xhci-mem.c 54.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/dmapool.h>
27 28 29

#include "xhci.h"

30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	struct xhci_segment *seg;
	dma_addr_t	dma;

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
44
		return NULL;
45
	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46 47 48 49

	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
	if (!seg->trbs) {
		kfree(seg);
50
		return NULL;
51
	}
52 53
	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
			seg->trbs, (unsigned long long)dma);
54 55 56 57 58 59 60 61 62 63 64 65 66

	memset(seg->trbs, 0, SEGMENT_SIZE);
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (!seg)
		return;
	if (seg->trbs) {
67 68
		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
				seg->trbs, (unsigned long long)seg->dma);
69 70 71
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
72
	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
	kfree(seg);
}

/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
		struct xhci_segment *next, bool link_trbs)
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
	if (link_trbs) {
92
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93 94 95 96 97

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
		val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
98 99 100
		/* Always set the chain bit with 0.95 hardware */
		if (xhci_link_trb_quirk(xhci))
			val |= TRB_CHAIN;
101 102
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
	}
103 104 105
	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
			(unsigned long long)prev->dma,
			(unsigned long long)next->dma);
106 107 108
}

/* XXX: Do we need the hcd structure in all these functions? */
109
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 111 112 113 114 115 116 117
{
	struct xhci_segment *seg;
	struct xhci_segment *first_seg;

	if (!ring || !ring->first_seg)
		return;
	first_seg = ring->first_seg;
	seg = first_seg->next;
118
	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119 120 121 122 123 124 125 126 127 128
	while (seg != first_seg) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first_seg);
	ring->first_seg = NULL;
	kfree(ring);
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
static void xhci_initialize_ring_info(struct xhci_ring *ring)
{
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
	 */
	ring->cycle_state = 1;
	/* Not necessary for new rings, but needed for re-initialized rings */
	ring->enq_updates = 0;
	ring->deq_updates = 0;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159
/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
		unsigned int num_segs, bool link_trbs, gfp_t flags)
{
	struct xhci_ring	*ring;
	struct xhci_segment	*prev;

	ring = kzalloc(sizeof *(ring), flags);
160
	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161
	if (!ring)
162
		return NULL;
163

164
	INIT_LIST_HEAD(&ring->td_list);
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	if (num_segs == 0)
		return ring;

	ring->first_seg = xhci_segment_alloc(xhci, flags);
	if (!ring->first_seg)
		goto fail;
	num_segs--;

	prev = ring->first_seg;
	while (num_segs > 0) {
		struct xhci_segment	*next;

		next = xhci_segment_alloc(xhci, flags);
		if (!next)
			goto fail;
		xhci_link_segments(xhci, prev, next, link_trbs);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);

	if (link_trbs) {
		/* See section 4.9.2.1 and 6.4.4.1 */
		prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
		xhci_dbg(xhci, "Wrote link toggle flag to"
191 192
				" segment %p (virtual), 0x%llx (DMA)\n",
				prev, (unsigned long long)prev->dma);
193
	}
194
	xhci_initialize_ring_info(ring);
195 196 197 198
	return ring;

fail:
	xhci_ring_free(xhci, ring);
199
	return NULL;
200 201
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		unsigned int ep_index)
{
	int rings_cached;

	rings_cached = virt_dev->num_rings_cached;
	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
		virt_dev->num_rings_cached++;
		rings_cached = virt_dev->num_rings_cached;
		virt_dev->ring_cache[rings_cached] =
			virt_dev->eps[ep_index].ring;
		xhci_dbg(xhci, "Cached old ring, "
				"%d ring%s cached\n",
				rings_cached,
				(rings_cached > 1) ? "s" : "");
	} else {
		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
		xhci_dbg(xhci, "Ring cache full (%d rings), "
				"freeing ring\n",
				virt_dev->num_rings_cached);
	}
	virt_dev->eps[ep_index].ring = NULL;
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 * pointers to the beginning of the ring.
 */
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
		struct xhci_ring *ring)
{
	struct xhci_segment	*seg = ring->first_seg;
	do {
		memset(seg->trbs, 0,
				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
		/* All endpoint rings have link TRBs */
		xhci_link_segments(xhci, seg, seg->next, 1);
		seg = seg->next;
	} while (seg != ring->first_seg);
	xhci_initialize_ring_info(ring);
	/* td list should be empty since all URBs have been cancelled,
	 * but just in case...
	 */
	INIT_LIST_HEAD(&ring->td_list);
}

