82571.c 54.7 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 82571EB Gigabit Ethernet Controller
31
 * 82571EB Gigabit Ethernet Controller (Copper)
32
 * 82571EB Gigabit Ethernet Controller (Fiber)
33 34 35
 * 82571EB Dual Port Gigabit Mezzanine Adapter
 * 82571EB Quad Port Gigabit Mezzanine Adapter
 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 37 38 39 40 41
 * 82572EI Gigabit Ethernet Controller (Copper)
 * 82572EI Gigabit Ethernet Controller (Fiber)
 * 82572EI Gigabit Ethernet Controller
 * 82573V Gigabit Ethernet Controller (Copper)
 * 82573E Gigabit Ethernet Controller (Copper)
 * 82573L Gigabit Ethernet Controller
42
 * 82574L Gigabit Network Connection
43
 * 82583V Gigabit Network Connection
44 45 46 47 48 49 50 51 52 53 54
 */

#include "e1000.h"

#define ID_LED_RESERVED_F746 0xF746
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
			      (ID_LED_OFF1_ON2  <<  8) | \
			      (ID_LED_DEF1_DEF2 <<  4) | \
			      (ID_LED_DEF1_DEF2))

#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
#define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
56 57 58 59
#define E1000_BASE1000T_STATUS          10
#define E1000_IDLE_ERROR_COUNT_MASK     0xFF
#define E1000_RECEIVE_ERROR_COUNTER     21
#define E1000_RECEIVE_ERROR_MAX         0xFFFF
60

61 62
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */

63 64 65
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 68 69 70 71 72
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73
static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 75
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
76
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 79 80
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 82
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83 84 85 86 87 88 89 90 91 92

/**
 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

93
	if (hw->phy.media_type != e1000_media_type_copper) {
94 95 96 97 98 99 100 101
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->addr			 = 1;
	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us		 = 100;

102 103 104
	phy->ops.power_up		 = e1000_power_up_phy_copper;
	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;

105 106 107 108 109 110 111 112
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		phy->type		 = e1000_phy_igp_2;
		break;
	case e1000_82573:
		phy->type		 = e1000_phy_m88;
		break;
113
	case e1000_82574:
114
	case e1000_82583:
115
		phy->type		 = e1000_phy_bm;
116 117
		phy->ops.acquire = e1000_get_hw_semaphore_82574;
		phy->ops.release = e1000_put_hw_semaphore_82574;
118 119
		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120
		break;
121 122 123 124 125 126 127
	default:
		return -E1000_ERR_PHY;
		break;
	}

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id_82571(hw);
128 129 130 131
	if (ret_val) {
		e_dbg("Error getting PHY ID\n");
		return ret_val;
	}
132 133 134 135 136 137

	/* Verify phy id */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		if (phy->id != IGP01E1000_I_PHY_ID)
138
			ret_val = -E1000_ERR_PHY;
139 140 141
		break;
	case e1000_82573:
		if (phy->id != M88E1111_I_PHY_ID)
142
			ret_val = -E1000_ERR_PHY;
143
		break;
144
	case e1000_82574:
145
	case e1000_82583:
146
		if (phy->id != BME1000_E_PHY_ID_R2)
147
			ret_val = -E1000_ERR_PHY;
148
		break;
149
	default:
150
		ret_val = -E1000_ERR_PHY;
151 152 153
		break;
	}

154 155 156 157
	if (ret_val)
		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);

	return ret_val;
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
}

/**
 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	switch (hw->mac.type) {
	case e1000_82573:
189
	case e1000_82574:
190
	case e1000_82583:
191 192 193
		if (((eecd >> 15) & 0x3) == 0x3) {
			nvm->type = e1000_nvm_flash_hw;
			nvm->word_size = 2048;
194 195
			/*
			 * Autonomous Flash update bit must be cleared due
196 197 198 199 200 201 202 203
			 * to Flash update issue.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			ew32(EECD, eecd);
			break;
		}
		/* Fall Through */
	default:
204
		nvm->type = e1000_nvm_eeprom_spi;
205 206
		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
				  E1000_EECD_SIZE_EX_SHIFT);
207 208
		/*
		 * Added to a constant, "size" becomes the left-shift value
209 210 211
		 * for setting word_size.
		 */
		size += NVM_WORD_SIZE_BASE_SHIFT;
212 213 214 215

		/* EEPROM access above 16k is unsupported */
		if (size > 14)
			size = 14;
216 217 218 219
		nvm->word_size	= 1 << size;
		break;
	}

220 221 222 223 224 225 226 227 228 229 230
	/* Function Pointers */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
		nvm->ops.release = e1000_put_hw_semaphore_82574;
		break;
	default:
		break;
	}

231 232 233 234 235 236 237 238 239 240 241 242
	return 0;
}

/**
 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_mac_operations *func = &mac->ops;
243 244 245
	u32 swsm = 0;
	u32 swsm2 = 0;
	bool force_clear_smbi = false;
246 247 248 249 250 251

	/* Set media type */
	switch (adapter->pdev->device) {
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
252
		hw->phy.media_type = e1000_media_type_fiber;
253 254 255
		break;
	case E1000_DEV_ID_82571EB_SERDES:
	case E1000_DEV_ID_82572EI_SERDES:
256 257
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
258
		hw->phy.media_type = e1000_media_type_internal_serdes;
259 260
		break;
	default:
261
		hw->phy.media_type = e1000_media_type_copper;
262 263 264 265 266 267 268
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
269 270
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
271 272

