ring_buffer.c 9.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Performance events ring-buffer code:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9 10 11 12 13 14
 *
 * For licensing details see kernel-base/COPYING
 */

#include <linux/perf_event.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
15
#include <linux/circ_buf.h>
16 17 18 19 20 21 22

#include "internal.h"

static void perf_output_wakeup(struct perf_output_handle *handle)
{
	atomic_set(&handle->rb->poll, POLL_IN);

23 24
	handle->event->pending_wakeup = 1;
	irq_work_queue(&handle->event->pending);
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
}

/*
 * We need to ensure a later event_id doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_get_handle(struct perf_output_handle *handle)
{
	struct ring_buffer *rb = handle->rb;

	preempt_disable();
	local_inc(&rb->nest);
	handle->wakeup = local_read(&rb->wakeup);
}

static void perf_output_put_handle(struct perf_output_handle *handle)
{
	struct ring_buffer *rb = handle->rb;
	unsigned long head;

again:
	head = local_read(&rb->head);

	/*
	 * IRQ/NMI can happen here, which means we can miss a head update.
	 */

	if (!local_dec_and_test(&rb->nest))
		goto out;

	/*
60 61 62 63
	 * Since the mmap() consumer (userspace) can run on a different CPU:
	 *
	 *   kernel				user
	 *
64 65 66 67 68 69
	 *   if (LOAD ->data_tail) {		LOAD ->data_head
	 *			(A)		smp_rmb()	(C)
	 *	STORE $data			LOAD $data
	 *	smp_wmb()	(B)		smp_mb()	(D)
	 *	STORE ->data_head		STORE ->data_tail
	 *   }
70 71 72
	 *
	 * Where A pairs with D, and B pairs with C.
	 *
73 74 75
	 * In our case (A) is a control dependency that separates the load of
	 * the ->data_tail and the stores of $data. In case ->data_tail
	 * indicates there is no room in the buffer to store $data we do not.
76
	 *
77
	 * D needs to be a full barrier since it separates the data READ
78 79 80 81 82 83
	 * from the tail WRITE.
	 *
	 * For B a WMB is sufficient since it separates two WRITEs, and for C
	 * an RMB is sufficient since it separates two READs.
	 *
	 * See perf_output_begin().
84
	 */
85
	smp_wmb(); /* B, matches C */
86 87 88
	rb->user_page->data_head = head;

	/*
P
Peter Zijlstra 已提交
89 90
	 * Now check if we missed an update -- rely on previous implied
	 * compiler barriers to force a re-read.
91 92 93 94 95 96 97 98 99 100 101 102 103 104
	 */
	if (unlikely(head != local_read(&rb->head))) {
		local_inc(&rb->nest);
		goto again;
	}

	if (handle->wakeup != local_read(&rb->wakeup))
		perf_output_wakeup(handle);

out:
	preempt_enable();
}

int perf_output_begin(struct perf_output_handle *handle,
105
		      struct perf_event *event, unsigned int size)
106 107 108
{
	struct ring_buffer *rb;
	unsigned long tail, offset, head;
109
	int have_lost, page_shift;
110 111 112 113 114 115 116 117 118 119 120 121 122 123
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;

	rcu_read_lock();
	/*
	 * For inherited events we send all the output towards the parent.
	 */
	if (event->parent)
		event = event->parent;

	rb = rcu_dereference(event->rb);
124
	if (unlikely(!rb))
125 126
		goto out;

127
	if (unlikely(!rb->nr_pages))
128 129
		goto out;

130 131 132
	handle->rb    = rb;
	handle->event = event;

133
	have_lost = local_read(&rb->lost);
134
	if (unlikely(have_lost)) {
135 136 137
		size += sizeof(lost_event);
		if (event->attr.sample_id_all)
			size += event->id_header_size;
138 139 140 141 142 143 144
	}

	perf_output_get_handle(handle);

	do {
		tail = ACCESS_ONCE(rb->user_page->data_tail);
		offset = head = local_read(&rb->head);
145 146
		if (!rb->overwrite &&
		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
147
			goto fail;
148 149 150 151 152 153 154 155 156 157 158 159 160

		/*
		 * The above forms a control dependency barrier separating the
		 * @tail load above from the data stores below. Since the @tail
		 * load is required to compute the branch to fail below.
		 *
		 * A, matches D; the full memory barrier userspace SHOULD issue
		 * after reading the data and before storing the new tail
		 * position.
		 *
		 * See perf_output_put_handle().
		 */

161
		head += size;
162 163
	} while (local_cmpxchg(&rb->head, offset, head) != offset);

164
	/*
165 166
	 * We rely on the implied barrier() by local_cmpxchg() to ensure
	 * none of the data stores below can be lifted up by the compiler.
167 168
	 */

169
	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
170 171
		local_add(rb->watermark, &rb->wakeup);

172 173 174 175 176 177
	page_shift = PAGE_SHIFT + page_order(rb);