248 249
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)

250
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
						    int type, gfp_t flags)
{
	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
	if (!ctx)
		return NULL;

	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
	memset(ctx->bytes, 0, ctx->size);
	return ctx;
}

268
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269 270
			     struct xhci_container_ctx *ctx)
{
271 272
	if (!ctx)
		return;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
					      struct xhci_container_ctx *ctx)
{
	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

/***************** Streams structures manipulation *************************/

void xhci_free_stream_ctx(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
		pci_free_consistent(pdev,
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
				stream_ctx, dma);
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_free(xhci->small_streams_pool,
				stream_ctx, dma);
	else
		return dma_pool_free(xhci->medium_streams_pool,
				stream_ctx, dma);
}

/*
 * The stream context array for each endpoint with bulk streams enabled can
 * vary in size, based on:
 *  - how many streams the endpoint supports,
 *  - the maximum primary stream array size the host controller supports,
 *  - and how many streams the device driver asks for.
 *
 * The stream context array must be a power of 2, and can be as small as
 * 64 bytes or as large as 1MB.
 */
struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs, dma_addr_t *dma,
		gfp_t mem_flags)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
		return pci_alloc_consistent(pdev,
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
				dma);
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_alloc(xhci->small_streams_pool,
				mem_flags, dma);
	else
		return dma_pool_alloc(xhci->medium_streams_pool,
				mem_flags, dma);
}

356 357 358 359 360 361 362 363 364 365 366
struct xhci_ring *xhci_dma_to_transfer_ring(
		struct xhci_virt_ep *ep,
		u64 address)
{
	if (ep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&ep->stream_info->trb_address_map,
				address >> SEGMENT_SHIFT);
	return ep->ring;
}

/* Only use this when you know stream_info is valid */
367
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
368
static struct xhci_ring *dma_to_stream_ring(
369 370 371 372 373 374 375 376
		struct xhci_stream_info *stream_info,
		u64 address)
{
	return radix_tree_lookup(&stream_info->trb_address_map,
			address >> SEGMENT_SHIFT);
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
struct xhci_ring *xhci_stream_id_to_ring(
		struct xhci_virt_device *dev,
		unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep = &dev->eps[ep_index];

	if (stream_id == 0)
		return ep->ring;
	if (!ep->stream_info)
		return NULL;

	if (stream_id > ep->stream_info->num_streams)
		return NULL;
	return ep->stream_info->stream_rings[stream_id];
}

struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
		unsigned int slot_id, unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep;

	ep = &xhci->devs[slot_id]->eps[ep_index];
	/* Common case: no streams */
	if (!(ep->ep_state & EP_HAS_STREAMS))
		return ep->ring;

	if (stream_id == 0) {
		xhci_warn(xhci,
				"WARN: Slot ID %u, ep index %u has streams, "
				"but URB has no stream ID.\n",
				slot_id, ep_index);
		return NULL;
	}

	if (stream_id < ep->stream_info->num_streams)
		return ep->stream_info->stream_rings[stream_id];

	xhci_warn(xhci,
			"WARN: Slot ID %u, ep index %u has "
			"stream IDs 1 to %u allocated, "
			"but stream ID %u is requested.\n",
			slot_id, ep_index,
			ep->stream_info->num_streams - 1,
			stream_id);
	return NULL;
}

/* Get the right ring for the given URB.
 * If the endpoint supports streams, boundary check the URB's stream ID.
 * If the endpoint doesn't support streams, return the singular endpoint ring.
 */
struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
		struct urb *urb)
{
	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
static int xhci_test_radix_tree(struct xhci_hcd *xhci,
		unsigned int num_streams,
		struct xhci_stream_info *stream_info)
{
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	u64 addr;

	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		struct xhci_ring *mapped_ring;
		int trb_size = sizeof(union xhci_trb);

		cur_ring = stream_info->stream_rings[cur_stream];
		for (addr = cur_ring->first_seg->dma;
				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
				addr += trb_size) {
			mapped_ring = dma_to_stream_ring(stream_info, addr);
			if (cur_ring != mapped_ring) {
				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
						"didn't map to stream ID %u; "
						"mapped to ring %p\n",
						(unsigned long long) addr,
						cur_stream,
						mapped_ring);
				return -EINVAL;
			}
		}
		/* One TRB after the end of the ring segment shouldn't return a
		 * pointer to the current ring (although it may be a part of a
		 * different ring).
		 */
		mapped_ring = dma_to_stream_ring(stream_info, addr);
		if (mapped_ring != cur_ring) {
			/* One TRB before should also fail */
			addr = cur_ring->first_seg->dma - trb_size;
			mapped_ring = dma_to_stream_ring(stream_info, addr);
		}
		if (mapped_ring == cur_ring) {
			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
					"mapped to valid stream ID %u; "
					"mapped ring = %p\n",
					(unsigned long long) addr,
					cur_stream,
					mapped_ring);
			return -EINVAL;
		}
	}
	return 0;
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

