rc-main.c 31.4 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15
#include <media/rc-core.h>
16 17
#include <linux/spinlock.h>
#include <linux/delay.h>
18
#include <linux/input.h>
19
#include <linux/leds.h>
20
#include <linux/slab.h>
21
#include <linux/device.h>
22
#include <linux/module.h>
23
#include "rc-core-priv.h"
24

25 26 27
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
28

29 30 31
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

32
/* Used to keep track of known keymaps */
33 34
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
35
static struct led_trigger *led_feedback;
36

37
static struct rc_map_list *seek_rc_map(const char *name)
38
{
39
	struct rc_map_list *map = NULL;
40 41 42 43 44 45 46 47 48 49 50 51 52

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

53
struct rc_map *rc_map_get(const char *name)
54 55
{

56
	struct rc_map_list *map;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

	map = seek_rc_map(name);
#ifdef MODULE
	if (!map) {
		int rc = request_module(name);
		if (rc < 0) {
			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
		printk(KERN_ERR "IR keymap %s not found\n", name);
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
80
EXPORT_SYMBOL_GPL(rc_map_get);
81

82
int rc_map_register(struct rc_map_list *map)
83 84 85 86 87 88
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
89
EXPORT_SYMBOL_GPL(rc_map_register);
90

91
void rc_map_unregister(struct rc_map_list *map)
92 93 94 95 96
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
97
EXPORT_SYMBOL_GPL(rc_map_unregister);
98 99


100
static struct rc_map_table empty[] = {
101 102 103
	{ 0x2a, KEY_COFFEE },
};

104
static struct rc_map_list empty_map = {
105 106 107
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
108
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
109 110 111 112
		.name    = RC_MAP_EMPTY,
	}
};

113 114
/**
 * ir_create_table() - initializes a scancode table
115
 * @rc_map:	the rc_map to initialize
116
 * @name:	name to assign to the table
117
 * @rc_type:	ir type to assign to the new table
118 119 120
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
121
 * This routine will initialize the rc_map and will allocate
122
 * memory to hold at least the specified number of elements.
123
 */
124
static int ir_create_table(struct rc_map *rc_map,
125
			   const char *name, u64 rc_type, size_t size)
126
{
127 128
	rc_map->name = name;
	rc_map->rc_type = rc_type;
129 130
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
131 132
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
	if (!rc_map->scan)
133 134 135
		return -ENOMEM;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
136
		   rc_map->size, rc_map->alloc);
137 138 139 140 141
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
142
 * @rc_map:	the table whose mappings need to be freed
143 144 145 146
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
147
static void ir_free_table(struct rc_map *rc_map)
148
{
149 150 151
	rc_map->size = 0;
	kfree(rc_map->scan);
	rc_map->scan = NULL;
152 153
}

154
/**
155
 * ir_resize_table() - resizes a scancode table if necessary
156
 * @rc_map:	the rc_map to resize
157
 * @gfp_flags:	gfp flags to use when allocating memory
158
 * @return:	zero on success or a negative error code
159
 *
160
 * This routine will shrink the rc_map if it has lots of
161
 * unused entries and grow it if it is full.
162
 */
163
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
164
{
165
	unsigned int oldalloc = rc_map->alloc;
166
	unsigned int newalloc = oldalloc;
167 168
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
169

170
	if (rc_map->size == rc_map->len) {
171
		/* All entries in use -> grow keytable */
172
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
173
			return -ENOMEM;
174

175 176 177
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
178

179
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
180 181 182 183
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
184

185 186
	if (newalloc == oldalloc)
		return 0;
187

188
	newscan = kmalloc(newalloc, gfp_flags);
189 190 191 192
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
193

194
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
195 196
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
197
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
198 199
	kfree(oldscan);
	return 0;
200 201
}

