intel_lrc.c 76.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138
#include "intel_mocs.h"
139

140
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 142 143
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

187 188 189 190 191
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
192

193
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
enum {
	ADVANCED_CONTEXT = 0,
211
	LEGACY_32B_CONTEXT,
212 213 214
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
215 216 217 218
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
219 220 221 222 223 224 225
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
226
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
227

228
static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 230 231
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
		struct drm_i915_gem_object *default_ctx_obj);

232

233 234 235 236 237 238
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
239
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 241 242
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
243 244
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
245 246
	WARN_ON(i915.enable_ppgtt == -1);

247 248 249 250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

253 254 255
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

256 257 258
	if (enable_execlists == 0)
		return 0;

259 260
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
261 262 263 264
		return 1;

	return 0;
}
265

266 267 268 269 270 271 272 273 274 275 276 277
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
278 279
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
280 281
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
			LRC_PPHWSP_PN * PAGE_SIZE;
282 283 284 285 286 287

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

288 289 290 291
static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;

292
	return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
293
		IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
294 295 296
	       (ring->id == VCS || ring->id == VCS2);
}

297 298
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
299
{
300
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
301
	uint64_t desc;
302 303
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
			LRC_PPHWSP_PN * PAGE_SIZE;
304 305

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
306 307

	desc = GEN8_CTX_VALID;
308
	desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
309 310
	if (IS_GEN8(ctx_obj->base.dev))
		desc |= GEN8_CTX_L3LLC_COHERENT;
311 312 313 314 315 316 317 318
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

319
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
320
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
321
	if (disable_lite_restore_wa(ring))
322 323
		desc |= GEN8_CTX_FORCE_RESTORE;

324 325 326
	return desc;
}

327 328
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
329
{
330 331

	struct intel_engine_cs *ring = rq0->ring;
332 333
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
334
	uint64_t desc[2];
335

336
	if (rq1) {
337
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
338 339 340 341
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
342

343
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
344
	rq0->elsp_submitted++;
345

346
	/* You must always write both descriptors in the order below. */
347 348
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
349 350
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
351

352
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
353
	/* The context is automatically loaded after the following */
354
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
355

356
	/* ELSP is a wo register, use another nearby reg for posting */
357
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
358 359
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
360 361
}

362
static int execlists_update_context(struct drm_i915_gem_request *rq)
363
{
364 365 366 367
	struct intel_engine_cs *ring = rq->ring;
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
368 369 370
	struct page *page;
	uint32_t *reg_state;

371 372 373 374
	BUG_ON(!ctx_obj);
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
	WARN_ON(!i915_gem_obj_is_pinned(rb_obj));

375
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
376 377
	reg_state = kmap_atomic(page);

378 379
	reg_state[CTX_RING_TAIL+1] = rq->tail;
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
380

381 382 383 384 385 386
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* True 32b PPGTT with dynamic page allocation: update PDP
		 * registers and point the unallocated PDPs to scratch page.
		 * PML4 is allocated during ppgtt init, so this is not needed
		 * in 48-bit mode.
		 */
387 388 389 390 391 392
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

393 394 395 396 397
	kunmap_atomic(reg_state);

	return 0;
}

398 399
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
400
{
401
	execlists_update_context(rq0);
402

403
	if (rq1)
404
		execlists_update_context(rq1);
405

406
	execlists_elsp_write(rq0, rq1);
407 408
}

409 410
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
411 412
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
413 414

	assert_spin_locked(&ring->execlist_lock);
415

416 417 418 419 420 421
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

422 423 424 425 426 427 428 429
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
430
		} else if (req0->ctx == cursor->ctx) {
431 432
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
433
			cursor->elsp_submitted = req0->elsp_submitted;
434
			list_del(&req0->execlist_link);
435 436
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
437 438 439 440 441 442 443
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

444 445 446 447 448
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
449
		if (req0->elsp_submitted) {
450 451 452 453 454 455 456 457 458 459 460 461 462 463
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

464 465
	WARN_ON(req1 && req1->elsp_submitted);

466
	execlists_submit_requests(req0, req1);
467 468
}

469 470 471
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
472
	struct drm_i915_gem_request *head_req;
473 474 475 476