	/* check for link */
273
	switch (hw->phy.media_type) {
274 275 276 277 278 279
	case e1000_media_type_copper:
		func->setup_physical_interface = e1000_setup_copper_link_82571;
		func->check_for_link = e1000e_check_for_copper_link;
		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
		break;
	case e1000_media_type_fiber:
280 281
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
282
		func->check_for_link = e1000e_check_for_fiber_link;
283 284
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
285 286
		break;
	case e1000_media_type_internal_serdes:
287 288
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
289
		func->check_for_link = e1000_check_for_serdes_link_82571;
290 291
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
292 293 294 295 296 297
		break;
	default:
		return -E1000_ERR_CONFIG;
		break;
	}

298
	switch (hw->mac.type) {
299 300 301 302
	case e1000_82573:
		func->set_lan_id = e1000_set_lan_id_single_port;
		func->check_mng_mode = e1000e_check_mng_mode_generic;
		func->led_on = e1000e_led_on_generic;
303
		func->blink_led = e1000e_blink_led_generic;
304 305 306 307 308 309 310 311 312 313

		/* FWSM register */
		mac->has_fwsm = true;
		/*
		 * ARC supported; valid only if manageability features are
		 * enabled.
		 */
		mac->arc_subsystem_valid =
			(er32(FWSM) & E1000_FWSM_MODE_MASK)
			? true : false;
314
		break;
315
	case e1000_82574:
316
	case e1000_82583:
317
		func->set_lan_id = e1000_set_lan_id_single_port;
318 319 320 321 322 323
		func->check_mng_mode = e1000_check_mng_mode_82574;
		func->led_on = e1000_led_on_82574;
		break;
	default:
		func->check_mng_mode = e1000e_check_mng_mode_generic;
		func->led_on = e1000e_led_on_generic;
324
		func->blink_led = e1000e_blink_led_generic;
325 326 327

		/* FWSM register */
		mac->has_fwsm = true;
328 329 330
		break;
	}

331 332
	/*
	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
333
	 * first NVM or PHY access. This should be done for single-port
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	 * devices, and for one port only on dual-port devices so that
	 * for those devices we can still use the SMBI lock to synchronize
	 * inter-port accesses to the PHY & NVM.
	 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		swsm2 = er32(SWSM2);

		if (!(swsm2 & E1000_SWSM2_LOCK)) {
			/* Only do this for the first interface on this card */
			ew32(SWSM2,
			    swsm2 | E1000_SWSM2_LOCK);
			force_clear_smbi = true;
		} else
			force_clear_smbi = false;
		break;
	default:
		force_clear_smbi = true;
		break;
	}

	if (force_clear_smbi) {
		/* Make sure SWSM.SMBI is clear */
		swsm = er32(SWSM);
		if (swsm & E1000_SWSM_SMBI) {
			/* This bit should not be set on a first interface, and
			 * indicates that the bootagent or EFI code has
			 * improperly left this bit enabled
			 */
364
			e_dbg("Please update your 82571 Bootagent\n");
365 366 367 368 369
		}
		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
	}

	/*
J
Joe Perches 已提交
370
	 * Initialize device specific counter of SMBI acquisition
371 372 373 374
	 * timeouts.
	 */
	 hw->dev_spec.e82571.smb_counter = 0;

375 376 377
	return 0;
}

J
Jeff Kirsher 已提交
378
static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
{
	struct e1000_hw *hw = &adapter->hw;
	static int global_quad_port_a; /* global port a indication */
	struct pci_dev *pdev = adapter->pdev;
	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
	s32 rc;

	rc = e1000_init_mac_params_82571(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_82571(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_82571(hw);
	if (rc)
		return rc;

	/* tag quad port adapters first, it's used below */
	switch (pdev->device) {
	case E1000_DEV_ID_82571EB_QUAD_COPPER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
403
	case E1000_DEV_ID_82571PT_QUAD_COPPER:
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
		adapter->flags |= FLAG_IS_QUAD_PORT;
		/* mark the first port */
		if (global_quad_port_a == 0)
			adapter->flags |= FLAG_IS_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		global_quad_port_a++;
		if (global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		break;
	}

	switch (adapter->hw.mac.type) {
	case e1000_82571:
		/* these dual ports don't have WoL on port B at all */
		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
		    (is_port_b))
			adapter->flags &= ~FLAG_HAS_WOL;
		/* quad ports only support WoL on port A */
		if (adapter->flags & FLAG_IS_QUAD_PORT &&
R
Roel Kluin 已提交
427
		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
428
			adapter->flags &= ~FLAG_HAS_WOL;
429 430 431
		/* Does not support WoL on any port */
		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
			adapter->flags &= ~FLAG_HAS_WOL;
432 433 434
		break;
	case e1000_82573:
		if (pdev->device == E1000_DEV_ID_82573L) {
435 436
			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
			adapter->max_hw_frame_size = DEFAULT_JUMBO;
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
		}
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
456 457
	s32 ret_val;
	u16 phy_id = 0;
458 459 460 461

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
462 463
		/*
		 * The 82571 firmware may still be configuring the PHY.
464 465
		 * In this case, we cannot access the PHY until the
		 * configuration is done.  So we explicitly set the
466 467
		 * PHY ID.
		 */
468 469 470 471 472
		phy->id = IGP01E1000_I_PHY_ID;
		break;
	case e1000_82573:
		return e1000e_get_phy_id(hw);
		break;
473
	case e1000_82574:
474
	case e1000_82583:
475 476 477 478 479 480 481 482 483 484 485 486 487
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id |= (u32)(phy_id);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
		break;
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;
505 506
	s32 sw_timeout = hw->nvm.word_size + 1;
	s32 fw_timeout = hw->nvm.word_size + 1;
507 508
	s32 i = 0;

