rc-main.c 30.9 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15
#include <media/rc-core.h>
16 17
#include <linux/spinlock.h>
#include <linux/delay.h>
18
#include <linux/input.h>
19
#include <linux/slab.h>
20
#include <linux/device.h>
21
#include <linux/module.h>
22
#include "rc-core-priv.h"
23

24 25 26
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
27

28 29 30
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

31
/* Used to keep track of known keymaps */
32 33 34
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);

35
static struct rc_map_list *seek_rc_map(const char *name)
36
{
37
	struct rc_map_list *map = NULL;
38 39 40 41 42 43 44 45 46 47 48 49 50

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

51
struct rc_map *rc_map_get(const char *name)
52 53
{

54
	struct rc_map_list *map;
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

	map = seek_rc_map(name);
#ifdef MODULE
	if (!map) {
		int rc = request_module(name);
		if (rc < 0) {
			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
		printk(KERN_ERR "IR keymap %s not found\n", name);
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
78
EXPORT_SYMBOL_GPL(rc_map_get);
79

80
int rc_map_register(struct rc_map_list *map)
81 82 83 84 85 86
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
87
EXPORT_SYMBOL_GPL(rc_map_register);
88

89
void rc_map_unregister(struct rc_map_list *map)
90 91 92 93 94
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
95
EXPORT_SYMBOL_GPL(rc_map_unregister);
96 97


98
static struct rc_map_table empty[] = {
99 100 101
	{ 0x2a, KEY_COFFEE },
};

102
static struct rc_map_list empty_map = {
103 104 105
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
106
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
107 108 109 110
		.name    = RC_MAP_EMPTY,
	}
};

111 112
/**
 * ir_create_table() - initializes a scancode table
113
 * @rc_map:	the rc_map to initialize
114
 * @name:	name to assign to the table
115
 * @rc_type:	ir type to assign to the new table
116 117 118
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
119
 * This routine will initialize the rc_map and will allocate
120
 * memory to hold at least the specified number of elements.
121
 */
122
static int ir_create_table(struct rc_map *rc_map,
123
			   const char *name, u64 rc_type, size_t size)
124
{
125 126
	rc_map->name = name;
	rc_map->rc_type = rc_type;
127 128
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
129 130
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
	if (!rc_map->scan)
131 132 133
		return -ENOMEM;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
134
		   rc_map->size, rc_map->alloc);
135 136 137 138 139
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
140
 * @rc_map:	the table whose mappings need to be freed
141 142 143 144
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
145
static void ir_free_table(struct rc_map *rc_map)
146
{
147 148 149
	rc_map->size = 0;
	kfree(rc_map->scan);
	rc_map->scan = NULL;
150 151
}

152
/**
153
 * ir_resize_table() - resizes a scancode table if necessary
154
 * @rc_map:	the rc_map to resize
155
 * @gfp_flags:	gfp flags to use when allocating memory
156
 * @return:	zero on success or a negative error code
157
 *
158
 * This routine will shrink the rc_map if it has lots of
159
 * unused entries and grow it if it is full.
160
 */
161
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
162
{
163
	unsigned int oldalloc = rc_map->alloc;
164
	unsigned int newalloc = oldalloc;
165 166
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
167

168
	if (rc_map->size == rc_map->len) {
169
		/* All entries in use -> grow keytable */
170
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
171
			return -ENOMEM;
172

173 174 175
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
176

177
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
178 179 180 181
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
182

183 184
	if (newalloc == oldalloc)
		return 0;
185

186
	newscan = kmalloc(newalloc, gfp_flags);
187 188 189 190
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
191

192
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
193 194
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
195
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
196 197
	kfree(oldscan);
	return 0;
198 199
}

200
/**
201
 * ir_update_mapping() - set a keycode in the scancode->keycode table
202
 * @dev:	the struct rc_dev device descriptor
203
 * @rc_map:	scancode table to be adjusted
204 205 206 207
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
208
 * This routine is used to update scancode->keycode mapping at given
209 210
 * position.
 */
211
static unsigned int ir_update_mapping(struct rc_dev *dev,
212
				      struct rc_map *rc_map,
213 214 215
				      unsigned int index,
				      unsigned int new_keycode)
{
216
	int old_keycode = rc_map->scan[index].keycode;
217 218 219 220 221
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
222 223 224
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
225
			(rc_map->len - index) * sizeof(struct rc_map_table));
226 227 228 229
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
230 231
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
232
		__set_bit(new_keycode, dev->input_dev->keybit);
233 234 235 236
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
237
		__clear_bit(old_keycode, dev->input_dev->keybit);
238
		/* ... but another scancode might use the same keycode */
239 240
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
241
				__set_bit(old_keycode, dev->input_dev->keybit);
242 243 244 245 246
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
247
		ir_resize_table(rc_map, GFP_ATOMIC);
248 249 250 251 252 253
	}