/*
 * Change an endpoint's internal structure so it supports stream IDs.  The
 * number of requested streams includes stream 0, which cannot be used by device
 * drivers.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use.  This is because the number of
 * stream context array entries must be a power of two.
 *
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to.  We need to do this because the host controller won't tell
 * us which stream ring the TRB came from.  We could store the stream ID in an
 * event data TRB, but that doesn't help us for the cancellation case, since the
 * endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses.  For example, say I
 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 * 	0x10c90fff >> 10 = 0x43243
 * 	0x10c912c0 >> 10 = 0x43244
 * 	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 */
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
		unsigned int num_streams, gfp_t mem_flags)
{
	struct xhci_stream_info *stream_info;
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	unsigned long key;
	u64 addr;
	int ret;

	xhci_dbg(xhci, "Allocating %u streams and %u "
			"stream context array entries.\n",
			num_streams, num_stream_ctxs);
	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
		return NULL;
	}
	xhci->cmd_ring_reserved_trbs++;

	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
	if (!stream_info)
		goto cleanup_trbs;

	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kzalloc(
			sizeof(struct xhci_ring *)*num_streams,
			mem_flags);
	if (!stream_info->stream_rings)
		goto cleanup_info;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
			num_stream_ctxs, &stream_info->ctx_array_dma,
			mem_flags);
	if (!stream_info->stream_ctx_array)
		goto cleanup_ctx;
	memset(stream_info->stream_ctx_array, 0,
			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);

	/* Allocate everything needed to free the stream rings later */
	stream_info->free_streams_command =
		xhci_alloc_command(xhci, true, true, mem_flags);
	if (!stream_info->free_streams_command)
		goto cleanup_ctx;

	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);

	/* Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		stream_info->stream_rings[cur_stream] =
			xhci_ring_alloc(xhci, 1, true, mem_flags);
		cur_ring = stream_info->stream_rings[cur_stream];
		if (!cur_ring)
			goto cleanup_rings;
589
		cur_ring->stream_id = cur_stream;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
		/* Set deq ptr, cycle bit, and stream context type */
		addr = cur_ring->first_seg->dma |
			SCT_FOR_CTX(SCT_PRI_TR) |
			cur_ring->cycle_state;
		stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
				cur_stream, (unsigned long long) addr);

		key = (unsigned long)
			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
		ret = radix_tree_insert(&stream_info->trb_address_map,
				key, cur_ring);
		if (ret) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
			goto cleanup_rings;
		}
	}
	/* Leave the other unused stream ring pointers in the stream context
	 * array initialized to zero.  This will cause the xHC to give us an
	 * error if the device asks for a stream ID we don't have setup (if it
	 * was any other way, the host controller would assume the ring is
	 * "empty" and wait forever for data to be queued to that stream ID).
	 */
#if XHCI_DEBUG
	/* Do a little test on the radix tree to make sure it returns the
	 * correct values.
	 */
	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
		goto cleanup_rings;
#endif

	return stream_info;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
					addr >> SEGMENT_SHIFT);
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
	kfree(stream_info->stream_rings);
cleanup_info:
	kfree(stream_info);
cleanup_trbs:
	xhci->cmd_ring_reserved_trbs--;
	return NULL;
}
/*
 * Sets the MaxPStreams field and the Linear Stream Array field.
 * Sets the dequeue pointer to the stream context array.
 */
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_stream_info *stream_info)
{
	u32 max_primary_streams;
	/* MaxPStreams is the number of stream context array entries, not the
	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
	 */
	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
			1 << (max_primary_streams + 1));
	ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
	ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
	ep_ctx->ep_info |= EP_HAS_LSA;
	ep_ctx->deq  = stream_info->ctx_array_dma;
}

/*
 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 * not at the beginning of the ring).
 */
void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_virt_ep *ep)
{
	dma_addr_t addr;
	ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
	ep_ctx->ep_info &= ~EP_HAS_LSA;
	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
	ep_ctx->deq  = addr | ep->ring->cycle_state;
}