202
/**
203
 * ir_update_mapping() - set a keycode in the scancode->keycode table
204
 * @dev:	the struct rc_dev device descriptor
205
 * @rc_map:	scancode table to be adjusted
206 207 208 209
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
210
 * This routine is used to update scancode->keycode mapping at given
211 212
 * position.
 */
213
static unsigned int ir_update_mapping(struct rc_dev *dev,
214
				      struct rc_map *rc_map,
215 216 217
				      unsigned int index,
				      unsigned int new_keycode)
{
218
	int old_keycode = rc_map->scan[index].keycode;
219 220 221 222 223
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
224 225 226
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
227
			(rc_map->len - index) * sizeof(struct rc_map_table));
228 229 230 231
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
232 233
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
234
		__set_bit(new_keycode, dev->input_dev->keybit);
235 236 237 238
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
239
		__clear_bit(old_keycode, dev->input_dev->keybit);
240
		/* ... but another scancode might use the same keycode */
241 242
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
243
				__set_bit(old_keycode, dev->input_dev->keybit);
244 245 246 247 248
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
249
		ir_resize_table(rc_map, GFP_ATOMIC);
250 251 252 253 254 255
	}

	return old_keycode;
}

/**
256
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
257
 * @dev:	the struct rc_dev device descriptor
258
 * @rc_map:	scancode table to be searched
259 260
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
261
 *		accommodate not yet present scancodes
262 263
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
264
 *
265
 * This routine is used to locate given scancode in rc_map.
266 267
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
268
 */
269
static unsigned int ir_establish_scancode(struct rc_dev *dev,
270
					  struct rc_map *rc_map,
271 272
					  unsigned int scancode,
					  bool resize)
273
{
274
	unsigned int i;
275 276 277 278 279 280

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
281 282
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
283
	 */
284 285
	if (dev->scanmask)
		scancode &= dev->scanmask;
286 287

	/* First check if we already have a mapping for this ir command */
288 289
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
290 291
			return i;

292
		/* Keytable is sorted from lowest to highest scancode */
293
		if (rc_map->scan[i].scancode >= scancode)
294 295
			break;
	}
296

297
	/* No previous mapping found, we might need to grow the table */
298 299
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
300 301
			return -1U;
	}
302

303
	/* i is the proper index to insert our new keycode */
304 305
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
306
			(rc_map->len - i) * sizeof(struct rc_map_table));
307 308 309
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
310

311
	return i;
312 313
}

314
/**
315
 * ir_setkeycode() - set a keycode in the scancode->keycode table
316
 * @idev:	the struct input_dev device descriptor
317
 * @scancode:	the desired scancode
318 319
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
320
 *
321
 * This routine is used to handle evdev EVIOCSKEY ioctl.
322
 */
323
static int ir_setkeycode(struct input_dev *idev,
324 325
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
326
{
327
	struct rc_dev *rdev = input_get_drvdata(idev);
328
	struct rc_map *rc_map = &rdev->rc_map;
329 330
	unsigned int index;
	unsigned int scancode;
331
	int retval = 0;
332
	unsigned long flags;
333

334
	spin_lock_irqsave(&rc_map->lock, flags);
335 336 337

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
338
		if (index >= rc_map->len) {
339 340 341 342 343 344 345 346
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

347 348
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
349 350 351 352 353
			retval = -ENOMEM;
			goto out;
		}
	}

354
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
355 356

out:
357
	spin_unlock_irqrestore(&rc_map->lock, flags);
358
	return retval;
359 360 361
}

/**
362
 * ir_setkeytable() - sets several entries in the scancode->keycode table
363
 * @dev:	the struct rc_dev device descriptor
364 365
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
366
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
367
 *
368
 * This routine is used to handle table initialization.
369
 */
370
static int ir_setkeytable(struct rc_dev *dev,
371
			  const struct rc_map *from)
372
{
373
	struct rc_map *rc_map = &dev->rc_map;
374 375 376
	unsigned int i, index;
	int rc;

377
	rc = ir_create_table(rc_map, from->name,
378
			     from->rc_type, from->size);
379 380 381 382
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
383
		   rc_map->size, rc_map->alloc);
384

385
	for (i = 0; i < from->size; i++) {
386
		index = ir_establish_scancode(dev, rc_map,
387
					      from->scan[i].scancode, false);
388
		if (index >= rc_map->len) {
389
			rc = -ENOMEM;
390
			break;
391 392
		}