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	/*
	 * If we have timedout 3 times on trying to acquire
	 * the inter-port SMBI semaphore, there is old code
	 * operating on the other port, and it is not
	 * releasing SMBI. Modify the number of times that
	 * we try for the semaphore to interwork with this
	 * older code.
	 */
	if (hw->dev_spec.e82571.smb_counter > 2)
		sw_timeout = 1;

	/* Get the SW semaphore */
	while (i < sw_timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == sw_timeout) {
531
		e_dbg("Driver can't access device - SMBI bit is set.\n");
532 533
		hw->dev_spec.e82571.smb_counter++;
	}
534
	/* Get the FW semaphore. */
535
	for (i = 0; i < fw_timeout; i++) {
536 537 538 539 540 541 542 543 544 545
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

546
	if (i == fw_timeout) {
547
		/* Release semaphores */
548
		e1000_put_hw_semaphore_82571(hw);
549
		e_dbg("Driver can't access the NVM\n");
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
567
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
568 569
	ew32(SWSM, swsm);
}
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/**
 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore during reset.
 *
 **/
static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;
	s32 ret_val = 0;
	s32 i = 0;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
	do {
		ew32(EXTCNF_CTRL, extcnf_ctrl);
		extcnf_ctrl = er32(EXTCNF_CTRL);

		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
			break;

		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

594
		usleep_range(2000, 4000);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
		i++;
	} while (i < MDIO_OWNERSHIP_TIMEOUT);

	if (i == MDIO_OWNERSHIP_TIMEOUT) {
		/* Release semaphores */
		e1000_put_hw_semaphore_82573(hw);
		e_dbg("Driver can't access the PHY\n");
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used during reset.
 *
 **/
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

static DEFINE_MUTEX(swflag_mutex);

/**
 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM.
 *
 **/
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
{
	s32 ret_val;

	mutex_lock(&swflag_mutex);
	ret_val = e1000_get_hw_semaphore_82573(hw);
	if (ret_val)
		mutex_unlock(&swflag_mutex);
	return ret_val;
}

/**
 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 *
 **/
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
{
	e1000_put_hw_semaphore_82573(hw);
	mutex_unlock(&swflag_mutex);
}
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/**
 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.
 *  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
{
	u16 data = er32(POEMB);

	if (active)
		data |= E1000_PHY_CTRL_D0A_LPLU;
	else
		data &= ~E1000_PHY_CTRL_D0A_LPLU;

	ew32(POEMB, data);
	return 0;
}

/**
 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  when active is true, else clear lplu for D3. LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
{
	u16 data = er32(POEMB);

	if (!active) {
		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= E1000_PHY_CTRL_NOND0A_LPLU;
	}

	ew32(POEMB, data);
	return 0;
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 *  @hw: pointer to the HW structure
 *
 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 *  hardware semaphore.
 **/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_get_hw_semaphore_82571(hw);
	if (ret_val)
		return ret_val;

728 729 730 731
	switch (hw->mac.type) {
	case e1000_82573:
		break;
	default:
732
		ret_val = e1000e_acquire_nvm(hw);
733 734
		break;
	}
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

	if (ret_val)
		e1000_put_hw_semaphore_82571(hw);

	return ret_val;
}

/**
 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_put_hw_semaphore_82571(hw);
}

/**
 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
764
 *  EEPROM will most likely contain an invalid checksum.
765 766 767 768 769 770 771 772
 **/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
				 u16 *data)
{
	s32 ret_val;

	switch (hw->mac.type) {
	case e1000_82573:
773
	case e1000_82574:
774
	case e1000_82583:
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
		break;
	case e1000_82571:
	case e1000_82572:
		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
		break;
	default:
		ret_val = -E1000_ERR_NVM;
		break;
	}

	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
	u32 eecd;
	s32 ret_val;
	u16 i;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		return ret_val;

807 808 809 810
	/*
	 * If our nvm is an EEPROM, then we're done
	 * otherwise, commit the checksum to the flash NVM.
	 */
811 812 813 814 815
	if (hw->nvm.type != e1000_nvm_flash_hw)
		return ret_val;

	/* Check for pending operations. */
	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
816
		usleep_range(1000, 2000);
817 818 819 820 821 822 823 824 825
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	/* Reset the firmware if using STM opcode. */
	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
826 827
		/*
		 * The enabling of and the actual reset must be done
828 829 830 831 832 833 834 835 836 837 838 839
		 * in two write cycles.
		 */
		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
		e1e_flush();
		ew32(HICR, E1000_HICR_FW_RESET);
	}

	/* Commit the write to flash */
	eecd = er32(EECD) | E1000_EECD_FLUPD;
	ew32(EECD, eecd);

	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
840
		usleep_range(1000, 2000);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
	if (hw->nvm.type == e1000_nvm_flash_hw)
		e1000_fix_nvm_checksum_82571(hw);

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  After checking for invalid values, poll the EEPROM to ensure the previous
 *  command has completed before trying to write the next word.  After write
 *  poll for completion.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
878
 *  EEPROM will most likely contain an invalid checksum.
879 880 881 882 883
 **/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
884
	u32 i, eewr = 0;
885 886
	s32 ret_val = 0;

887 888 889 890
	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
891 892
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
893
		e_dbg("nvm parameter(s) out of bounds\n");
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
		return -E1000_ERR_NVM;
	}

	for (i = 0; i < words; i++) {
		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
		       E1000_NVM_RW_REG_START;

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;

		ew32(EEWR, eewr);