/* Frees all stream contexts associated with the endpoint,
 *
 * Caller should fix the endpoint context streams fields.
 */
void xhci_free_stream_info(struct xhci_hcd *xhci,
		struct xhci_stream_info *stream_info)
{
	int cur_stream;
	struct xhci_ring *cur_ring;
	dma_addr_t addr;

	if (!stream_info)
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
			cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
					addr >> SEGMENT_SHIFT);
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
	xhci->cmd_ring_reserved_trbs--;
	if (stream_info->stream_ctx_array)
		xhci_free_stream_ctx(xhci,
				stream_info->num_stream_ctxs,
				stream_info->stream_ctx_array,
				stream_info->ctx_array_dma);

	if (stream_info)
		kfree(stream_info->stream_rings);
	kfree(stream_info);
}


/***************** Device context manipulation *************************/

723 724 725 726 727 728 729 730 731
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
		struct xhci_virt_ep *ep)
{
	init_timer(&ep->stop_cmd_timer);
	ep->stop_cmd_timer.data = (unsigned long) ep;
	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
	ep->xhci = xhci;
}

732
/* All the xhci_tds in the ring's TD list should be freed at this point */
733 734 735 736 737 738 739 740 741 742
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
743
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
744 745 746
	if (!dev)
		return;

747
	for (i = 0; i < 31; ++i) {
748 749
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);
750 751 752 753
		if (dev->eps[i].stream_info)
			xhci_free_stream_info(xhci,
					dev->eps[i].stream_info);
	}
754

755 756 757 758 759 760
	if (dev->ring_cache) {
		for (i = 0; i < dev->num_rings_cached; i++)
			xhci_ring_free(xhci, dev->ring_cache[i]);
		kfree(dev->ring_cache);
	}

761
	if (dev->in_ctx)
762
		xhci_free_container_ctx(xhci, dev->in_ctx);
763
	if (dev->out_ctx)
764 765
		xhci_free_container_ctx(xhci, dev->out_ctx);

766
	kfree(xhci->devs[slot_id]);
767
	xhci->devs[slot_id] = NULL;
768 769 770 771 772 773
}

int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
774
	int i;
775 776 777 778 779 780 781 782 783 784 785 786

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

787 788
	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
789 790
	if (!dev->out_ctx)
		goto fail;
791

792
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
793
			(unsigned long long)dev->out_ctx->dma);
794 795

	/* Allocate the (input) device context for address device command */
796
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
797 798
	if (!dev->in_ctx)
		goto fail;
799

800
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
801
			(unsigned long long)dev->in_ctx->dma);
802

803 804 805
	/* Initialize the cancellation list and watchdog timers for each ep */
	for (i = 0; i < 31; i++) {
		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
806
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
807
	}
808

809
	/* Allocate endpoint 0 ring */
810 811
	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
	if (!dev->eps[0].ring)
812 813
		goto fail;

814 815 816 817 818 819 820 821
	/* Allocate pointers to the ring cache */
	dev->ring_cache = kzalloc(
			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
			flags);
	if (!dev->ring_cache)
		goto fail;
	dev->num_rings_cached = 0;

822
	init_completion(&dev->cmd_completion);
823
	INIT_LIST_HEAD(&dev->cmd_list);
824

825
	/* Point to output device context in dcbaa. */
826
	xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
827
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
828
			slot_id,
829
			&xhci->dcbaa->dev_context_ptrs[slot_id],
830
			(unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
831 832 833 834 835 836 837

	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct xhci_ring	*ep_ring;

	virt_dev = xhci->devs[udev->slot_id];
	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
	ep_ring = virt_dev->eps[0].ring;
	/*
	 * FIXME we don't keep track of the dequeue pointer very well after a
	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
	 * host to our enqueue pointer.  This should only be called after a
	 * configured device has reset, so all control transfers should have
	 * been completed or cancelled before the reset.
	 */
	ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
	ep0_ctx->deq |= ep_ring->cycle_state;
}

859 860 861 862 863 864
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct usb_device	*top_dev;
865 866
	struct xhci_slot_ctx    *slot_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;
867 868 869 870 871 872 873 874

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
875 876 877
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
878 879

	/* 2) New slot context and endpoint 0 context are valid*/
880
	ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
881 882

	/* 3) Only the control endpoint is valid - one endpoint context */
883
	slot_ctx->dev_info |= LAST_CTX(1);
884