393
		ir_update_mapping(dev, rc_map, index,
394
				  from->scan[i].keycode);
395
	}
396 397

	if (rc)
398
		ir_free_table(rc_map);
399

400
	return rc;
401 402
}

403 404
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
405
 * @rc_map:	the struct rc_map to search
406 407 408 409 410 411
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
412
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
413 414
					  unsigned int scancode)
{
415
	int start = 0;
416
	int end = rc_map->len - 1;
417
	int mid;
418 419 420

	while (start <= end) {
		mid = (start + end) / 2;
421
		if (rc_map->scan[mid].scancode < scancode)
422
			start = mid + 1;
423
		else if (rc_map->scan[mid].scancode > scancode)
424 425 426 427 428 429 430 431
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

432
/**
433
 * ir_getkeycode() - get a keycode from the scancode->keycode table
434
 * @idev:	the struct input_dev device descriptor
435
 * @scancode:	the desired scancode
436 437
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
438
 *
439
 * This routine is used to handle evdev EVIOCGKEY ioctl.
440
 */
441
static int ir_getkeycode(struct input_dev *idev,
442
			 struct input_keymap_entry *ke)
443
{
444
	struct rc_dev *rdev = input_get_drvdata(idev);
445
	struct rc_map *rc_map = &rdev->rc_map;
446
	struct rc_map_table *entry;
447 448 449 450
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
451

452
	spin_lock_irqsave(&rc_map->lock, flags);
453 454 455 456 457 458 459 460

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

461
		index = ir_lookup_by_scancode(rc_map, scancode);
462 463
	}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
481 482
		retval = -EINVAL;
		goto out;
483 484
	}

485 486
	retval = 0;

487
out:
488
	spin_unlock_irqrestore(&rc_map->lock, flags);
489
	return retval;
490 491 492
}

/**
493
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
494 495 496
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
497
 *
498 499 500
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
501
 */
502
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
503
{
504
	struct rc_map *rc_map = &dev->rc_map;
505 506 507 508
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

509
	spin_lock_irqsave(&rc_map->lock, flags);
510

511 512 513
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
514

515
	spin_unlock_irqrestore(&rc_map->lock, flags);
516

517 518
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
519
			   dev->input_name, scancode, keycode);
520

521
	return keycode;
522
}
523
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
524

525
/**
526
 * ir_do_keyup() - internal function to signal the release of a keypress
527
 * @dev:	the struct rc_dev descriptor of the device
528
 * @sync:	whether or not to call input_sync
529
 *
530 531
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
532
 */
533
static void ir_do_keyup(struct rc_dev *dev, bool sync)
534
{
535
	if (!dev->keypressed)
536 537
		return;

538 539
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
540
	led_trigger_event(led_feedback, LED_OFF);
541 542
	if (sync)
		input_sync(dev->input_dev);
543
	dev->keypressed = false;
544
}
545 546

/**
547
 * rc_keyup() - signals the release of a keypress
548
 * @dev:	the struct rc_dev descriptor of the device
549 550 551 552
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
553
void rc_keyup(struct rc_dev *dev)
554 555 556
{
	unsigned long flags;

557
	spin_lock_irqsave(&dev->keylock, flags);
558
	ir_do_keyup(dev, true);
559
	spin_unlock_irqrestore(&dev->keylock, flags);
560
}
561
EXPORT_SYMBOL_GPL(rc_keyup);
562 563 564

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
565
 * @cookie:	a pointer to the struct rc_dev for the device
566 567 568
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
569
 */
570
static void ir_timer_keyup(unsigned long cookie)
571
{
572
	struct rc_dev *dev = (struct rc_dev *)cookie;
573 574 575 576 577 578 579 580 581 582 583 584
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
585 586
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
587
		ir_do_keyup(dev, true);
588
	spin_unlock_irqrestore(&dev->keylock, flags);
589 590 591
}

/**
592
 * rc_repeat() - signals that a key is still pressed
593
 * @dev:	the struct rc_dev descriptor of the device
594 595 596 597 598
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
599
void rc_repeat(struct rc_dev *dev)
600 601
{
	unsigned long flags;
602

