arm.c 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu.h>
20 21 22 23 24 25 26 27
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
28
#include <linux/kvm.h>
29 30 31 32 33 34 35 36
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
37
#include <asm/tlbflush.h>
38
#include <asm/cacheflush.h>
39 40 41 42
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
43
#include <asm/kvm_emulate.h>
44
#include <asm/kvm_coproc.h>
45
#include <asm/kvm_psci.h>
46 47 48 49 50

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

51
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
53 54
static unsigned long hyp_default_vectors;

55 56 57
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

58 59 60 61
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
static u8 kvm_next_vmid;
static DEFINE_SPINLOCK(kvm_vmid_lock);
62

63 64
static bool vgic_present;

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
	__get_cpu_var(kvm_arm_running_vcpu) = vcpu;
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
	return __get_cpu_var(kvm_arm_running_vcpu);
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
{
	return &kvm_arm_running_vcpu;
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
int kvm_arch_hardware_enable(void *garbage)
{
	return 0;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

void kvm_arch_hardware_disable(void *garbage)
{
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}

void kvm_arch_sync_events(struct kvm *kvm)
{
}

121 122 123 124
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
125 126
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
127 128
	int ret = 0;

129 130 131
	if (type)
		return -EINVAL;

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

void kvm_arch_free_memslot(struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
{
	return 0;
}

165 166 167 168
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
169 170 171 172
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

173 174
	kvm_free_stage2_pgd(kvm);

175 176 177 178 179 180 181 182 183 184 185 186
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
}

int kvm_dev_ioctl_check_extension(long ext)
{
	int r;
	switch (ext) {
187 188 189
	case KVM_CAP_IRQCHIP:
		r = vgic_present;
		break;
190 191 192 193
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
194
	case KVM_CAP_ARM_PSCI:
195 196 197 198 199
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
200 201
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
202
		break;
203 204 205 206 207 208 209
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
210
		r = kvm_arch_dev_ioctl_check_extension(ext);
211 212 213 214 215 216 217 218 219 220 221 222 223 224
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
				   struct kvm_userspace_memory_region *mem,
225
				   enum kvm_mr_change change)
226 227 228 229 230 231
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
				   struct kvm_userspace_memory_region *mem,
232 233
				   const struct kvm_memory_slot *old,
				   enum kvm_mr_change change)
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

261 262 263 264
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

265
	return vcpu;
266 267
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
268 269 270 271 272 273 274 275 276 277 278 279 280
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
	return 0;
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
281
	kvm_mmu_free_memory_caches(vcpu);
282
	kvm_timer_vcpu_terminate(vcpu);
283
	kmem_cache_free(kvm_vcpu_cache, vcpu);
284 285 286 287 288 289 290 291 292 293 294 295 296 297
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return 0;
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
298 299
	int ret;

300 301
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
302 303 304 305 306 307

	/* Set up VGIC */
	ret = kvm_vgic_vcpu_init(vcpu);
	if (ret)
		return ret;

308 309 310
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

311 312 313 314 315 316 317 318 319
	return 0;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
320
	vcpu->cpu = cpu;
321
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
322 323 324 325 326 327 328 329 330

	/*
	 * Check whether this vcpu requires the cache to be flushed on
	 * this physical CPU. This is a consequence of doing dcache
	 * operations by set/way on this vcpu. We do it here to be in
	 * a non-preemptible section.
	 */
	if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
		flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
331 332

	kvm_arm_set_running_vcpu(vcpu);
333 334 335 336
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
337
	kvm_arm_set_running_vcpu(NULL);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
}

int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
{
	return -EINVAL;
}


int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

359 360 361 362 363 364 365
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
366 367
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
368
	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
369 370
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;

	/* update vttbr to be used with the new vmid */
	pgd_phys = virt_to_phys(kvm->arch.pgd);
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
	kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
	kvm->arch.vttbr |= vmid;

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
464

465 466 467 468 469 470 471 472 473 474 475
	/*
	 * Initialize the VGIC before running a vcpu the first time on
	 * this VM.
	 */
	if (irqchip_in_kernel(vcpu->kvm) &&
	    unlikely(!vgic_initialized(vcpu->kvm))) {
		int ret = kvm_vgic_init(vcpu->kvm);
		if (ret)
			return ret;
	}

476 477 478 479 480 481 482 483 484
	/*
	 * Handle the "start in power-off" case by calling into the
	 * PSCI code.
	 */
	if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
		*vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
		kvm_psci_call(vcpu);
	}

485 486 487
	return 0;
}

488 489 490 491 492 493 494
static void vcpu_pause(struct kvm_vcpu *vcpu)
{
	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

	wait_event_interruptible(*wq, !vcpu->arch.pause);
}

495 496 497 498 499
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

500 501 502 503 504 505 506 507 508 509 510
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
511 512
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
513 514 515
	int ret;
	sigset_t sigsaved;

516
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
517 518 519 520 521 522
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
523 524 525 526 527 528
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

529 530 531 532 533 534 535 536 537 538 539 540 541
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