885
	slot_ctx->dev_info |= (u32) udev->route;
886 887
	switch (udev->speed) {
	case USB_SPEED_SUPER:
888
		slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
889 890
		break;
	case USB_SPEED_HIGH:
891
		slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
892 893
		break;
	case USB_SPEED_FULL:
894
		slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
895 896
		break;
	case USB_SPEED_LOW:
897
		slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
898
		break;
899
	case USB_SPEED_WIRELESS:
900 901 902 903 904 905 906 907 908 909 910
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
		BUG();
	}
	/* Find the root hub port this device is under */
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
911
	slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
912 913 914 915 916
	xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);

	/* Is this a LS/FS device under a HS hub? */
	if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
			udev->tt) {
917 918
		slot_ctx->tt_info = udev->tt->hub->slot_id;
		slot_ctx->tt_info |= udev->ttport << 8;
919 920
		if (udev->tt->multi)
			slot_ctx->dev_info |= DEV_MTT;
921
	}
922
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
923 924 925 926 927 928 929 930
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
	ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
	/*
	 * XXX: Not sure about wireless USB devices.
	 */
931 932
	switch (udev->speed) {
	case USB_SPEED_SUPER:
933
		ep0_ctx->ep_info2 |= MAX_PACKET(512);
934 935 936 937 938 939 940
		break;
	case USB_SPEED_HIGH:
	/* USB core guesses at a 64-byte max packet first for FS devices */
	case USB_SPEED_FULL:
		ep0_ctx->ep_info2 |= MAX_PACKET(64);
		break;
	case USB_SPEED_LOW:
941
		ep0_ctx->ep_info2 |= MAX_PACKET(8);
942
		break;
943
	case USB_SPEED_WIRELESS:
944 945 946 947 948 949 950
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* New speed? */
		BUG();
	}
951 952 953 954
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
	ep0_ctx->ep_info2 |= MAX_BURST(0);
	ep0_ctx->ep_info2 |= ERROR_COUNT(3);

955
	ep0_ctx->deq =
956 957
		dev->eps[0].ring->first_seg->dma;
	ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
958 959 960 961 962 963

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
				usb_endpoint_xfer_bulk(&ep->desc))
			interval = ep->desc.bInterval;
		/* Fall through - SS and HS isoc/int have same decoding */
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
				usb_endpoint_xfer_isoc(&ep->desc)) {
			if (ep->desc.bInterval == 0)
				interval = 0;
			else
				interval = ep->desc.bInterval - 1;
			if (interval > 15)
				interval = 15;
			if (interval != ep->desc.bInterval + 1)
				dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
						ep->desc.bEndpointAddress, 1 << interval);
		}
		break;
	/* Convert bInterval (in 1-255 frames) to microframes and round down to
	 * nearest power of 2.
	 */
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
				usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = fls(8*ep->desc.bInterval) - 1;
			if (interval > 10)
				interval = 10;
			if (interval < 3)
				interval = 3;
			if ((1 << interval) != 8*ep->desc.bInterval)
1011 1012 1013 1014 1015 1016 1017
				dev_warn(&udev->dev,
						"ep %#x - rounding interval"
						" to %d microframes, "
						"ep desc says %d microframes\n",
						ep->desc.bEndpointAddress,
						1 << interval,
						8*ep->desc.bInterval);
1018 1019 1020 1021 1022 1023 1024 1025
		}
		break;
	default:
		BUG();
	}
	return EP_INTERVAL(interval);
}

1026 1027 1028 1029 1030 1031 1032 1033
/* The "Mult" field in the endpoint context is only set for SuperSpeed devices.
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
1034
	if (udev->speed != USB_SPEED_SUPER)
1035
		return 0;
1036
	return ep->ss_ep_comp.bmAttributes;
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	int in;
	u32 type;

	in = usb_endpoint_dir_in(&ep->desc);
	if (usb_endpoint_xfer_control(&ep->desc)) {
		type = EP_TYPE(CTRL_EP);
	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
		if (in)
			type = EP_TYPE(BULK_IN_EP);
		else
			type = EP_TYPE(BULK_OUT_EP);
	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
		if (in)
			type = EP_TYPE(ISOC_IN_EP);
		else
			type = EP_TYPE(ISOC_OUT_EP);
	} else if (usb_endpoint_xfer_int(&ep->desc)) {
		if (in)
			type = EP_TYPE(INT_IN_EP);
		else
			type = EP_TYPE(INT_OUT_EP);
	} else {
		BUG();
	}
	return type;
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/* Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
		struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	int max_burst;
	int max_packet;