603
	spin_lock_irqsave(&dev->keylock, flags);
604

605
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
606
	input_sync(dev->input_dev);
607

608
	if (!dev->keypressed)
609
		goto out;
610

611 612
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
613 614

out:
615
	spin_unlock_irqrestore(&dev->keylock, flags);
616
}
617
EXPORT_SYMBOL_GPL(rc_repeat);
618 619

/**
620
 * ir_do_keydown() - internal function to process a keypress
621
 * @dev:	the struct rc_dev descriptor of the device
622 623 624
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
625
 *
626 627
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
628
 */
629
static void ir_do_keydown(struct rc_dev *dev, int scancode,
630
			  u32 keycode, u8 toggle)
631
{
632 633 634
	bool new_event = !dev->keypressed ||
			 dev->last_scancode != scancode ||
			 dev->last_toggle != toggle;
635

636 637
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
638

639
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
640

641 642 643 644 645 646 647 648 649 650 651 652
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

		IR_dprintk(1, "%s: key down event, "
			   "key 0x%04x, scancode 0x%04x\n",
			   dev->input_name, keycode, scancode);
		input_report_key(dev->input_dev, keycode, 1);
	}
653

654
	led_trigger_event(led_feedback, LED_FULL);
655
	input_sync(dev->input_dev);
656
}
657

658
/**
659
 * rc_keydown() - generates input event for a key press
660
 * @dev:	the struct rc_dev descriptor of the device
661 662 663 664
 * @scancode:   the scancode that we're seeking
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
665 666
 * This routine is used to signal that a key has been pressed on the
 * remote control.
667
 */
668
void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
669 670
{
	unsigned long flags;
671
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
672

673
	spin_lock_irqsave(&dev->keylock, flags);
674 675
	ir_do_keydown(dev, scancode, keycode, toggle);

676 677 678
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
679
	}
680
	spin_unlock_irqrestore(&dev->keylock, flags);
681
}
682
EXPORT_SYMBOL_GPL(rc_keydown);
683

684
/**
685
 * rc_keydown_notimeout() - generates input event for a key press without
686
 *                          an automatic keyup event at a later time
687
 * @dev:	the struct rc_dev descriptor of the device
688 689 690 691
 * @scancode:   the scancode that we're seeking
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
692
 * This routine is used to signal that a key has been pressed on the
693
 * remote control. The driver must manually call rc_keyup() at a later stage.
694
 */
695
void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
696 697
{
	unsigned long flags;
698
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
699

700
	spin_lock_irqsave(&dev->keylock, flags);
701
	ir_do_keydown(dev, scancode, keycode, toggle);
702
	spin_unlock_irqrestore(&dev->keylock, flags);
703
}
704
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
705

706 707 708 709 710 711 712 713
int rc_open(struct rc_dev *rdev)
{
	int rval = 0;

	if (!rdev)
		return -EINVAL;

	mutex_lock(&rdev->lock);
714
	if (!rdev->users++ && rdev->open != NULL)
715 716 717 718 719 720 721 722 723 724 725
		rval = rdev->open(rdev);

	if (rval)
		rdev->users--;

	mutex_unlock(&rdev->lock);

	return rval;
}
EXPORT_SYMBOL_GPL(rc_open);

726
static int ir_open(struct input_dev *idev)
727
{
728
	struct rc_dev *rdev = input_get_drvdata(idev);
729

730 731 732 733 734 735 736 737
	return rc_open(rdev);
}

void rc_close(struct rc_dev *rdev)
{
	if (rdev) {
		mutex_lock(&rdev->lock);

738
		 if (!--rdev->users && rdev->close != NULL)
739 740 741 742
			rdev->close(rdev);

		mutex_unlock(&rdev->lock);
	}
743
}
744
EXPORT_SYMBOL_GPL(rc_close);
745

746
static void ir_close(struct input_dev *idev)
747
{
748
	struct rc_dev *rdev = input_get_drvdata(idev);
749
	rc_close(rdev);
750 751
}