542 543 544
		if (vcpu->arch.pause)
			vcpu_pause(vcpu);

545
		kvm_vgic_flush_hwstate(vcpu);
546
		kvm_timer_flush_hwstate(vcpu);
547

548 549 550 551 552 553 554 555 556 557 558 559
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
			local_irq_enable();
560
			kvm_timer_sync_hwstate(vcpu);
561
			kvm_vgic_sync_hwstate(vcpu);
562 563 564 565 566 567 568 569 570 571 572 573 574
			continue;
		}

		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
		kvm_guest_enter();
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
575
		vcpu->arch.last_pcpu = smp_processor_id();
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		kvm_guest_exit();
		trace_kvm_exit(*vcpu_pc(vcpu));
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
		 * Back from guest
		 *************************************************************/

594
		kvm_timer_sync_hwstate(vcpu);
595 596
		kvm_vgic_sync_hwstate(vcpu);

597 598 599 600 601 602
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
603 604
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

638 639
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
640 641 642 643 644 645 646 647 648 649 650 651 652
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

653 654 655 656
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
657

658 659
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
660

661 662 663
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
664

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
682

683 684 685 686 687 688 689 690 691 692 693 694 695
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (irq_num < VGIC_NR_PRIVATE_IRQS ||
		    irq_num > KVM_ARM_IRQ_GIC_MAX)
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
696 697
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

		return kvm_vcpu_set_target(vcpu, &init);

	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
717 718 719 720

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

721 722 723 724 725 726 727 728 729 730 731 732
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

733 734 735
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
	default:
		return -EINVAL;
	}
}

int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	return -EINVAL;
}

756 757 758
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
		if (!vgic_present)
			return -ENXIO;
		return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
	default:
		return -ENODEV;
	}
774 775
}

776 777 778
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
779 780 781 782
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
783 784 785 786 787 788
	case KVM_CREATE_IRQCHIP: {
		if (vgic_present)
			return kvm_vgic_create(kvm);
		else
			return -ENXIO;
	}
789 790 791 792 793 794 795 796 797 798
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
	default:
		return -EINVAL;
	}
799 800
}

801
static void cpu_init_hyp_mode(void *dummy)
802
{
803 804
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
805 806 807 808 809
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
810
	__hyp_set_vectors(kvm_get_idmap_vector());
811

812 813
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
814 815 816 817
	stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
	hyp_stack_ptr = stack_page + PAGE_SIZE;
	vector_ptr = (unsigned long)__kvm_hyp_vector;

818
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
819 820
}

821 822 823 824 825 826 827 828 829 830 831
static int hyp_init_cpu_notify(struct notifier_block *self,
			       unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		cpu_init_hyp_mode(NULL);
		break;
	}

	return NOTIFY_OK;
832 833
}

834 835 836 837
static struct notifier_block hyp_init_cpu_nb = {
	.notifier_call = hyp_init_cpu_notify,
};

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
			goto out_free_stack_pages;
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
	if (err) {
		kvm_err("Cannot map world-switch code\n");
		goto out_free_mappings;
	}

	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
			goto out_free_mappings;
		}
	}

	/*
897
	 * Map the host CPU structures
898
	 */
899 900
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
901
		err = -ENOMEM;
902
		kvm_err("Cannot allocate host CPU state\n");
903 904 905 906
		goto out_free_mappings;
	}

	for_each_possible_cpu(cpu) {
907
		kvm_cpu_context_t *cpu_ctxt;
908

909 910
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
911 912

		if (err) {
913 914
			kvm_err("Cannot map host CPU state: %d\n", err);
			goto out_free_context;
915 916 917
		}
	}

918 919 920 921 922
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_hyp_mode, NULL, 1);

923 924 925 926 927
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	if (err)
928
		goto out_free_context;
929

930 931 932 933
#ifdef CONFIG_KVM_ARM_VGIC
		vgic_present = true;
#endif

934 935 936 937 938 939 940
	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
		goto out_free_mappings;

941 942 943 944
#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

945 946
	kvm_perf_init();

947
	kvm_info("Hyp mode initialized successfully\n");
948

949
	return 0;
950 951
out_free_context:
	free_percpu(kvm_host_cpu_state);
952
out_free_mappings:
953
	free_hyp_pgds();
954 955 956 957 958 959 960 961
out_free_stack_pages:
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
out_err:
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

962 963 964 965 966
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

967 968 969
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
970 971
int kvm_arch_init(void *opaque)
{
972
	int err;
973
	int ret, cpu;
974 975 976 977 978 979

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

980 981 982 983 984 985
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
986 987 988 989 990 991
	}

	err = init_hyp_mode();
	if (err)
		goto out_err;

992 993 994 995 996 997
	err = register_cpu_notifier(&hyp_init_cpu_nb);
	if (err) {
		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
		goto out_err;
	}

998
	kvm_coproc_table_init();
999
	return 0;
1000 1001
out_err:
	return err;
1002 1003 1004 1005 1006
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1007
	kvm_perf_teardown();
1008 1009 1010 1011 1012 1013 1014 1015 1016
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);