	/* Only applies for interrupt or isochronous endpoints */
	if (usb_endpoint_xfer_control(&ep->desc) ||
			usb_endpoint_xfer_bulk(&ep->desc))
		return 0;

1085 1086
	if (udev->speed == USB_SPEED_SUPER)
		return ep->ss_ep_comp.wBytesPerInterval;
1087 1088 1089 1090 1091 1092 1093

	max_packet = ep->desc.wMaxPacketSize & 0x3ff;
	max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
	/* A 0 in max burst means 1 transfer per ESIT */
	return max_packet * (max_burst + 1);
}

1094 1095 1096
/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
 * Drivers will have to call usb_alloc_streams() to do that.
 */
1097 1098 1099
int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
1100 1101
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
1102 1103 1104 1105 1106 1107
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
	unsigned int max_burst;
1108
	u32 max_esit_payload;
1109 1110

	ep_index = xhci_get_endpoint_index(&ep->desc);
1111
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1112 1113

	/* Set up the endpoint ring */
1114 1115
	virt_dev->eps[ep_index].new_ring =
		xhci_ring_alloc(xhci, 1, true, mem_flags);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	if (!virt_dev->eps[ep_index].new_ring) {
		/* Attempt to use the ring cache */
		if (virt_dev->num_rings_cached == 0)
			return -ENOMEM;
		virt_dev->eps[ep_index].new_ring =
			virt_dev->ring_cache[virt_dev->num_rings_cached];
		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
		virt_dev->num_rings_cached--;
		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
	}
1126
	ep_ring = virt_dev->eps[ep_index].new_ring;
1127
	ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1128 1129

	ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1130
	ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1131 1132 1133

	/* FIXME dig Mult and streams info out of ep companion desc */

1134 1135 1136
	/* Allow 3 retries for everything but isoc;
	 * error count = 0 means infinite retries.
	 */
1137 1138 1139
	if (!usb_endpoint_xfer_isoc(&ep->desc))
		ep_ctx->ep_info2 = ERROR_COUNT(3);
	else
1140
		ep_ctx->ep_info2 = ERROR_COUNT(1);
1141 1142 1143 1144 1145 1146 1147 1148

	ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);

	/* Set the max packet size and max burst */
	switch (udev->speed) {
	case USB_SPEED_SUPER:
		max_packet = ep->desc.wMaxPacketSize;
		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
S
Sarah Sharp 已提交
1149
		/* dig out max burst from ep companion desc */
1150 1151 1152
		max_packet = ep->ss_ep_comp.bMaxBurst;
		if (!max_packet)
			xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
S
Sarah Sharp 已提交
1153
		ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		break;
	case USB_SPEED_HIGH:
		/* bits 11:12 specify the number of additional transaction
		 * opportunities per microframe (USB 2.0, section 9.6.6)
		 */
		if (usb_endpoint_xfer_isoc(&ep->desc) ||
				usb_endpoint_xfer_int(&ep->desc)) {
			max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
			ep_ctx->ep_info2 |= MAX_BURST(max_burst);
		}
		/* Fall through */
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
		max_packet = ep->desc.wMaxPacketSize & 0x3ff;
		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
		break;
	default:
		BUG();
	}
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
	ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);

	/*
	 * XXX no idea how to calculate the average TRB buffer length for bulk
	 * endpoints, as the driver gives us no clue how big each scatter gather
	 * list entry (or buffer) is going to be.
	 *
	 * For isochronous and interrupt endpoints, we set it to the max
	 * available, until we have new API in the USB core to allow drivers to
	 * declare how much bandwidth they actually need.
	 *
	 * Normally, it would be calculated by taking the total of the buffer
	 * lengths in the TD and then dividing by the number of TRBs in a TD,
	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
	 * use Event Data TRBs, and we don't chain in a link TRB on short
	 * transfers, we're basically dividing by 1.
	 */
	ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
1205
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1206 1207 1208

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
1209
	ep_ctx->deq = 0;
1210 1211 1212 1213 1214 1215
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

1216 1217 1218 1219 1220
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
1221 1222 1223
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
1224 1225 1226 1227
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

1228 1229
	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
1242 1243 1244
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
1245 1246 1247 1248
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

1249 1250
	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1251 1252 1253 1254 1255 1256 1257