752
/* class for /sys/class/rc */
753
static char *rc_devnode(struct device *dev, umode_t *mode)
754 755 756 757
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

758
static struct class rc_class = {
759
	.name		= "rc",
760
	.devnode	= rc_devnode,
761 762
};

763 764 765 766 767
/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
768 769 770 771
static struct {
	u64	type;
	char	*name;
} proto_names[] = {
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	{ RC_BIT_NONE,		"none"		},
	{ RC_BIT_OTHER,		"other"		},
	{ RC_BIT_UNKNOWN,	"unknown"	},
	{ RC_BIT_RC5 |
	  RC_BIT_RC5X,		"rc-5"		},
	{ RC_BIT_NEC,		"nec"		},
	{ RC_BIT_RC6_0 |
	  RC_BIT_RC6_6A_20 |
	  RC_BIT_RC6_6A_24 |
	  RC_BIT_RC6_6A_32 |
	  RC_BIT_RC6_MCE,	"rc-6"		},
	{ RC_BIT_JVC,		"jvc"		},
	{ RC_BIT_SONY12 |
	  RC_BIT_SONY15 |
	  RC_BIT_SONY20,	"sony"		},
	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
	{ RC_BIT_SANYO,		"sanyo"		},
	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
	{ RC_BIT_LIRC,		"lirc"		},
791 792 793 794
};

/**
 * show_protocols() - shows the current IR protocol(s)
795
 * @device:	the device descriptor
796 797 798 799 800 801 802
 * @mattr:	the device attribute struct (unused)
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
 * it is trigged by reading /sys/class/rc/rc?/protocols.
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
803 804 805
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
806
 */
807
static ssize_t show_protocols(struct device *device,
808 809
			      struct device_attribute *mattr, char *buf)
{
810
	struct rc_dev *dev = to_rc_dev(device);
811 812 813 814 815
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
816
	if (!dev)
817 818
		return -EINVAL;

819 820
	mutex_lock(&dev->lock);

821 822
	enabled = dev->enabled_protocols;
	if (dev->driver_type == RC_DRIVER_SCANCODE)
823
		allowed = dev->allowed_protos;
824
	else if (dev->raw)
825
		allowed = ir_raw_get_allowed_protocols();
826
	else {
827
		mutex_unlock(&dev->lock);
828
		return -ENODEV;
829
	}
830 831 832 833 834 835 836 837 838 839

	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
		   (long long)allowed,
		   (long long)enabled);

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
840 841 842

		if (allowed & proto_names[i].type)
			allowed &= ~proto_names[i].type;
843 844 845 846 847
	}

	if (tmp != buf)
		tmp--;
	*tmp = '\n';
848 849 850

	mutex_unlock(&dev->lock);

851 852 853 854 855
	return tmp + 1 - buf;
}

/**
 * store_protocols() - changes the current IR protocol(s)
856
 * @device:	the device descriptor
857 858 859 860
 * @mattr:	the device attribute struct (unused)
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
861
 * This routine is for changing the IR protocol type.
862 863 864 865 866 867 868
 * It is trigged by writing to /sys/class/rc/rc?/protocols.
 * Writing "+proto" will add a protocol to the list of enabled protocols.
 * Writing "-proto" will remove a protocol from the list of enabled protocols.
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
 * is used, otherwise @len.
869 870 871
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
872
 */
873
static ssize_t store_protocols(struct device *device,
874 875 876 877
			       struct device_attribute *mattr,
			       const char *data,
			       size_t len)
{
878
	struct rc_dev *dev = to_rc_dev(device);
879 880 881 882 883
	bool enable, disable;
	const char *tmp;
	u64 type;
	u64 mask;
	int rc, i, count = 0;
884
	ssize_t ret;
885 886

	/* Device is being removed */
887
	if (!dev)
888 889
		return -EINVAL;

890 891
	mutex_lock(&dev->lock);

892
	if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) {
893
		IR_dprintk(1, "Protocol switching not supported\n");
894 895
		ret = -EINVAL;
		goto out;
896
	}
897
	type = dev->enabled_protocols;
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