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;
	}

	return ret_val;
}

/**
 *  e1000_get_cfg_done_82571 - Poll for configuration done
 *  @hw: pointer to the HW structure
 *
 *  Reads the management control register for the config done bit to be set.
 **/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;

	while (timeout) {
		if (er32(EEMNGCTL) &
		    E1000_NVM_CFG_DONE_PORT_0)
			break;
930
		usleep_range(1000, 2000);
931 932 933
		timeout--;
	}
	if (!timeout) {
934
		e_dbg("MNG configuration cycle has not completed.\n");
935 936 937 938 939 940 941 942 943
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
944
 *  @active: true to enable LPLU, false to disable
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
 *
 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 *  this function also disables smart speed and vice versa.  LPLU will not be
 *  activated unless the device autonegotiation advertisement meets standards
 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 *  pointer entry point only called by PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
977 978
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
979 980
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
981 982
		 * SmartSpeed, so performance is maintained.
		 */
983 984
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
985
					   &data);
986 987 988 989 990
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
991
					   data);
992 993 994 995
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
996
					   &data);
997 998 999 1000 1001
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1002
					   data);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_reset_hw_82571 - Reset hardware
 *  @hw: pointer to the HW structure
 *
1015
 *  This resets the hardware into a known state.
1016 1017 1018
 **/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
1019
	u32 ctrl, ctrl_ext;
1020 1021
	s32 ret_val;

1022 1023
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1024 1025 1026 1027
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
1028
		e_dbg("PCI-E Master disable polling has failed.\n");
1029

1030
	e_dbg("Masking off all interrupts\n");
1031 1032 1033 1034 1035 1036
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

1037
	usleep_range(10000, 20000);
1038

1039 1040 1041 1042
	/*
	 * Must acquire the MDIO ownership before MAC reset.
	 * Ownership defaults to firmware after a reset.
	 */
1043 1044
	switch (hw->mac.type) {
	case e1000_82573:
1045 1046
		ret_val = e1000_get_hw_semaphore_82573(hw);
		break;
1047 1048
	case e1000_82574:
	case e1000_82583:
1049
		ret_val = e1000_get_hw_semaphore_82574(hw);
1050 1051 1052
		break;
	default:
		break;
1053
	}
1054 1055
	if (ret_val)
		e_dbg("Cannot acquire MDIO ownership\n");
1056 1057 1058

	ctrl = er32(CTRL);

1059
	e_dbg("Issuing a global reset to MAC\n");
1060 1061
	ew32(CTRL, ctrl | E1000_CTRL_RST);

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	/* Must release MDIO ownership and mutex after MAC reset. */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		e1000_put_hw_semaphore_82574(hw);
		break;
	default:
		break;
	}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	if (hw->nvm.type == e1000_nvm_flash_hw) {
		udelay(10);
		ctrl_ext = er32(CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		ew32(CTRL_EXT, ctrl_ext);
		e1e_flush();
	}

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

1085 1086
	/*
	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1087 1088 1089
	 * Need to wait for Phy configuration completion before accessing
	 * NVM and Phy.
	 */
1090 1091 1092 1093 1094

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1095
		msleep(25);
1096 1097 1098 1099
		break;
	default:
		break;
	}
1100 1101 1102

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
1103
	er32(ICR);
1104

1105 1106 1107 1108 1109
	if (hw->mac.type == e1000_82571) {
		/* Install any alternate MAC address into RAR0 */
		ret_val = e1000_check_alt_mac_addr_generic(hw);
		if (ret_val)
			return ret_val;
1110

1111 1112
		e1000e_set_laa_state_82571(hw, true);
	}
1113

1114 1115 1116 1117
	/* Reinitialize the 82571 serdes link state machine */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		hw->mac.serdes_link_state = e1000_serdes_link_down;

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	return 0;
}

/**
 *  e1000_init_hw_82571 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
1132
	u16 i, rar_count = mac->rar_entry_count;
1133 1134 1135 1136 1137

	e1000_initialize_hw_bits_82571(hw);

	/* Initialize identification LED */
	ret_val = e1000e_id_led_init(hw);
1138
	if (ret_val)
1139
		e_dbg("Error initializing identification LED\n");
1140
		/* This is not fatal and we should not stop init due to this */
1141 1142

	/* Disabling VLAN filtering */
1143
	e_dbg("Initializing the IEEE VLAN\n");
1144
	mac->ops.clear_vfta(hw);
1145 1146

	/* Setup the receive address. */
1147 1148
	/*
	 * If, however, a locally administered address was assigned to the
1149 1150 1151 1152 1153 1154 1155 1156
	 * 82571, we must reserve a RAR for it to work around an issue where
	 * resetting one port will reload the MAC on the other port.
	 */
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;
	e1000e_init_rx_addrs(hw, rar_count);

	/* Zero out the Multicast HASH table */
1157
	e_dbg("Zeroing the MTA\n");
1158 1159 1160 1161 1162 1163 1164
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = e1000_setup_link_82571(hw);

	/* Set the transmit descriptor write-back policy */
1165
	reg_data = er32(TXDCTL(0));
1166 1167 1168
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		   E1000_TXDCTL_FULL_TX_DESC_WB |
		   E1000_TXDCTL_COUNT_DESC;
1169
	ew32(TXDCTL(0), reg_data);
1170 1171

	/* ...for both queues. */
1172 1173
	switch (mac->type) {
	case e1000_82573:
1174 1175
		e1000e_enable_tx_pkt_filtering(hw);
		/* fall through */
1176 1177 1178 1179 1180 1181 1182
	case e1000_82574:
	case e1000_82583:
		reg_data = er32(GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		ew32(GCR, reg_data);
		break;
	default:
1183
		reg_data = er32(TXDCTL(1));
1184 1185 1186
		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
			   E1000_TXDCTL_FULL_TX_DESC_WB |
			   E1000_TXDCTL_COUNT_DESC;
1187
		ew32(TXDCTL(1), reg_data);
1188
		break;
1189 1190
	}