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

	xhci->scratchpad->sp_array =
		pci_alloc_consistent(to_pci_dev(dev),
				     num_sp * sizeof(u64),
				     &xhci->scratchpad->sp_dma);
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

	xhci->scratchpad->sp_dma_buffers =
		kzalloc(sizeof(dma_addr_t) * num_sp, flags);

	if (!xhci->scratchpad->sp_dma_buffers)
		goto fail_sp4;

	xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
		void *buf = pci_alloc_consistent(to_pci_dev(dev),
						 xhci->page_size, &dma);
		if (!buf)
			goto fail_sp5;

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
		xhci->scratchpad->sp_dma_buffers[i] = dma;
	}

	return 0;

 fail_sp5:
	for (i = i - 1; i >= 0; i--) {
		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);

 fail_sp4:
	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
		pci_free_consistent(pdev, xhci->page_size,
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);
	kfree(xhci->scratchpad->sp_buffers);
	pci_free_consistent(pdev, num_sp * sizeof(u64),
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

1355
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1356 1357
		bool allocate_in_ctx, bool allocate_completion,
		gfp_t mem_flags)
1358 1359 1360 1361 1362 1363 1364
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

1365 1366 1367 1368 1369 1370 1371 1372
	if (allocate_in_ctx) {
		command->in_ctx =
			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
					mem_flags);
		if (!command->in_ctx) {
			kfree(command);
			return NULL;
		}
1373
	}
1374 1375 1376 1377 1378 1379

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
1380
			kfree(command);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

1400 1401
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
1402 1403
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
	int size;
1404
	int i;
1405 1406

	/* Free the Event Ring Segment Table and the actual Event Ring */
1407 1408 1409 1410 1411
	if (xhci->ir_set) {
		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
	}
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
		pci_free_consistent(pdev, size,
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
	xhci_dbg(xhci, "Freed ERST\n");
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
	xhci_dbg(xhci, "Freed event ring\n");

1423
	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1424 1425 1426 1427
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
	xhci_dbg(xhci, "Freed command ring\n");
1428 1429 1430 1431

	for (i = 1; i < MAX_HC_SLOTS; ++i)
		xhci_free_virt_device(xhci, i);

1432 1433 1434 1435
	if (xhci->segment_pool)
		dma_pool_destroy(xhci->segment_pool);
	xhci->segment_pool = NULL;
	xhci_dbg(xhci, "Freed segment pool\n");
1436 1437 1438 1439 1440 1441

	if (xhci->device_pool)
		dma_pool_destroy(xhci->device_pool);
	xhci->device_pool = NULL;
	xhci_dbg(xhci, "Freed device context pool\n");

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (xhci->small_streams_pool)
		dma_pool_destroy(xhci->small_streams_pool);
	xhci->small_streams_pool = NULL;
	xhci_dbg(xhci, "Freed small stream array pool\n");

	if (xhci->medium_streams_pool)
		dma_pool_destroy(xhci->medium_streams_pool);
	xhci->medium_streams_pool = NULL;
	xhci_dbg(xhci, "Freed medium stream array pool\n");

1452
	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1453 1454 1455 1456
	if (xhci->dcbaa)
		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
1457

1458
	scratchpad_free(xhci);
1459 1460 1461 1462
	xhci->page_size = 0;
	xhci->page_shift = 0;
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
		struct xhci_segment *input_seg,
		union xhci_trb *start_trb,
		union xhci_trb *end_trb,
		dma_addr_t input_dma,
		struct xhci_segment *result_seg,
		char *test_name, int test_number)
{
	unsigned long long start_dma;
	unsigned long long end_dma;
	struct xhci_segment *seg;

	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);

	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
	if (seg != result_seg) {
		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
				test_name, test_number);
		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
				"input DMA 0x%llx\n",
				input_seg,
				(unsigned long long) input_dma);
		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
				"ending TRB %p (0x%llx DMA)\n",
				start_trb, start_dma,
				end_trb, end_dma);
		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
				result_seg, seg);
		return -1;
	}
	return 0;
}