	return old_keycode;
}

/**
254
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
255
 * @dev:	the struct rc_dev device descriptor
256
 * @rc_map:	scancode table to be searched
257 258
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
259
 *		accommodate not yet present scancodes
260 261
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
262
 *
263
 * This routine is used to locate given scancode in rc_map.
264 265
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
266
 */
267
static unsigned int ir_establish_scancode(struct rc_dev *dev,
268
					  struct rc_map *rc_map,
269 270
					  unsigned int scancode,
					  bool resize)
271
{
272
	unsigned int i;
273 274 275 276 277 278

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
279 280
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
281
	 */
282 283
	if (dev->scanmask)
		scancode &= dev->scanmask;
284 285

	/* First check if we already have a mapping for this ir command */
286 287
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
288 289
			return i;

290
		/* Keytable is sorted from lowest to highest scancode */
291
		if (rc_map->scan[i].scancode >= scancode)
292 293
			break;
	}
294

295
	/* No previous mapping found, we might need to grow the table */
296 297
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
298 299
			return -1U;
	}
300

301
	/* i is the proper index to insert our new keycode */
302 303
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
304
			(rc_map->len - i) * sizeof(struct rc_map_table));
305 306 307
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
308

309
	return i;
310 311
}

312
/**
313
 * ir_setkeycode() - set a keycode in the scancode->keycode table
314
 * @idev:	the struct input_dev device descriptor
315
 * @scancode:	the desired scancode
316 317
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
318
 *
319
 * This routine is used to handle evdev EVIOCSKEY ioctl.
320
 */
321
static int ir_setkeycode(struct input_dev *idev,
322 323
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
324
{
325
	struct rc_dev *rdev = input_get_drvdata(idev);
326
	struct rc_map *rc_map = &rdev->rc_map;
327 328
	unsigned int index;
	unsigned int scancode;
329
	int retval = 0;
330
	unsigned long flags;
331

332
	spin_lock_irqsave(&rc_map->lock, flags);
333 334 335

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
336
		if (index >= rc_map->len) {
337 338 339 340 341 342 343 344
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

345 346
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
347 348 349 350 351
			retval = -ENOMEM;
			goto out;
		}
	}

352
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
353 354

out:
355
	spin_unlock_irqrestore(&rc_map->lock, flags);
356
	return retval;
357 358 359
}

/**
360
 * ir_setkeytable() - sets several entries in the scancode->keycode table
361
 * @dev:	the struct rc_dev device descriptor
362 363
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
364
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
365
 *
366
 * This routine is used to handle table initialization.
367
 */
368
static int ir_setkeytable(struct rc_dev *dev,
369
			  const struct rc_map *from)
370
{
371
	struct rc_map *rc_map = &dev->rc_map;
372 373 374
	unsigned int i, index;
	int rc;

375
	rc = ir_create_table(rc_map, from->name,
376
			     from->rc_type, from->size);
377 378 379 380
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
381
		   rc_map->size, rc_map->alloc);
382

383
	for (i = 0; i < from->size; i++) {
384
		index = ir_establish_scancode(dev, rc_map,
385
					      from->scan[i].scancode, false);
386
		if (index >= rc_map->len) {
387
			rc = -ENOMEM;
388
			break;
389 390
		}

391
		ir_update_mapping(dev, rc_map, index,
392
				  from->scan[i].keycode);
393
	}
394 395

	if (rc)
396
		ir_free_table(rc_map);
397

398
	return rc;
399 400
}

401 402
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
403
 * @rc_map:	the struct rc_map to search
404 405 406 407 408 409
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
410
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
411 412
					  unsigned int scancode)
{
413
	int start = 0;
414
	int end = rc_map->len - 1;
415
	int mid;
416 417 418

	while (start <= end) {
		mid = (start + end) / 2;
419
		if (rc_map->scan[mid].scancode < scancode)
420
			start = mid + 1;
421
		else if (rc_map->scan[mid].scancode > scancode)
422 423 424 425 426 427 428 429
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