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
477
					    struct drm_i915_gem_request,
478 479 480 481
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
482
				head_req->ctx->engine[ring->id].state;
483
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
484 485 486 487 488
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
489 490
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
491 492
				return true;
			}
493 494 495 496 497 498
		}
	}

	return false;
}

499
/**
500
 * intel_lrc_irq_handler() - handle Context Switch interrupts
501 502 503 504 505
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
506
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
507 508 509 510 511
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
512
	u32 status = 0;
513 514 515 516 517 518
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
519
	write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
520
	if (read_pointer > write_pointer)
521
		write_pointer += GEN8_CSB_ENTRIES;
522 523 524 525 526

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
527 528
		status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
529

530 531 532
		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
			continue;

533 534 535 536 537 538 539 540
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

B
Ben Widawsky 已提交
541 542
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		    (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
543 544 545 546 547
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

548 549 550 551 552 553
	if (disable_lite_restore_wa(ring)) {
		/* Prevent a ctx to preempt itself */
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
		    (submit_contexts != 0))
			execlists_context_unqueue(ring);
	} else if (submit_contexts != 0) {
554
		execlists_context_unqueue(ring);
555
	}
556 557 558 559

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
560
	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
561 562

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
563 564 565
		   _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
				 ((u32)ring->next_context_status_buffer &
				  GEN8_CSB_PTR_MASK) << 8));
566 567
}

568
static int execlists_context_queue(struct drm_i915_gem_request *request)
569
{
570
	struct intel_engine_cs *ring = request->ring;
571
	struct drm_i915_gem_request *cursor;
572
	int num_elements = 0;
573

574 575 576
	if (request->ctx != ring->default_context)
		intel_lr_context_pin(request);

577 578
	i915_gem_request_reference(request);

579
	spin_lock_irq(&ring->execlist_lock);
580

581 582 583 584 585
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
586
		struct drm_i915_gem_request *tail_req;
587 588

		tail_req = list_last_entry(&ring->execlist_queue,
589
					   struct drm_i915_gem_request,
590 591
					   execlist_link);

592
		if (request->ctx == tail_req->ctx) {
593
			WARN(tail_req->elsp_submitted != 0,
594
				"More than 2 already-submitted reqs queued\n");
595
			list_del(&tail_req->execlist_link);
596 597
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
598 599 600
		}
	}

601
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
602
	if (num_elements == 0)
603 604
		execlists_context_unqueue(ring);

605
	spin_unlock_irq(&ring->execlist_lock);
606 607 608 609

	return 0;
}

610
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
611
{
612
	struct intel_engine_cs *ring = req->ring;
613 614 615 616 617 618 619
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

620
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
621 622 623 624 625 626 627
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

628
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
629 630
				 struct list_head *vmas)
{
631
	const unsigned other_rings = ~intel_ring_flag(req->ring);
632 633 634 635 636 637 638 639
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

640
		if (obj->active & other_rings) {
641
			ret = i915_gem_object_sync(obj, req->ring, &req);
642 643 644
			if (ret)
				return ret;
		}
645 646 647 648 649 650 651 652 653 654 655 656 657

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
658
	return logical_ring_invalidate_all_caches(req);
659 660
}

661
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
662 663 664
{
	int ret;

665 666
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;

667
	if (request->ctx != request->ring->default_context) {
668
		ret = intel_lr_context_pin(request);
669
		if (ret)
670 671 672
			return ret;
	}

673 674 675 676 677 678 679 680 681 682 683 684 685
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

686 687 688
	return 0;
}

689
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
690
				       int bytes)
691
{
692 693 694
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *ring = req->ring;
	struct drm_i915_gem_request *target;
695 696
	unsigned space;
	int ret;
697 698 699 700

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

701 702 703
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

704
	list_for_each_entry(target, &ring->request_list, list) {
705 706 707 708 709
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
710
		if (target->ringbuf != ringbuf)
711 712 713
			continue;

		/* Would completion of this request free enough space? */
714
		space = __intel_ring_space(target->postfix, ringbuf->tail,
715 716
					   ringbuf->size);
		if (space >= bytes)
717 718 719
			break;
	}

720
	if (WARN_ON(&target->list == &ring->request_list))
721 722
		return -ENOSPC;

723
	ret = i915_wait_request(target);
724 725 726
	if (ret)
		return ret;

727 728
	ringbuf->space = space;
	return 0;
729 730 731 732
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
733
 * @request: Request to advance the logical ringbuffer of.
734 735 736 737 738 739 740
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
static void
741
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
742
{
743
	struct intel_engine_cs *ring = request->ring;
744
	struct drm_i915_private *dev_priv = request->i915;
745