1191 1192
	/*
	 * Clear all of the statistics registers (clear on read).  It is
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82571(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
1213
	reg = er32(TXDCTL(0));
1214
	reg |= (1 << 22);
1215
	ew32(TXDCTL(0), reg);
1216 1217

	/* Transmit Descriptor Control 1 */
1218
	reg = er32(TXDCTL(1));
1219
	reg |= (1 << 22);
1220
	ew32(TXDCTL(1), reg);
1221 1222

	/* Transmit Arbitration Control 0 */
1223
	reg = er32(TARC(0));
1224 1225 1226 1227 1228 1229 1230 1231 1232
	reg &= ~(0xF << 27); /* 30:27 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
		break;
	default:
		break;
	}
1233
	ew32(TARC(0), reg);
1234 1235

	/* Transmit Arbitration Control 1 */
1236
	reg = er32(TARC(1));
1237 1238 1239 1240 1241 1242 1243 1244 1245
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg &= ~((1 << 29) | (1 << 30));
		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
		if (er32(TCTL) & E1000_TCTL_MULR)
			reg &= ~(1 << 28);
		else
			reg |= (1 << 28);
1246
		ew32(TARC(1), reg);
1247 1248 1249 1250 1251 1252
		break;
	default:
		break;
	}

	/* Device Control */
1253 1254 1255 1256
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1257 1258 1259
		reg = er32(CTRL);
		reg &= ~(1 << 29);
		ew32(CTRL, reg);
1260 1261 1262
		break;
	default:
		break;
1263 1264 1265
	}

	/* Extended Device Control */
1266 1267 1268 1269
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1270 1271 1272 1273
		reg = er32(CTRL_EXT);
		reg &= ~(1 << 23);
		reg |= (1 << 22);
		ew32(CTRL_EXT, reg);
1274 1275 1276
		break;
	default:
		break;
1277
	}
1278

1279 1280 1281 1282 1283
	if (hw->mac.type == e1000_82571) {
		reg = er32(PBA_ECC);
		reg |= E1000_PBA_ECC_CORR_EN;
		ew32(PBA_ECC, reg);
	}
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	/*
	 * Workaround for hardware errata.
	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
	 */

        if ((hw->mac.type == e1000_82571) ||
           (hw->mac.type == e1000_82572)) {
                reg = er32(CTRL_EXT);
                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
                ew32(CTRL_EXT, reg);
        }

1296

J
Jesse Brandeburg 已提交
1297
	/* PCI-Ex Control Registers */
1298 1299 1300
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
1301 1302 1303
		reg = er32(GCR);
		reg |= (1 << 22);
		ew32(GCR, reg);
J
Jesse Brandeburg 已提交
1304

1305 1306 1307 1308 1309
		/*
		 * Workaround for hardware errata.
		 * apply workaround for hardware errata documented in errata
		 * docs Fixes issue where some error prone or unreliable PCIe
		 * completions are occurring, particularly with ASPM enabled.
1310
		 * Without fix, issue can cause Tx timeouts.
1311
		 */
J
Jesse Brandeburg 已提交
1312 1313 1314
		reg = er32(GCR2);
		reg |= 1;
		ew32(GCR2, reg);
1315 1316 1317
		break;
	default:
		break;
1318
	}
1319 1320 1321
}

/**
1322
 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1323 1324 1325 1326 1327
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
1328
static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1329 1330 1331 1332 1333 1334
{
	u32 offset;
	u32 vfta_value = 0;
	u32 vfta_offset = 0;
	u32 vfta_bit_in_reg = 0;

1335 1336 1337 1338
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1339
		if (hw->mng_cookie.vlan_id != 0) {
1340 1341
			/*
			 * The VFTA is a 4096b bit-field, each identifying
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
			 * a single VLAN ID.  The following operations
			 * determine which 32b entry (i.e. offset) into the
			 * array we want to set the VLAN ID (i.e. bit) of
			 * the manageability unit.
			 */
			vfta_offset = (hw->mng_cookie.vlan_id >>
				       E1000_VFTA_ENTRY_SHIFT) &
				      E1000_VFTA_ENTRY_MASK;
			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
		}
1353 1354 1355
		break;
	default:
		break;
1356 1357
	}
	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1358 1359
		/*
		 * If the offset we want to clear is the same offset of the
1360 1361 1362 1363 1364 1365 1366 1367 1368
		 * manageability VLAN ID, then clear all bits except that of
		 * the manageability unit.
		 */
		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
		e1e_flush();
	}
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
/**
 *  e1000_check_mng_mode_82574 - Check manageability is enabled
 *  @hw: pointer to the HW structure
 *
 *  Reads the NVM Initialization Control Word 2 and returns true
 *  (>0) if any manageability is enabled, else false (0).
 **/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
	u16 data;

	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}

/**
 *  e1000_led_on_82574 - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 i;

	ctrl = hw->mac.ledctl_mode2;
	if (!(E1000_STATUS_LU & er32(STATUS))) {
		/*
		 * If no link, then turn LED on by setting the invert bit
		 * for each LED that's "on" (0x0E) in ledctl_mode2.
		 */
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
	}
	ew32(LEDCTL, ctrl);

	return 0;
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/**
 *  e1000_check_phy_82574 - check 82574 phy hung state
 *  @hw: pointer to the HW structure
 *
 *  Returns whether phy is hung or not
 **/
bool e1000_check_phy_82574(struct e1000_hw *hw)
{
	u16 status_1kbt = 0;
	u16 receive_errors = 0;
	bool phy_hung = false;
	s32 ret_val = 0;