430
/**
431
 * ir_getkeycode() - get a keycode from the scancode->keycode table
432
 * @idev:	the struct input_dev device descriptor
433
 * @scancode:	the desired scancode
434 435
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
436
 *
437
 * This routine is used to handle evdev EVIOCGKEY ioctl.
438
 */
439
static int ir_getkeycode(struct input_dev *idev,
440
			 struct input_keymap_entry *ke)
441
{
442
	struct rc_dev *rdev = input_get_drvdata(idev);
443
	struct rc_map *rc_map = &rdev->rc_map;
444
	struct rc_map_table *entry;
445 446 447 448
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
449

450
	spin_lock_irqsave(&rc_map->lock, flags);
451 452 453 454 455 456 457 458

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

459
		index = ir_lookup_by_scancode(rc_map, scancode);
460 461
	}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
479 480
		retval = -EINVAL;
		goto out;
481 482
	}

483 484
	retval = 0;

485
out:
486
	spin_unlock_irqrestore(&rc_map->lock, flags);
487
	return retval;
488 489 490
}

/**
491
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
492 493 494
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
495
 *
496 497 498
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
499
 */
500
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
501
{
502
	struct rc_map *rc_map = &dev->rc_map;
503 504 505 506
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

507
	spin_lock_irqsave(&rc_map->lock, flags);
508

509 510 511
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
512

513
	spin_unlock_irqrestore(&rc_map->lock, flags);
514

515 516
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
517
			   dev->input_name, scancode, keycode);
518

519
	return keycode;
520
}
521
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
522

523
/**
524
 * ir_do_keyup() - internal function to signal the release of a keypress
525
 * @dev:	the struct rc_dev descriptor of the device
526
 * @sync:	whether or not to call input_sync
527
 *
528 529
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
530
 */
531
static void ir_do_keyup(struct rc_dev *dev, bool sync)
532
{
533
	if (!dev->keypressed)
534 535
		return;

536 537
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
538 539
	if (sync)
		input_sync(dev->input_dev);
540
	dev->keypressed = false;
541
}
542 543

/**
544
 * rc_keyup() - signals the release of a keypress
545
 * @dev:	the struct rc_dev descriptor of the device
546 547 548 549
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
550
void rc_keyup(struct rc_dev *dev)
551 552 553
{
	unsigned long flags;

554
	spin_lock_irqsave(&dev->keylock, flags);
555
	ir_do_keyup(dev, true);
556
	spin_unlock_irqrestore(&dev->keylock, flags);
557
}
558
EXPORT_SYMBOL_GPL(rc_keyup);
559 560 561

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
562
 * @cookie:	a pointer to the struct rc_dev for the device
563 564 565
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
566
 */
567
static void ir_timer_keyup(unsigned long cookie)
568
{
569
	struct rc_dev *dev = (struct rc_dev *)cookie;
570 571 572 573 574 575 576 577 578 579 580 581
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
582 583
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
584
		ir_do_keyup(dev, true);
585
	spin_unlock_irqrestore(&dev->keylock, flags);
586 587 588
}

/**
589
 * rc_repeat() - signals that a key is still pressed
590
 * @dev:	the struct rc_dev descriptor of the device
591 592 593 594 595
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
596
void rc_repeat(struct rc_dev *dev)
597 598
{
	unsigned long flags;
599

600
	spin_lock_irqsave(&dev->keylock, flags);
601

602
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
603
	input_sync(dev->input_dev);
604

605
	if (!dev->keypressed)
606
		goto out;
607

608 609
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
610 611

out:
612
	spin_unlock_irqrestore(&dev->keylock, flags);
613
}
614
EXPORT_SYMBOL_GPL(rc_repeat);
615 616

/**
617
 * ir_do_keydown() - internal function to process a keypress
618
 * @dev:	the struct rc_dev descriptor of the device
619 620 621
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
622
 *
623 624
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
625
 */
626
static void ir_do_keydown(struct rc_dev *dev, int scancode,
627
			  u32 keycode, u8 toggle)
628
{
629 630 631
	bool new_event = !dev->keypressed ||
			 dev->last_scancode != scancode ||
			 dev->last_toggle != toggle;
632

633 634
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
635

636
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
637

638 639 640 641 642 643 644 645 646 647 648 649
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