746
	intel_logical_ring_advance(request->ringbuf);
747

748 749
	request->tail = request->ringbuf->tail;

750 751 752
	if (intel_ring_stopped(ring))
		return;

753 754 755 756
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
757 758
}

759
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
760 761 762 763 764 765 766 767 768 769 770 771 772
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

773
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
774
{
775
	struct intel_ringbuffer *ringbuf = req->ringbuf;
776 777 778 779
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
780

781 782 783 784
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So only need to to wait for the
			 * reserved size after flushing out the remainder.
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
			need_wrap = true;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
805
		}
806 807
	}

808 809
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
810 811
		if (unlikely(ret))
			return ret;
812 813 814

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
815 816 817 818 819 820 821 822
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
823
 * @req: The request to start some new work for
824 825 826 827 828 829 830 831 832
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
833
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
834
{
835
	struct drm_i915_private *dev_priv;
836 837
	int ret;

838 839 840
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

841 842 843 844 845
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

846
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
847 848 849
	if (ret)
		return ret;

850
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
851 852 853
	return 0;
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

869 870 871 872 873 874 875 876 877 878
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
879
 * @dispatch_flags: translated execbuffer call flags.
880 881 882 883 884 885
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
886
int intel_execlists_submission(struct i915_execbuffer_params *params,
887
			       struct drm_i915_gem_execbuffer2 *args,
888
			       struct list_head *vmas)
889
{
890 891
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
892
	struct drm_i915_private *dev_priv = dev->dev_private;
893 894
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

930
	ret = execlists_move_to_gpu(params->request, vmas);
931 932 933 934 935
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
936
		ret = intel_logical_ring_begin(params->request, 4);
937 938 939 940 941
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
942
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
943 944 945 946 947 948
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

949 950 951
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

952
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
953 954 955
	if (ret)
		return ret;

956
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
957

958
	i915_gem_execbuffer_move_to_active(vmas, params->request);
959
	i915_gem_execbuffer_retire_commands(params);
960

961 962 963
	return 0;
}

964 965
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
966
	struct drm_i915_gem_request *req, *tmp;
967 968 969 970 971 972 973
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
974
	spin_lock_irq(&ring->execlist_lock);
975
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
976
	spin_unlock_irq(&ring->execlist_lock);
977 978

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
979 980 981 982 983 984
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
			intel_lr_context_unpin(req);
985
		list_del(&req->execlist_link);
986
		i915_gem_request_unreference(req);
987 988 989
	}
}

990 991
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1010 1011
}

1012
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1013
{
1014
	struct intel_engine_cs *ring = req->ring;
1015 1016 1017 1018 1019
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

1020
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1021 1022 1023 1024 1025 1026 1027
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

1028 1029 1030
static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
		struct drm_i915_gem_object *ctx_obj,
		struct intel_ringbuffer *ringbuf)
1031
{
1032 1033
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1034 1035 1036
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1037 1038 1039 1040
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
1041

1042 1043 1044
	ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
	if (ret)
		goto unpin_ctx_obj;
1045

1046
	ctx_obj->dirty = true;
1047

1048 1049 1050
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1051

1052 1053 1054 1055
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	return ret;
}

static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
{
	int ret = 0;
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;

	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
		ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
		if (ret)
			goto reset_pin_count;
	}
	return ret;

1074
reset_pin_count:
1075
	rq->ctx->engine[ring->id].pin_count = 0;
1076 1077 1078
	return ret;
}

1079
void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1080
{
1081 1082 1083 1084
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;

1085 1086
	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1087
		if (--rq->ctx->engine[ring->id].pin_count == 0) {
1088
			intel_unpin_ringbuffer_obj(ringbuf);
1089
			i915_gem_object_ggtt_unpin(ctx_obj);
1090
		}
1091 1092 1093
	}
}

1094
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1095 1096
{
	int ret, i;
1097 1098
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1099 1100 1101 1102
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1103
	if (WARN_ON_ONCE(w->count == 0))
1104 1105 1106
		return 0;

	ring->gpu_caches_dirty = true;
1107
	ret = logical_ring_flush_all_caches(req);
1108 1109 1110
	if (ret)
		return ret;

1111
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1112 1113 1114 1115 1116
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1117
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1118 1119 1120 1121 1122 1123 1124
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1125
	ret = logical_ring_flush_all_caches(req);
1126 1127 1128 1129 1130 1131
	if (ret)
		return ret;

	return 0;
}

1132
#define wa_ctx_emit(batch, index, cmd)					\
1133
	do {								\
1134 1135
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1136 1137
			return -ENOSPC;					\
		}							\
1138
		batch[__index] = (cmd);					\
1139 1140
	} while (0)