	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
	offset &= (1UL << page_shift) - 1;
	handle->addr = rb->data_pages[handle->page] + offset;
	handle->size = (1UL << page_shift) - offset;
178

179
	if (unlikely(have_lost)) {
180 181 182
		struct perf_sample_data sample_data;

		lost_event.header.size = sizeof(lost_event);
183 184 185 186 187
		lost_event.header.type = PERF_RECORD_LOST;
		lost_event.header.misc = 0;
		lost_event.id          = event->id;
		lost_event.lost        = local_xchg(&rb->lost, 0);

188 189
		perf_event_header__init_id(&lost_event.header,
					   &sample_data, event);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
		perf_output_put(handle, lost_event);
		perf_event__output_id_sample(event, handle, &sample_data);
	}

	return 0;

fail:
	local_inc(&rb->lost);
	perf_output_put_handle(handle);
out:
	rcu_read_unlock();

	return -ENOSPC;
}

205
unsigned int perf_output_copy(struct perf_output_handle *handle,
206 207
		      const void *buf, unsigned int len)
{
208
	return __output_copy(handle, buf, len);
209 210
}

211 212 213 214 215 216
unsigned int perf_output_skip(struct perf_output_handle *handle,
			      unsigned int len)
{
	return __output_skip(handle, NULL, len);
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
void perf_output_end(struct perf_output_handle *handle)
{
	perf_output_put_handle(handle);
	rcu_read_unlock();
}

static void
ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
{
	long max_size = perf_data_size(rb);

	if (watermark)
		rb->watermark = min(max_size, watermark);

	if (!rb->watermark)
		rb->watermark = max_size / 2;

	if (flags & RING_BUFFER_WRITABLE)
235 236 237
		rb->overwrite = 0;
	else
		rb->overwrite = 1;
238 239

	atomic_set(&rb->refcount, 1);
240 241 242

	INIT_LIST_HEAD(&rb->event_list);
	spin_lock_init(&rb->event_lock);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
}

#ifndef CONFIG_PERF_USE_VMALLOC

/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */

struct page *
perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
{
	if (pgoff > rb->nr_pages)
		return NULL;

	if (pgoff == 0)
		return virt_to_page(rb->user_page);

	return virt_to_page(rb->data_pages[pgoff - 1]);
}

static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
{
	struct ring_buffer *rb;
	unsigned long size;
	int i;

	size = sizeof(struct ring_buffer);
	size += nr_pages * sizeof(void *);

	rb = kzalloc(size, GFP_KERNEL);
	if (!rb)
		goto fail;

	rb->user_page = perf_mmap_alloc_page(cpu);
	if (!rb->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
		if (!rb->data_pages[i])
			goto fail_data_pages;
	}

	rb->nr_pages = nr_pages;

	ring_buffer_init(rb, watermark, flags);

	return rb;

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)rb->data_pages[i]);

	free_page((unsigned long)rb->user_page);

fail_user_page:
	kfree(rb);

fail:
	return NULL;
}

static void perf_mmap_free_page(unsigned long addr)
{
	struct page *page = virt_to_page((void *)addr);

	page->mapping = NULL;
	__free_page(page);
}

void rb_free(struct ring_buffer *rb)
{
	int i;

	perf_mmap_free_page((unsigned long)rb->user_page);
	for (i = 0; i < rb->nr_pages; i++)
		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
	kfree(rb);
}

#else
337 338 339 340
static int data_page_nr(struct ring_buffer *rb)
{
	return rb->nr_pages << page_order(rb);
}
341 342 343 344

struct page *
perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
{
345 346
	/* The '>' counts in the user page. */
	if (pgoff > data_page_nr(rb))
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
		return NULL;

	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void rb_free_work(struct work_struct *work)
{
	struct ring_buffer *rb;
	void *base;
	int i, nr;

	rb = container_of(work, struct ring_buffer, work);
366
	nr = data_page_nr(rb);
367 368

	base = rb->user_page;
369 370
	/* The '<=' counts in the user page. */
	for (i = 0; i <= nr; i++)
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
	kfree(rb);
}

void rb_free(struct ring_buffer *rb)
{
	schedule_work(&rb->work);
}

struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
{
	struct ring_buffer *rb;
	unsigned long size;
	void *all_buf;

	size = sizeof(struct ring_buffer);
	size += sizeof(void *);

	rb = kzalloc(size, GFP_KERNEL);
	if (!rb)
		goto fail;

	INIT_WORK(&rb->work, rb_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	rb->user_page = all_buf;
	rb->data_pages[0] = all_buf + PAGE_SIZE;
	rb->page_order = ilog2(nr_pages);
404
	rb->nr_pages = !!nr_pages;
405 406 407 408 409 410 411 412 413 414 415 416 417

	ring_buffer_init(rb, watermark, flags);

	return rb;

fail_all_buf:
	kfree(rb);

fail:
	return NULL;
}

#endif