	/*
	 * Read PHY Receive Error counter first, if its is max - all F's then
	 * read the Base1000T status register If both are max then PHY is hung.
	 */
	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);

	if (ret_val)
		goto out;
	if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
		if (ret_val)
			goto out;
		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
		    E1000_IDLE_ERROR_COUNT_MASK)
			phy_hung = true;
	}
out:
	return phy_hung;
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
/**
 *  e1000_setup_link_82571 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
1456 1457
	/*
	 * 82573 does not have a word in the NVM to determine
1458 1459 1460
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->fc.requested_mode == e1000_fc_default)
			hw->fc.requested_mode = e1000_fc_full;
		break;
	default:
		break;
	}
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	return e1000e_setup_link(hw);
}

/**
 *  e1000_setup_copper_link_82571 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
1495
	case e1000_phy_bm:
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		ret_val = e1000e_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_2:
		ret_val = e1000e_copper_link_setup_igp(hw);
		break;
	default:
		return -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		return ret_val;

	ret_val = e1000e_setup_copper_link(hw);

	return ret_val;
}

/**
 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes links.
 *  Upon successful setup, poll for link.
 **/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
1526 1527
		/*
		 * If SerDes loopback mode is entered, there is no form
1528 1529
		 * of reset to take the adapter out of that mode.  So we
		 * have to explicitly take the adapter out of loopback
1530
		 * mode.  This prevents drivers from twiddling their thumbs
1531 1532
		 * if another tool failed to take it out of loopback mode.
		 */
1533
		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1534 1535 1536 1537 1538 1539 1540 1541
		break;
	default:
		break;
	}

	return e1000e_setup_fiber_serdes_link(hw);
}

1542 1543 1544 1545
/**
 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
 *  Reports the link state as up or down.
 *
 *  If autonegotiation is supported by the link partner, the link state is
 *  determined by the result of autonegotiation. This is the most likely case.
 *  If autonegotiation is not supported by the link partner, and the link
 *  has a valid signal, force the link up.
 *
 *  The link state is represented internally here by 4 states:
 *
 *  1) down
 *  2) autoneg_progress
D
Daniel Mack 已提交
1557
 *  3) autoneg_complete (the link successfully autonegotiated)
1558 1559
 *  4) forced_up (the link has been forced up, it did not autonegotiate)
 *
1560
 **/
1561
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1562 1563 1564 1565 1566
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
1567 1568
	u32 txcw;
	u32 i;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	s32 ret_val = 0;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {

		/* Receiver is synchronized with no invalid bits.  */
		switch (mac->serdes_link_state) {
		case e1000_serdes_link_autoneg_complete:
			if (!(status & E1000_STATUS_LU)) {
				/*
				 * We have lost link, retry autoneg before
				 * reporting link failure
				 */
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1587
				mac->serdes_has_link = false;
1588
				e_dbg("AN_UP     -> AN_PROG\n");
1589 1590
			} else {
				mac->serdes_has_link = true;
1591
			}
1592
			break;
1593 1594 1595 1596 1597 1598 1599

		case e1000_serdes_link_forced_up:
			/*
			 * If we are receiving /C/ ordered sets, re-enable
			 * auto-negotiation in the TXCW register and disable
			 * forced link in the Device Control register in an
			 * attempt to auto-negotiate with our link partner.
1600 1601
			 * If the partner code word is null, stop forcing
			 * and restart auto negotiation.
1602
			 */
1603
			if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW))  {
1604 1605
				/* Enable autoneg, and unforce link up */
				ew32(TXCW, mac->txcw);
1606
				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1607 1608
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1609
				mac->serdes_has_link = false;
1610
				e_dbg("FORCED_UP -> AN_PROG\n");
1611 1612
			} else {
				mac->serdes_has_link = true;
1613 1614 1615 1616
			}
			break;

		case e1000_serdes_link_autoneg_progress:
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
			if (rxcw & E1000_RXCW_C) {
				/*
				 * We received /C/ ordered sets, meaning the
				 * link partner has autonegotiated, and we can
				 * trust the Link Up (LU) status bit.
				 */
				if (status & E1000_STATUS_LU) {
					mac->serdes_link_state =
					    e1000_serdes_link_autoneg_complete;
					e_dbg("AN_PROG   -> AN_UP\n");
					mac->serdes_has_link = true;
				} else {
					/* Autoneg completed, but failed. */
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("AN_PROG   -> DOWN\n");
				}
1634 1635
			} else {
				/*
1636 1637 1638
				 * The link partner did not autoneg.
				 * Force link up and full duplex, and change
				 * state to forced.
1639
				 */
1640
				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1641 1642 1643 1644
				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
				ew32(CTRL, ctrl);

				/* Configure Flow Control after link up. */
1645
				ret_val = e1000e_config_fc_after_link_up(hw);
1646
				if (ret_val) {
1647
					e_dbg("Error config flow control\n");
1648 1649 1650 1651
					break;
				}
				mac->serdes_link_state =
				    e1000_serdes_link_forced_up;
1652
				mac->serdes_has_link = true;
1653
				e_dbg("AN_PROG   -> FORCED_UP\n");
1654 1655 1656 1657 1658
			}
			break;

		case e1000_serdes_link_down:
		default:
1659 1660
			/*
			 * The link was down but the receiver has now gained
1661
			 * valid sync, so lets see if we can bring the link
1662 1663
			 * up.
			 */
1664
			ew32(TXCW, mac->txcw);
1665
			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1666 1667
			mac->serdes_link_state =
			    e1000_serdes_link_autoneg_progress;
1668
			mac->serdes_has_link = false;
1669
			e_dbg("DOWN      -> AN_PROG\n");
1670 1671 1672 1673 1674 1675
			break;
		}
	} else {
		if (!(rxcw & E1000_RXCW_SYNCH)) {
			mac->serdes_has_link = false;
			mac->serdes_link_state = e1000_serdes_link_down;
1676
			e_dbg("ANYSTATE  -> DOWN\n");
1677 1678
		} else {
			/*
1679 1680 1681
			 * Check several times, if Sync and Config
			 * both are consistently 1 then simply ignore
			 * the Invalid bit and restart Autoneg
1682
			 */
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
			for (i = 0; i < AN_RETRY_COUNT; i++) {
				udelay(10);
				rxcw = er32(RXCW);
				if ((rxcw & E1000_RXCW_IV) &&
				    !((rxcw & E1000_RXCW_SYNCH) &&
				      (rxcw & E1000_RXCW_C))) {
					mac->serdes_has_link = false;
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("ANYSTATE  -> DOWN\n");
					break;
				}
			}