V
Ville Syrjälä 已提交
1141
#define wa_ctx_emit_reg(batch, index, reg) \
1142
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1166 1167 1168 1169 1170 1171
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1172
	if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1173 1174
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1175
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1176
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1177
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1178 1179 1180 1181
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1182
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1193
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1194
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1195
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1196 1197
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);
1198 1199 1200 1201

	return index;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1240
 *
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1254
	uint32_t scratch_addr;
1255 1256
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1257
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1258
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1259

1260 1261
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
1262 1263 1264 1265
		int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
		if (rc < 0)
			return rc;
		index = rc;
1266 1267
	}

1268 1269 1270 1271
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;

1272 1273 1274 1275 1276 1277 1278 1279 1280
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1281

1282 1283
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1284
		wa_ctx_emit(batch, index, MI_NOOP);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1302
 * @batch: page in which WA are loaded
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1319
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1320
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1321

1322
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1323 1324 1325 1326

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1327 1328 1329 1330 1331
static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1332
	int ret;
1333
	struct drm_device *dev = ring->dev;
1334 1335
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1336
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1337
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1338
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1339
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1340

1341 1342 1343 1344 1345 1346
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
	if (ret < 0)
		return ret;
	index = ret;

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1359
	struct drm_device *dev = ring->dev;
1360 1361
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1362
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1363
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1364
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1365
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1366
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1367 1368 1369 1370 1371
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1372
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1373
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1374
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1375 1376
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1377 1378 1379 1380 1381
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1422
	/* update this when WA for higher Gen are added */
1423 1424 1425
	if (INTEL_INFO(ring->dev)->gen > 9) {
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
			  INTEL_INFO(ring->dev)->gen);
1426
		return 0;
1427
	}
1428

1429 1430 1431 1432 1433 1434
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1435 1436 1437 1438 1439 1440
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1441
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	} else if (INTEL_INFO(ring->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen9_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1483 1484 1485 1486
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1487
	u8 next_context_status_buffer_hw;
1488

1489 1490 1491
	lrc_setup_hardware_status_page(ring,
				ring->default_context->engine[ring->id].state);

1492 1493 1494
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1495 1496 1497 1498
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
	 */
	next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
						   & GEN8_CSB_PTR_MASK);

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

	ring->next_context_status_buffer = next_context_status_buffer_hw;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1549
	return init_workarounds_ring(ring);
1550 1551
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1579
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1580
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1581
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1582 1583 1584 1585 1586 1587 1588 1589 1590
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1591
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1592
			      u64 offset, unsigned dispatch_flags)
1593
{
1594
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1595
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1596 1597
	int ret;

1598 1599 1600 1601
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1602 1603
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1604 1605
	if (req->ctx->ppgtt &&
	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1606 1607
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1608 1609 1610 1611
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1612 1613 1614 1615

		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
	}

1616
	ret = intel_logical_ring_begin(req, 4);
1617 1618 1619 1620
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1621 1622 1623 1624
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1625 1626 1627 1628 1629 1630 1631 1632
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1633 1634 1635 1636 1637 1638
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1639
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1666
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1667 1668 1669
			   u32 invalidate_domains,
			   u32 unused)
{
1670
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1671 1672 1673 1674 1675 1676
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1677
	ret = intel_logical_ring_begin(request, 4);
1678 1679 1680 1681 1682
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1707
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1708 1709 1710
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1711
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1712 1713
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1714
	bool vf_flush_wa = false;
1715 1716 1717 1718 1719 1720 1721 1722
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1723
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1736 1737 1738 1739 1740 1741 1742
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
		if (IS_GEN9(ring->dev))
			vf_flush_wa = true;
	}
1743

1744
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1745 1746 1747
	if (ret)
		return ret;

1748 1749 1750 1751 1752 1753 1754 1755 1756
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{

	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */

	if (!lazy_coherency)
		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);

	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
}

1806
static int gen8_emit_request(struct drm_i915_gem_request *request)
1807
{
1808
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1809 1810 1811 1812
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1813 1814 1815 1816 1817
	/*
	 * Reserve space for 2 NOOPs at the end of each request to be
	 * used as a workaround for not being allowed to do lite
	 * restore with HEAD==TAIL (WaIdleLiteRestore).
	 */
1818
	ret = intel_logical_ring_begin(request, 8);
1819 1820 1821
	if (ret)
		return ret;