		IR_dprintk(1, "%s: key down event, "
			   "key 0x%04x, scancode 0x%04x\n",
			   dev->input_name, keycode, scancode);
		input_report_key(dev->input_dev, keycode, 1);
	}
650

651
	input_sync(dev->input_dev);
652
}
653

654
/**
655
 * rc_keydown() - generates input event for a key press
656
 * @dev:	the struct rc_dev descriptor of the device
657 658 659 660
 * @scancode:   the scancode that we're seeking
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
661 662
 * This routine is used to signal that a key has been pressed on the
 * remote control.
663
 */
664
void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
665 666
{
	unsigned long flags;
667
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
668

669
	spin_lock_irqsave(&dev->keylock, flags);
670 671
	ir_do_keydown(dev, scancode, keycode, toggle);

672 673 674
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
675
	}
676
	spin_unlock_irqrestore(&dev->keylock, flags);
677
}
678
EXPORT_SYMBOL_GPL(rc_keydown);
679

680
/**
681
 * rc_keydown_notimeout() - generates input event for a key press without
682
 *                          an automatic keyup event at a later time
683
 * @dev:	the struct rc_dev descriptor of the device
684 685 686 687
 * @scancode:   the scancode that we're seeking
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
688
 * This routine is used to signal that a key has been pressed on the
689
 * remote control. The driver must manually call rc_keyup() at a later stage.
690
 */
691
void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
692 693
{
	unsigned long flags;
694
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
695

696
	spin_lock_irqsave(&dev->keylock, flags);
697
	ir_do_keydown(dev, scancode, keycode, toggle);
698
	spin_unlock_irqrestore(&dev->keylock, flags);
699
}
700
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
701

702
static int ir_open(struct input_dev *idev)
703
{
704
	struct rc_dev *rdev = input_get_drvdata(idev);
705

706
	return rdev->open(rdev);
707
}
708

709
static void ir_close(struct input_dev *idev)
710
{
711
	struct rc_dev *rdev = input_get_drvdata(idev);
712

713 714
	 if (rdev)
		rdev->close(rdev);
715 716
}

717
/* class for /sys/class/rc */
718
static char *ir_devnode(struct device *dev, umode_t *mode)
719 720 721 722 723 724 725 726 727
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

static struct class ir_input_class = {
	.name		= "rc",
	.devnode	= ir_devnode,
};

728 729 730 731 732
/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
733 734 735 736
static struct {
	u64	type;
	char	*name;
} proto_names[] = {
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	{ RC_BIT_NONE,		"none"		},
	{ RC_BIT_OTHER,		"other"		},
	{ RC_BIT_UNKNOWN,	"unknown"	},
	{ RC_BIT_RC5 |
	  RC_BIT_RC5X,		"rc-5"		},
	{ RC_BIT_NEC,		"nec"		},
	{ RC_BIT_RC6_0 |
	  RC_BIT_RC6_6A_20 |
	  RC_BIT_RC6_6A_24 |
	  RC_BIT_RC6_6A_32 |
	  RC_BIT_RC6_MCE,	"rc-6"		},
	{ RC_BIT_JVC,		"jvc"		},
	{ RC_BIT_SONY12 |
	  RC_BIT_SONY15 |
	  RC_BIT_SONY20,	"sony"		},
	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
	{ RC_BIT_SANYO,		"sanyo"		},
	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
	{ RC_BIT_LIRC,		"lirc"		},
756 757 758 759
};

/**
 * show_protocols() - shows the current IR protocol(s)
760
 * @device:	the device descriptor
761 762 763 764 765 766 767
 * @mattr:	the device attribute struct (unused)
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
 * it is trigged by reading /sys/class/rc/rc?/protocols.
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
768 769 770
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
771
 */
772
static ssize_t show_protocols(struct device *device,
773 774
			      struct device_attribute *mattr, char *buf)
{
775
	struct rc_dev *dev = to_rc_dev(device);
776 777 778 779 780
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
781
	if (!dev)
782 783
		return -EINVAL;

784 785
	mutex_lock(&dev->lock);

786
	if (dev->driver_type == RC_DRIVER_SCANCODE) {
787
		enabled = dev->rc_map.rc_type;
788
		allowed = dev->allowed_protos;
789
	} else if (dev->raw) {
790
		enabled = dev->raw->enabled_protocols;
791
		allowed = ir_raw_get_allowed_protocols();
792 793
	} else {
		mutex_unlock(&dev->lock);
794
		return -ENODEV;
795
	}
796 797 798 799 800 801 802 803 804 805