			if (i == AN_RETRY_COUNT) {
				txcw = er32(TXCW);
				txcw |= E1000_TXCW_ANE;
				ew32(TXCW, txcw);
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1703
				mac->serdes_has_link = false;
1704
				e_dbg("ANYSTATE  -> AN_PROG\n");
1705 1706 1707 1708 1709 1710 1711
			}
		}
	}

	return ret_val;
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/**
 *  e1000_valid_led_default_82571 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1726
		e_dbg("NVM Read Error\n");
1727 1728 1729
		return ret_val;
	}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (*data == ID_LED_RESERVED_F746)
			*data = ID_LED_DEFAULT_82573;
		break;
	default:
		if (*data == ID_LED_RESERVED_0000 ||
		    *data == ID_LED_RESERVED_FFFF)
			*data = ID_LED_DEFAULT;
		break;
	}
1743 1744 1745 1746 1747 1748 1749 1750

	return 0;
}

/**
 *  e1000e_get_laa_state_82571 - Get locally administered address state
 *  @hw: pointer to the HW structure
 *
1751
 *  Retrieve and return the current locally administered address state.
1752 1753 1754 1755
 **/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
	if (hw->mac.type != e1000_82571)
1756
		return false;
1757 1758 1759 1760 1761 1762 1763 1764 1765

	return hw->dev_spec.e82571.laa_is_present;
}

/**
 *  e1000e_set_laa_state_82571 - Set locally administered address state
 *  @hw: pointer to the HW structure
 *  @state: enable/disable locally administered address
 *
B
Bruce Allan 已提交
1766
 *  Enable/Disable the current locally administered address state.
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
 **/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
	if (hw->mac.type != e1000_82571)
		return;

	hw->dev_spec.e82571.laa_is_present = state;

	/* If workaround is activated... */
	if (state)
1777 1778
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
		 * between the time RAR[0] gets clobbered and the time it
		 * gets fixed, the actual LAA is in one of the RARs and no
		 * incoming packets directed to this port are dropped.
		 * Eventually the LAA will be in RAR[0] and RAR[14].
		 */
		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
}

/**
 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Verifies that the EEPROM has completed the update.  After updating the
 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
 *  the checksum fix is not implemented, we need to set the bit and update
 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
 *  we need to return bad checksum.
 **/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 data;

	if (nvm->type != e1000_nvm_flash_hw)
		return 0;

1806 1807
	/*
	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1808 1809 1810 1811 1812 1813 1814
	 * 10h-12h.  Checksum may need to be fixed.
	 */
	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & 0x10)) {
1815 1816
		/*
		 * Read 0x23 and check bit 15.  This bit is a 1
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
		 * when the checksum has already been fixed.  If
		 * the checksum is still wrong and this bit is a
		 * 1, we need to return bad checksum.  Otherwise,
		 * we need to set this bit to a 1 and update the
		 * checksum.
		 */
		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
		if (ret_val)
			return ret_val;

		if (!(data & 0x8000)) {
			data |= 0x8000;
			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_update_nvm_checksum(hw);
		}
	}

	return 0;
}

1839 1840 1841 1842 1843 1844 1845 1846
/**
 *  e1000_read_mac_addr_82571 - Read device MAC address
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
	s32 ret_val = 0;

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	if (hw->mac.type == e1000_82571) {
		/*
		 * If there's an alternate MAC address place it in RAR0
		 * so that it will override the Si installed default perm
		 * address.
		 */
		ret_val = e1000_check_alt_mac_addr_generic(hw);
		if (ret_val)
			goto out;
	}
1857 1858 1859 1860 1861 1862 1863

	ret_val = e1000_read_mac_addr_generic(hw);

out:
	return ret_val;
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
/**
 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_mac_info *mac = &hw->mac;

	if (!(phy->ops.check_reset_block))
		return;

	/* If the management interface is not enabled, then power down */
	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
/**
 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
	e1000e_clear_hw_cntrs_base(hw);

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	er32(PRC64);
	er32(PRC127);
	er32(PRC255);
	er32(PRC511);
	er32(PRC1023);
	er32(PRC1522);
	er32(PTC64);
	er32(PTC127);
	er32(PTC255);
	er32(PTC511);
	er32(PTC1023);
	er32(PTC1522);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	er32(ICRXPTC);
	er32(ICRXATC);
	er32(ICTXPTC);
	er32(ICTXATC);
	er32(ICTXQEC);
	er32(ICTXQMTC);
	er32(ICRXDMTC);
1928 1929
}

J
Jeff Kirsher 已提交
1930
static const struct e1000_mac_operations e82571_mac_ops = {
1931
	/* .check_mng_mode: mac type dependent */
1932
	/* .check_for_link: media type dependent */
1933
	.id_led_init		= e1000e_id_led_init,
1934 1935 1936
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
	.get_bus_info		= e1000e_get_bus_info_pcie,
1937
	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1938
	/* .get_link_up_info: media type dependent */
1939
	/* .led_on: mac type dependent */
1940
	.led_off		= e1000e_led_off_generic,
1941
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1942 1943
	.write_vfta		= e1000_write_vfta_generic,
	.clear_vfta		= e1000_clear_vfta_82571,
1944 1945 1946 1947
	.reset_hw		= e1000_reset_hw_82571,
	.init_hw		= e1000_init_hw_82571,
	.setup_link		= e1000_setup_link_82571,
	/* .setup_physical_interface: media type dependent */
1948
	.setup_led		= e1000e_setup_led_generic,
1949
	.read_mac_addr		= e1000_read_mac_addr_82571,
1950 1951
};