916 917 918 919
		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
			if (!strcasecmp(tmp, proto_names[i].name)) {
				mask = proto_names[i].type;
				break;
920 921 922
			}
		}

923 924
		if (i == ARRAY_SIZE(proto_names)) {
			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
925 926
			ret = -EINVAL;
			goto out;
927 928 929 930
		}

		count++;

931 932 933 934 935 936 937 938 939 940
		if (enable)
			type |= mask;
		else if (disable)
			type &= ~mask;
		else
			type = mask;
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
941 942
		ret = -EINVAL;
		goto out;
943 944
	}

945
	if (dev->change_protocol) {
946
		rc = dev->change_protocol(dev, &type);
947 948 949
		if (rc < 0) {
			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
				   (long long)type);
950 951
			ret = -EINVAL;
			goto out;
952 953 954
		}
	}

955
	dev->enabled_protocols = type;
956 957 958
	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
		   (long long)type);

959 960 961 962 963
	ret = len;

out:
	mutex_unlock(&dev->lock);
	return ret;
964 965
}

966 967 968 969
static void rc_dev_release(struct device *device)
{
}

970 971 972 973 974 975 976 977 978
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
979
	struct rc_dev *dev = to_rc_dev(device);
980

981 982 983
	if (!dev || !dev->input_dev)
		return -ENODEV;

984 985
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
986 987
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
		   show_protocols, store_protocols);

static struct attribute *rc_dev_attrs[] = {
	&dev_attr_protocols.attr,
	NULL,
};

static struct attribute_group rc_dev_attr_grp = {
	.attrs	= rc_dev_attrs,
};

static const struct attribute_group *rc_dev_attr_groups[] = {
	&rc_dev_attr_grp,
	NULL
};

static struct device_type rc_dev_type = {
	.groups		= rc_dev_attr_groups,
1014
	.release	= rc_dev_release,
1015 1016 1017
	.uevent		= rc_dev_uevent,
};

1018
struct rc_dev *rc_allocate_device(void)
1019
{
1020
	struct rc_dev *dev;
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	dev->input_dev = input_allocate_device();
	if (!dev->input_dev) {
		kfree(dev);
		return NULL;
	}

1032 1033
	dev->input_dev->getkeycode = ir_getkeycode;
	dev->input_dev->setkeycode = ir_setkeycode;
1034 1035
	input_set_drvdata(dev->input_dev, dev);

1036
	spin_lock_init(&dev->rc_map.lock);
1037
	spin_lock_init(&dev->keylock);
1038
	mutex_init(&dev->lock);
1039
	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1040

1041
	dev->dev.type = &rc_dev_type;
1042
	dev->dev.class = &rc_class;
1043 1044 1045 1046 1047 1048 1049 1050
	device_initialize(&dev->dev);

	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1051
{
1052 1053 1054 1055
	if (!dev)
		return;

	if (dev->input_dev)
1056
		input_free_device(dev->input_dev);
1057 1058 1059 1060 1061

	put_device(&dev->dev);

	kfree(dev);
	module_put(THIS_MODULE);
1062 1063 1064 1065 1066
}
EXPORT_SYMBOL_GPL(rc_free_device);

int rc_register_device(struct rc_dev *dev)
{
1067
	static bool raw_init = false; /* raw decoders loaded? */
1068
	static atomic_t devno = ATOMIC_INIT(0);
1069
	struct rc_map *rc_map;
1070
	const char *path;
1071
	int rc;
1072

1073 1074
	if (!dev || !dev->map_name)
		return -EINVAL;
1075

1076
	rc_map = rc_map_get(dev->map_name);
1077
	if (!rc_map)
1078
		rc_map = rc_map_get(RC_MAP_EMPTY);
1079
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		return -EINVAL;

	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1091 1092 1093
	/*
	 * Take the lock here, as the device sysfs node will appear
	 * when device_add() is called, which may trigger an ir-keytable udev
1094 1095
	 * rule, which will in turn call show_protocols and access
	 * dev->enabled_protocols before it has been initialized.
1096 1097 1098
	 */
	mutex_lock(&dev->lock);