1822
	cmd = MI_STORE_DWORD_IMM_GEN4;
1823 1824 1825 1826 1827 1828 1829
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1830
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1831 1832
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1833
	intel_logical_ring_advance_and_submit(request);
1834

1835 1836 1837 1838 1839 1840 1841 1842
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

1843 1844 1845
	return 0;
}

1846
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1847 1848 1849 1850
{
	struct render_state so;
	int ret;

1851
	ret = i915_gem_render_state_prepare(req->ring, &so);
1852 1853 1854 1855 1856 1857
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1858
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1859
				       I915_DISPATCH_SECURE);
1860 1861 1862
	if (ret)
		goto out;

1863 1864 1865 1866 1867 1868
	ret = req->ring->emit_bb_start(req,
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1869
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1870 1871 1872 1873 1874 1875

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1876
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1877 1878 1879
{
	int ret;

1880
	ret = intel_logical_ring_workarounds_emit(req);
1881 1882 1883
	if (ret)
		return ret;

1884 1885 1886 1887 1888 1889 1890 1891
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1892
	return intel_lr_context_render_state_init(req);
1893 1894
}

1895 1896 1897 1898 1899 1900
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1901 1902
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1903
	struct drm_i915_private *dev_priv;
1904

1905 1906 1907
	if (!intel_ring_initialized(ring))
		return;

1908 1909
	dev_priv = ring->dev->dev_private;

1910 1911 1912 1913
	if (ring->buffer) {
		intel_logical_ring_stop(ring);
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
	}
1914 1915 1916 1917 1918

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1919
	i915_gem_batch_pool_fini(&ring->batch_pool);
1920 1921 1922 1923 1924

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1925 1926

	lrc_destroy_wa_ctx_obj(ring);
1927
	ring->dev = NULL;
1928 1929 1930 1931
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1932 1933 1934 1935 1936 1937 1938 1939
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1940
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1941 1942
	init_waitqueue_head(&ring->irq_queue);

1943
	INIT_LIST_HEAD(&ring->buffers);
1944
	INIT_LIST_HEAD(&ring->execlist_queue);
1945
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1946 1947
	spin_lock_init(&ring->execlist_lock);

1948 1949
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
1950
		goto error;
1951

1952 1953
	ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
	if (ret)
1954
		goto error;
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

	/* As this is the default context, always pin it */
	ret = intel_lr_context_do_pin(
			ring,
			ring->default_context->engine[ring->id].state,
			ring->default_context->engine[ring->id].ringbuf);
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
			ring->name, ret);
1965
		goto error;
1966
	}
1967

1968 1969 1970 1971
	return 0;

error:
	intel_logical_ring_cleanup(ring);
1972
	return ret;
1973 1974 1975 1976 1977 1978
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1979
	int ret;
1980 1981 1982 1983 1984 1985

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1986 1987 1988 1989
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1990

1991 1992 1993 1994
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
1995
	ring->init_context = gen8_init_rcs_context;
1996
	ring->cleanup = intel_fini_pipe_control;
1997
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1998 1999 2000 2001 2002 2003
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
2004
	ring->emit_request = gen8_emit_request;
2005
	ring->emit_flush = gen8_emit_flush_render;
2006 2007
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2008
	ring->emit_bb_start = gen8_emit_bb_start;
2009

2010
	ring->dev = dev;
2011 2012

	ret = intel_init_pipe_control(ring);
2013 2014 2015
	if (ret)
		return ret;

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2027 2028
	ret = logical_ring_init(dev, ring);
	if (ret) {
2029
		lrc_destroy_wa_ctx_obj(ring);
2030
	}
2031 2032

	return ret;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2045 2046
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2047

2048
	ring->init_hw = gen8_init_common_ring;
2049
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2050 2051 2052 2053 2054 2055
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
2056
	ring->emit_request = gen8_emit_request;
2057
	ring->emit_flush = gen8_emit_flush;
2058 2059
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2060
	ring->emit_bb_start = gen8_emit_bb_start;
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2075 2076
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2077

2078
	ring->init_hw = gen8_init_common_ring;
2079 2080
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
2081
	ring->emit_request = gen8_emit_request;
2082
	ring->emit_flush = gen8_emit_flush;
2083 2084
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2085
	ring->emit_bb_start = gen8_emit_bb_start;
2086