J
Jeff Kirsher 已提交
1952
static const struct e1000_phy_operations e82_phy_ops_igp = {
1953
	.acquire		= e1000_get_hw_semaphore_82571,
1954
	.check_polarity		= e1000_check_polarity_igp,
1955
	.check_reset_block	= e1000e_check_reset_block_generic,
1956
	.commit			= NULL,
1957 1958 1959
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
	.get_cfg_done		= e1000_get_cfg_done_82571,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
1960 1961 1962 1963
	.get_info		= e1000e_get_phy_info_igp,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1964 1965
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1966
	.write_reg		= e1000e_write_phy_reg_igp,
B
Bruce Allan 已提交
1967
	.cfg_on_link_up      	= NULL,
1968 1969
};

J
Jeff Kirsher 已提交
1970
static const struct e1000_phy_operations e82_phy_ops_m88 = {
1971
	.acquire		= e1000_get_hw_semaphore_82571,
1972
	.check_polarity		= e1000_check_polarity_m88,
1973
	.check_reset_block	= e1000e_check_reset_block_generic,
1974
	.commit			= e1000e_phy_sw_reset,
1975 1976 1977
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1978 1979 1980 1981
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_m88,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1982 1983
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1984
	.write_reg		= e1000e_write_phy_reg_m88,
B
Bruce Allan 已提交
1985
	.cfg_on_link_up      	= NULL,
1986 1987
};

J
Jeff Kirsher 已提交
1988
static const struct e1000_phy_operations e82_phy_ops_bm = {
1989
	.acquire		= e1000_get_hw_semaphore_82571,
1990
	.check_polarity		= e1000_check_polarity_m88,
1991
	.check_reset_block	= e1000e_check_reset_block_generic,
1992
	.commit			= e1000e_phy_sw_reset,
1993 1994 1995
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1996 1997 1998 1999
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_bm2,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
2000 2001
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
2002
	.write_reg		= e1000e_write_phy_reg_bm2,
B
Bruce Allan 已提交
2003
	.cfg_on_link_up      	= NULL,
2004 2005
};

J
Jeff Kirsher 已提交
2006
static const struct e1000_nvm_operations e82571_nvm_ops = {
2007 2008 2009 2010
	.acquire		= e1000_acquire_nvm_82571,
	.read			= e1000e_read_nvm_eerd,
	.release		= e1000_release_nvm_82571,
	.update			= e1000_update_nvm_checksum_82571,
2011
	.valid_led_default	= e1000_valid_led_default_82571,
2012 2013
	.validate		= e1000_validate_nvm_checksum_82571,
	.write			= e1000_write_nvm_82571,
2014 2015
};

J
Jeff Kirsher 已提交
2016
const struct e1000_info e1000_82571_info = {
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	.mac			= e1000_82571,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_RESET_OVERWRITES_LAA /* errata */
				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
				  | FLAG_APME_CHECK_PORT_B,
2027 2028
	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
				  | FLAG2_DMA_BURST,
2029
	.pba			= 38,
2030
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
2031
	.get_variants		= e1000_get_variants_82571,
2032 2033 2034 2035 2036
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

J
Jeff Kirsher 已提交
2037
const struct e1000_info e1000_82572_info = {
2038 2039 2040 2041 2042 2043 2044
	.mac			= e1000_82572,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2045 2046
	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
				  | FLAG2_DMA_BURST,
2047
	.pba			= 38,
2048
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
2049
	.get_variants		= e1000_get_variants_82571,
2050 2051 2052 2053 2054
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

J
Jeff Kirsher 已提交
2055
const struct e1000_info e1000_82573_info = {
2056 2057 2058 2059 2060 2061 2062
	.mac			= e1000_82573,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_SWSM_ON_LOAD,
2063 2064
	.flags2			= FLAG2_DISABLE_ASPM_L1
				  | FLAG2_DISABLE_ASPM_L0S,
2065
	.pba			= 20,
2066
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
2067
	.get_variants		= e1000_get_variants_82571,
2068 2069
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_m88,
2070
	.nvm_ops		= &e82571_nvm_ops,
2071 2072
};

J
Jeff Kirsher 已提交
2073
const struct e1000_info e1000_82574_info = {
2074 2075 2076 2077 2078 2079 2080 2081 2082
	.mac			= e1000_82574,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_MSIX
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2083
	.flags2			  = FLAG2_CHECK_PHY_HANG
2084 2085
				  | FLAG2_DISABLE_ASPM_L0S
				  | FLAG2_NO_DISABLE_RX,
2086
	.pba			= 32,
2087
	.max_hw_frame_size	= DEFAULT_JUMBO,
2088 2089 2090 2091 2092 2093
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};

J
Jeff Kirsher 已提交
2094
const struct e1000_info e1000_82583_info = {
2095 2096 2097 2098 2099 2100
	.mac			= e1000_82583,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
2101
				  | FLAG_HAS_JUMBO_FRAMES
2102
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2103 2104
	.flags2			= FLAG2_DISABLE_ASPM_L0S
				  | FLAG2_NO_DISABLE_RX,
2105
	.pba			= 32,
2106
	.max_hw_frame_size	= DEFAULT_JUMBO,
2107 2108 2109 2110 2111 2112
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};