	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
		   (long long)allowed,
		   (long long)enabled);

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
806 807 808

		if (allowed & proto_names[i].type)
			allowed &= ~proto_names[i].type;
809 810 811 812 813
	}

	if (tmp != buf)
		tmp--;
	*tmp = '\n';
814 815 816

	mutex_unlock(&dev->lock);

817 818 819 820 821
	return tmp + 1 - buf;
}

/**
 * store_protocols() - changes the current IR protocol(s)
822
 * @device:	the device descriptor
823 824 825 826
 * @mattr:	the device attribute struct (unused)
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
827
 * This routine is for changing the IR protocol type.
828 829 830 831 832 833 834
 * It is trigged by writing to /sys/class/rc/rc?/protocols.
 * Writing "+proto" will add a protocol to the list of enabled protocols.
 * Writing "-proto" will remove a protocol from the list of enabled protocols.
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
 * is used, otherwise @len.
835 836 837
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
838
 */
839
static ssize_t store_protocols(struct device *device,
840 841 842 843
			       struct device_attribute *mattr,
			       const char *data,
			       size_t len)
{
844
	struct rc_dev *dev = to_rc_dev(device);
845 846 847 848 849 850
	bool enable, disable;
	const char *tmp;
	u64 type;
	u64 mask;
	int rc, i, count = 0;
	unsigned long flags;
851
	ssize_t ret;
852 853

	/* Device is being removed */
854
	if (!dev)
855 856
		return -EINVAL;

857 858
	mutex_lock(&dev->lock);

859
	if (dev->driver_type == RC_DRIVER_SCANCODE)
860
		type = dev->rc_map.rc_type;
861 862
	else if (dev->raw)
		type = dev->raw->enabled_protocols;
863 864
	else {
		IR_dprintk(1, "Protocol switching not supported\n");
865 866
		ret = -EINVAL;
		goto out;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	}

	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

886 887 888 889
		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
			if (!strcasecmp(tmp, proto_names[i].name)) {
				mask = proto_names[i].type;
				break;
890 891 892
			}
		}

893 894
		if (i == ARRAY_SIZE(proto_names)) {
			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
895 896
			ret = -EINVAL;
			goto out;
897 898 899 900
		}

		count++;

901 902 903 904 905 906 907 908 909 910
		if (enable)
			type |= mask;
		else if (disable)
			type &= ~mask;
		else
			type = mask;
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
911 912
		ret = -EINVAL;
		goto out;
913 914
	}

915
	if (dev->change_protocol) {
916
		rc = dev->change_protocol(dev, &type);
917 918 919
		if (rc < 0) {
			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
				   (long long)type);
920 921
			ret = -EINVAL;
			goto out;
922 923 924
		}
	}

925
	if (dev->driver_type == RC_DRIVER_SCANCODE) {
926 927 928
		spin_lock_irqsave(&dev->rc_map.lock, flags);
		dev->rc_map.rc_type = type;
		spin_unlock_irqrestore(&dev->rc_map.lock, flags);
929
	} else {
930
		dev->raw->enabled_protocols = type;
931 932 933 934 935
	}

	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
		   (long long)type);

936 937 938 939 940
	ret = len;

out:
	mutex_unlock(&dev->lock);
	return ret;
941 942
}

943 944 945 946
static void rc_dev_release(struct device *device)
{
}

947 948 949 950 951 952 953 954 955
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
956
	struct rc_dev *dev = to_rc_dev(device);
957

958 959 960
	if (!dev || !dev->input_dev)
		return -ENODEV;

961 962
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
963 964
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
		   show_protocols, store_protocols);

static struct attribute *rc_dev_attrs[] = {
	&dev_attr_protocols.attr,
	NULL,
};

static struct attribute_group rc_dev_attr_grp = {
	.attrs	= rc_dev_attrs,
};

static const struct attribute_group *rc_dev_attr_groups[] = {
	&rc_dev_attr_grp,
	NULL
};

static struct device_type rc_dev_type = {
	.groups		= rc_dev_attr_groups,
991
	.release	= rc_dev_release,
992 993 994
	.uevent		= rc_dev_uevent,
};

995
struct rc_dev *rc_allocate_device(void)
996
{
997
	struct rc_dev *dev;
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	dev->input_dev = input_allocate_device();
	if (!dev->input_dev) {
		kfree(dev);
		return NULL;
	}