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2100 2101
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2102

2103
	ring->init_hw = gen8_init_common_ring;
2104
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2105 2106 2107 2108 2109 2110
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
2111
	ring->emit_request = gen8_emit_request;
2112
	ring->emit_flush = gen8_emit_flush;
2113 2114
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2115
	ring->emit_bb_start = gen8_emit_bb_start;
2116

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2130 2131
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2132

2133
	ring->init_hw = gen8_init_common_ring;
2134
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2135 2136 2137 2138 2139 2140
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
2141
	ring->emit_request = gen8_emit_request;
2142
	ring->emit_flush = gen8_emit_flush;
2143 2144
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2145
	ring->emit_bb_start = gen8_emit_bb_start;
2146

2147 2148 2149
	return logical_ring_init(dev, ring);
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2250 2251 2252 2253
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
2254 2255
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2256
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2257 2258 2259 2260
	struct page *page;
	uint32_t *reg_state;
	int ret;

2261 2262 2263
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2280
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2281 2282 2283 2284 2285 2286 2287
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2288 2289 2290 2291 2292 2293 2294 2295
	reg_state[CTX_LRI_HEADER_0] =
		MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					  CTX_CTRL_RS_CTX_ENABLE));
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2296 2297 2298
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
		       RING_BB_PPGTT);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2309
	if (ring->id == RCS) {
2310 2311 2312
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2328
	}
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
	/* PDP values well be assigned later if needed */
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2340

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

2359 2360
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2361 2362
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2363 2364 2365 2366 2367 2368 2369 2370
	}

	kunmap_atomic(reg_state);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2371 2372 2373 2374 2375 2376 2377 2378
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2379 2380
void intel_lr_context_free(struct intel_context *ctx)
{
2381 2382
	int i;

2383
	for (i = 0; i < I915_NUM_RINGS; i++) {
2384
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2385

2386
		if (ctx_obj) {
2387 2388 2389 2390
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

2391 2392 2393 2394 2395 2396 2397
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
			WARN_ON(ctx->engine[ring->id].pin_count);
			intel_ringbuffer_free(ringbuf);
			drm_gem_object_unreference(&ctx_obj->base);
2398 2399 2400 2401 2402 2403 2404 2405
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

2406
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2407 2408 2409

	switch (ring->id) {
	case RCS:
2410 2411 2412 2413
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2424 2425
}

2426
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2427 2428 2429
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2430
	struct page *page;
2431

2432 2433 2434 2435 2436
	/* The HWSP is part of the default context object in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
	ring->status_page.page_addr = kmap(page);
2437 2438 2439 2440 2441 2442 2443
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2444
/**
2445
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2446 2447 2448 2449 2450 2451 2452 2453 2454
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2455
 * Return: non-zero on error.
2456
 */
2457 2458

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2459 2460
				     struct intel_engine_cs *ring)
{
2461 2462 2463
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2464
	struct intel_ringbuffer *ringbuf;
2465 2466
	int ret;

2467
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2468
	WARN_ON(ctx->engine[ring->id].state);
2469

2470 2471
	context_size = round_up(get_lr_context_size(ring), 4096);

2472 2473 2474
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2475
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2476 2477 2478
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2479 2480
	}

2481 2482 2483
	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2484
		goto error_deref_obj;
2485 2486 2487 2488 2489
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2490
		goto error_ringbuf;
2491 2492 2493
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2494
	ctx->engine[ring->id].state = ctx_obj;
2495

2496 2497
	if (ctx != ring->default_context && ring->init_context) {
		struct drm_i915_gem_request *req;
2498

2499 2500 2501 2502 2503 2504
		ret = i915_gem_request_alloc(ring,
			ctx, &req);
		if (ret) {
			DRM_ERROR("ring create req: %d\n",
				ret);
			goto error_ringbuf;
2505 2506
		}

2507 2508 2509 2510 2511 2512 2513 2514
		ret = ring->init_context(req);
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			i915_gem_request_cancel(req);
			goto error_ringbuf;
		}
		i915_add_request_no_flush(req);
2515
	}
2516
	return 0;
2517

2518 2519
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2520
error_deref_obj:
2521
	drm_gem_object_unreference(&ctx_obj->base);
2522 2523
	ctx->engine[ring->id].ringbuf = NULL;
	ctx->engine[ring->id].state = NULL;
2524
	return ret;
2525
}
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2549
		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}