue;
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		}
		xhci->port_array[i] = major_revision;
		if (major_revision == 0x03)
			xhci->num_usb3_ports++;
		else
			xhci->num_usb2_ports++;
	}
	/* FIXME: Should we disable ports not in the Extended Capabilities? */
}

/*
 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 * specify what speeds each port is supposed to be.  We can't count on the port
 * speed bits in the PORTSC register being correct until a device is connected,
 * but we need to set up the two fake roothubs with the correct number of USB
 * 3.0 and USB 2.0 ports at host controller initialization time.
 */
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
M
Matt Evans 已提交
1808
	__le32 __iomem *addr;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	u32 offset;
	unsigned int num_ports;
	int i, port_index;

	addr = &xhci->cap_regs->hcc_params;
	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
	if (offset == 0) {
		xhci_err(xhci, "No Extended Capability registers, "
				"unable to set up roothub.\n");
		return -ENODEV;
	}

	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
	if (!xhci->port_array)
		return -ENOMEM;

	/*
	 * For whatever reason, the first capability offset is from the
	 * capability register base, not from the HCCPARAMS register.
	 * See section 5.3.6 for offset calculation.
	 */
	addr = &xhci->cap_regs->hc_capbase + offset;
	while (1) {
		u32 cap_id;

		cap_id = xhci_readl(xhci, addr);
		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
			xhci_add_in_port(xhci, num_ports, addr,
					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
		offset = XHCI_EXT_CAPS_NEXT(cap_id);
		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
				== num_ports)
			break;
		/*
		 * Once you're into the Extended Capabilities, the offset is
		 * always relative to the register holding the offset.
		 */
		addr += offset;
	}

	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
		xhci_warn(xhci, "No ports on the roothubs?\n");
		return -ENODEV;
	}
	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
			xhci->num_usb2_ports, xhci->num_usb3_ports);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	/* Place limits on the number of roothub ports so that the hub
	 * descriptors aren't longer than the USB core will allocate.
	 */
	if (xhci->num_usb3_ports > 15) {
		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
		xhci->num_usb3_ports = 15;
	}
	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
				USB_MAXCHILDREN);
		xhci->num_usb2_ports = USB_MAXCHILDREN;
	}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	/*
	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
	 * Not sure how the USB core will handle a hub with no ports...
	 */
	if (xhci->num_usb2_ports) {
		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
				xhci->num_usb2_ports, flags);
		if (!xhci->usb2_ports)
			return -ENOMEM;

		port_index = 0;
1881 1882 1883
		for (i = 0; i < num_ports; i++) {
			if (xhci->port_array[i] == 0x03 ||
					xhci->port_array[i] == 0 ||
1884
					xhci->port_array[i] == DUPLICATE_ENTRY)
1885 1886 1887 1888 1889 1890 1891 1892 1893
				continue;

			xhci->usb2_ports[port_index] =
				&xhci->op_regs->port_status_base +
				NUM_PORT_REGS*i;
			xhci_dbg(xhci, "USB 2.0 port at index %u, "
					"addr = %p\n", i,
					xhci->usb2_ports[port_index]);
			port_index++;
1894 1895
			if (port_index == xhci->num_usb2_ports)
				break;
1896
		}
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	}
	if (xhci->num_usb3_ports) {
		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
				xhci->num_usb3_ports, flags);
		if (!xhci->usb3_ports)
			return -ENOMEM;

		port_index = 0;
		for (i = 0; i < num_ports; i++)
			if (xhci->port_array[i] == 0x03) {
				xhci->usb3_ports[port_index] =
					&xhci->op_regs->port_status_base +
					NUM_PORT_REGS*i;
				xhci_dbg(xhci, "USB 3.0 port at index %u, "
						"addr = %p\n", i,
						xhci->usb3_ports[port_index]);
				port_index++;
1914 1915
				if (port_index == xhci->num_usb3_ports)
					break;
1916 1917 1918 1919
			}
	}
	return 0;
}
1920

1921 1922
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
1923 1924
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1925
	unsigned int	val, val2;
1926
	u64		val_64;
1927
	struct xhci_segment	*seg;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	u32 page_size;
	int i;

	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
			(unsigned int) val);
	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
	val |= (val2 & ~HCS_SLOTS_MASK);
	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
			(unsigned int) val);
	xhci_writel(xhci, val, &xhci->op_regs->config_reg);

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
			sizeof(*xhci->dcbaa), &dma);
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
1970 1971
	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1972
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1973

1974 1975 1976 1977 1978 1979 1980 1981
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
	 * however, the command ring segment needs 64-byte aligned segments,
	 * so we pick the greater alignment need.
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
			SEGMENT_SIZE, 64, xhci->page_size);
1982

1983 1984
	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1985
			2112, 64, xhci->page_size);
1986
	if (!xhci->segment_pool || !xhci->device_pool)
1987 1988
		goto fail;

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	/* Linear stream context arrays don't have any boundary restrictions,
	 * and only need to be 16-byte aligned.
	 */
	xhci->small_streams_pool =
		dma_pool_create("xHCI 256 byte stream ctx arrays",
			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
	xhci->medium_streams_pool =
		dma_pool_create("xHCI 1KB stream ctx arrays",
			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
	 * will be allocated with pci_alloc_consistent()
	 */

	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
		goto fail;

2005 2006 2007 2008
	/* Set up the command ring to have one segments for now. */
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
	if (!xhci->cmd_ring)
		goto fail;
2009 2010 2011
	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2012 2013

	/* Set the address in the Command Ring Control register */
2014 2015 2016
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2017
		xhci->cmd_ring->cycle_state;
2018 2019
	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2020 2021 2022 2023 2024 2025
	xhci_dbg_cmd_ptrs(xhci);

	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
	val &= DBOFF_MASK;
	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
			" from cap regs base addr\n", val);
2026
	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2027 2028 2029
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
2030
	xhci->ir_set = &xhci->run_regs->ir_set[0];
2031 2032 2033 2034 2035 2036 2037 2038 2039

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
	xhci_dbg(xhci, "// Allocating event ring\n");
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
	if (!xhci->event_ring)
		goto fail;
2040 2041
	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
		goto fail;
2042 2043 2044 2045 2046

	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
	if (!xhci->erst.entries)
		goto fail;
2047 2048
	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
			(unsigned long long)dma);
2049 2050 2051 2052

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
2053
	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2054
			xhci->erst.num_entries,
2055 2056
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
2057 2058 2059 2060

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
M
Matt Evans 已提交
2061 2062
		entry->seg_addr = cpu_to_le64(seg->dma);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
			val);
	xhci_writel(xhci, val, &xhci->ir_set->erst_size);

	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
	/* set the segment table base address */
2077 2078
	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
			(unsigned long long)xhci->erst.erst_dma_addr);
2079 2080 2081 2082
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2083 2084

	/* Set the event ring dequeue address */
2085
	xhci_set_hc_event_deq(xhci);
2086
	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2087
	xhci_print_ir_set(xhci, 0);
2088 2089 2090 2091 2092 2093

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
2094 2095
	init_completion(&xhci->addr_dev);
	for (i = 0; i < MAX_HC_SLOTS; ++i)
2096
		xhci->devs[i] = NULL;
2097
	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2098
		xhci->bus_state[0].resume_done[i] = 0;
2099 2100
		xhci->bus_state[1].resume_done[i] = 0;
	}
2101

2102 2103
	if (scratchpad_alloc(xhci, flags))
		goto fail;
2104 2105
	if (xhci_setup_port_arrays(xhci, flags))
		goto fail;
2106

2107
	return 0;
2108

2109 2110 2111 2112 2113
fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}