/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
{
	struct {
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} simple_test_vector [] = {
		/* A zeroed DMA field should fail */
		{ 0, NULL },
		/* One TRB before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 16, NULL },
		/* One byte before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 1, NULL },
		/* Starting TRB should succeed */
		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
		/* Ending TRB should succeed */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
			xhci->event_ring->first_seg },
		/* One byte after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
		/* One TRB after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
		/* An address of all ones should fail */
		{ (dma_addr_t) (~0), NULL },
	};
	struct {
		struct xhci_segment	*input_seg;
		union xhci_trb		*start_trb;
		union xhci_trb		*end_trb;
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} complex_test_vector [] = {
		/* Test feeding a valid DMA address from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid start and end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->cmd_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[0],
			.end_trb = &xhci->event_ring->first_seg->trbs[3],
			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[3],
			.end_trb = &xhci->event_ring->first_seg->trbs[6],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
			.result_seg = NULL,
		},
		/* TRB not in this ring, and we have a wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
	};

	unsigned int num_tests;
	int i, ret;

	num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				xhci->event_ring->first_seg,
				xhci->event_ring->first_seg->trbs,
				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
				simple_test_vector[i].input_dma,
				simple_test_vector[i].result_seg,
				"Simple", i);
		if (ret < 0)
			return ret;
	}

	num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				complex_test_vector[i].input_seg,
				complex_test_vector[i].start_trb,
				complex_test_vector[i].end_trb,
				complex_test_vector[i].input_dma,
				complex_test_vector[i].result_seg,
				"Complex", i);
		if (ret < 0)
			return ret;
	}
	xhci_dbg(xhci, "TRB math tests passed.\n");
	return 0;
}


1620 1621
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
1622 1623
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1624
	unsigned int	val, val2;
1625
	u64		val_64;
1626
	struct xhci_segment	*seg;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	u32 page_size;
	int i;

	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
			(unsigned int) val);
	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
	val |= (val2 & ~HCS_SLOTS_MASK);
	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
			(unsigned int) val);
	xhci_writel(xhci, val, &xhci->op_regs->config_reg);

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
			sizeof(*xhci->dcbaa), &dma);
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
1669 1670
	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1671
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1672

1673 1674 1675 1676 1677 1678 1679 1680
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
	 * however, the command ring segment needs 64-byte aligned segments,
	 * so we pick the greater alignment need.
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
			SEGMENT_SIZE, 64, xhci->page_size);
1681

1682 1683
	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1684
			2112, 64, xhci->page_size);
1685
	if (!xhci->segment_pool || !xhci->device_pool)
1686 1687
		goto fail;

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/* Linear stream context arrays don't have any boundary restrictions,
	 * and only need to be 16-byte aligned.
	 */
	xhci->small_streams_pool =
		dma_pool_create("xHCI 256 byte stream ctx arrays",
			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
	xhci->medium_streams_pool =
		dma_pool_create("xHCI 1KB stream ctx arrays",
			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
	 * will be allocated with pci_alloc_consistent()
	 */

	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
		goto fail;

1704 1705 1706 1707
	/* Set up the command ring to have one segments for now. */
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
	if (!xhci->cmd_ring)
		goto fail;
1708 1709 1710
	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
1711 1712

	/* Set the address in the Command Ring Control register */
1713 1714 1715
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1716
		xhci->cmd_ring->cycle_state;
1717 1718
	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	xhci_dbg_cmd_ptrs(xhci);

	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
	val &= DBOFF_MASK;
	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
			" from cap regs base addr\n", val);
	xhci->dba = (void *) xhci->cap_regs + val;
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
	xhci->ir_set = (void *) xhci->run_regs->ir_set;

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
	xhci_dbg(xhci, "// Allocating event ring\n");
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
	if (!xhci->event_ring)
		goto fail;
1739 1740
	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
		goto fail;
1741 1742 1743 1744 1745

	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
	if (!xhci->erst.entries)
		goto fail;
1746 1747
	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
			(unsigned long long)dma);
1748 1749 1750 1751

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
1752
	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1753
			xhci->erst.num_entries,
1754 1755
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
1756 1757 1758 1759

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1760
		entry->seg_addr = seg->dma;
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
		entry->seg_size = TRBS_PER_SEGMENT;
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
			val);
	xhci_writel(xhci, val, &xhci->ir_set->erst_size);

	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
	/* set the segment table base address */
1776 1777
	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
			(unsigned long long)xhci->erst.erst_dma_addr);
1778 1779 1780 1781
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1782 1783

	/* Set the event ring dequeue address */
1784
	xhci_set_hc_event_deq(xhci);
1785 1786 1787 1788 1789 1790 1791 1792
	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
	xhci_print_ir_set(xhci, xhci->ir_set, 0);

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
1793 1794
	init_completion(&xhci->addr_dev);
	for (i = 0; i < MAX_HC_SLOTS; ++i)
1795
		xhci->devs[i] = NULL;
1796

1797 1798 1799
	if (scratchpad_alloc(xhci, flags))
		goto fail;

1800
	return 0;
1801

1802 1803 1804 1805 1806
fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}