1099 1100 1101 1102 1103
	dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
	dev_set_name(&dev->dev, "rc%ld", dev->devno);
	dev_set_drvdata(&dev->dev, dev);
	rc = device_add(&dev->dev);
	if (rc)
1104
		goto out_unlock;
1105

1106
	rc = ir_setkeytable(dev, rc_map);
1107 1108 1109 1110 1111 1112 1113
	if (rc)
		goto out_dev;

	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;
1114 1115 1116 1117

	/* input_register_device can call ir_open, so unlock mutex here */
	mutex_unlock(&dev->lock);

1118
	rc = input_register_device(dev->input_dev);
1119 1120 1121

	mutex_lock(&dev->lock);

1122 1123
	if (rc)
		goto out_table;
1124

1125
	/*
L
Lucas De Marchi 已提交
1126
	 * Default delay of 250ms is too short for some protocols, especially
1127 1128 1129 1130 1131 1132
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

1133 1134 1135 1136 1137 1138 1139
	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

1140
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1141
	printk(KERN_INFO "%s: %s as %s\n",
1142 1143
		dev_name(&dev->dev),
		dev->input_name ? dev->input_name : "Unspecified device",
1144 1145 1146
		path ? path : "N/A");
	kfree(path);

1147
	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1148 1149 1150 1151 1152 1153
		/* Load raw decoders, if they aren't already */
		if (!raw_init) {
			IR_dprintk(1, "Loading raw decoders\n");
			ir_raw_init();
			raw_init = true;
		}
1154 1155 1156 1157 1158 1159
		rc = ir_raw_event_register(dev);
		if (rc < 0)
			goto out_input;
	}

	if (dev->change_protocol) {
1160 1161
		u64 rc_type = (1 << rc_map->rc_type);
		rc = dev->change_protocol(dev, &rc_type);
1162 1163
		if (rc < 0)
			goto out_raw;
1164
		dev->enabled_protocols = rc_type;
1165 1166
	}

1167 1168
	mutex_unlock(&dev->lock);

1169 1170 1171
	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
		   dev->devno,
		   dev->driver_name ? dev->driver_name : "unknown",
1172
		   rc_map->name ? rc_map->name : "unknown",
1173 1174
		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

1175
	return 0;
1176 1177 1178 1179 1180 1181 1182 1183

out_raw:
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);
out_input:
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;
out_table:
1184
	ir_free_table(&dev->rc_map);
1185 1186
out_dev:
	device_del(&dev->dev);
1187 1188
out_unlock:
	mutex_unlock(&dev->lock);
1189
	return rc;
1190
}
1191
EXPORT_SYMBOL_GPL(rc_register_device);
1192

1193
void rc_unregister_device(struct rc_dev *dev)
1194
{
1195 1196
	if (!dev)
		return;
1197

1198
	del_timer_sync(&dev->timer_keyup);
1199

1200 1201 1202
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

1203 1204 1205 1206
	/* Freeing the table should also call the stop callback */
	ir_free_table(&dev->rc_map);
	IR_dprintk(1, "Freed keycode table\n");

1207 1208 1209
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;

1210
	device_del(&dev->dev);
1211

1212
	rc_free_device(dev);
1213
}
1214

1215
EXPORT_SYMBOL_GPL(rc_unregister_device);
1216 1217 1218 1219 1220

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1221
static int __init rc_core_init(void)
1222
{
1223
	int rc = class_register(&rc_class);
1224
	if (rc) {
1225
		printk(KERN_ERR "rc_core: unable to register rc class\n");
1226 1227 1228
		return rc;
	}

1229
	led_trigger_register_simple("rc-feedback", &led_feedback);
1230
	rc_map_register(&empty_map);
1231 1232 1233 1234

	return 0;
}

1235
static void __exit rc_core_exit(void)
1236
{
1237
	class_unregister(&rc_class);
1238
	led_trigger_unregister_simple(led_feedback);
1239
	rc_map_unregister(&empty_map);
1240 1241
}

1242
subsys_initcall(rc_core_init);
1243
module_exit(rc_core_exit);
1244

1245 1246 1247
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1248 1249 1250

MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_LICENSE("GPL");