1009 1010
	dev->input_dev->getkeycode = ir_getkeycode;
	dev->input_dev->setkeycode = ir_setkeycode;
1011 1012
	input_set_drvdata(dev->input_dev, dev);

1013
	spin_lock_init(&dev->rc_map.lock);
1014
	spin_lock_init(&dev->keylock);
1015
	mutex_init(&dev->lock);
1016
	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	dev->dev.type = &rc_dev_type;
	dev->dev.class = &ir_input_class;
	device_initialize(&dev->dev);

	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1028
{
1029 1030 1031 1032
	if (!dev)
		return;

	if (dev->input_dev)
1033
		input_free_device(dev->input_dev);
1034 1035 1036 1037 1038

	put_device(&dev->dev);

	kfree(dev);
	module_put(THIS_MODULE);
1039 1040 1041 1042 1043
}
EXPORT_SYMBOL_GPL(rc_free_device);

int rc_register_device(struct rc_dev *dev)
{
1044
	static bool raw_init = false; /* raw decoders loaded? */
1045
	static atomic_t devno = ATOMIC_INIT(0);
1046
	struct rc_map *rc_map;
1047
	const char *path;
1048
	int rc;
1049

1050 1051
	if (!dev || !dev->map_name)
		return -EINVAL;
1052

1053
	rc_map = rc_map_get(dev->map_name);
1054
	if (!rc_map)
1055
		rc_map = rc_map_get(RC_MAP_EMPTY);
1056
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		return -EINVAL;

	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1068 1069 1070 1071 1072 1073 1074 1075 1076
	/*
	 * Take the lock here, as the device sysfs node will appear
	 * when device_add() is called, which may trigger an ir-keytable udev
	 * rule, which will in turn call show_protocols and access either
	 * dev->rc_map.rc_type or dev->raw->enabled_protocols before it has
	 * been initialized.
	 */
	mutex_lock(&dev->lock);

1077 1078 1079 1080 1081
	dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
	dev_set_name(&dev->dev, "rc%ld", dev->devno);
	dev_set_drvdata(&dev->dev, dev);
	rc = device_add(&dev->dev);
	if (rc)
1082
		goto out_unlock;
1083

1084
	rc = ir_setkeytable(dev, rc_map);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	if (rc)
		goto out_dev;

	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;
	rc = input_register_device(dev->input_dev);
	if (rc)
		goto out_table;
1095

1096
	/*
L
Lucas De Marchi 已提交
1097
	 * Default delay of 250ms is too short for some protocols, especially
1098 1099 1100 1101 1102 1103
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

1104 1105 1106 1107 1108 1109 1110
	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

1111
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1112
	printk(KERN_INFO "%s: %s as %s\n",
1113 1114
		dev_name(&dev->dev),
		dev->input_name ? dev->input_name : "Unspecified device",
1115 1116 1117
		path ? path : "N/A");
	kfree(path);

1118
	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1119 1120 1121 1122 1123 1124
		/* Load raw decoders, if they aren't already */
		if (!raw_init) {
			IR_dprintk(1, "Loading raw decoders\n");
			ir_raw_init();
			raw_init = true;
		}
1125 1126 1127 1128 1129 1130
		rc = ir_raw_event_register(dev);
		if (rc < 0)
			goto out_input;
	}

	if (dev->change_protocol) {
1131 1132
		u64 rc_type = (1 << rc_map->rc_type);
		rc = dev->change_protocol(dev, &rc_type);
1133 1134 1135 1136
		if (rc < 0)
			goto out_raw;
	}

1137 1138
	mutex_unlock(&dev->lock);

1139 1140 1141
	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
		   dev->devno,
		   dev->driver_name ? dev->driver_name : "unknown",
1142
		   rc_map->name ? rc_map->name : "unknown",
1143 1144
		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

1145
	return 0;
1146 1147 1148 1149 1150 1151 1152 1153

out_raw:
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);
out_input:
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;
out_table:
1154
	ir_free_table(&dev->rc_map);
1155 1156
out_dev:
	device_del(&dev->dev);
1157 1158
out_unlock:
	mutex_unlock(&dev->lock);
1159
	return rc;
1160
}
1161
EXPORT_SYMBOL_GPL(rc_register_device);
1162

1163
void rc_unregister_device(struct rc_dev *dev)
1164
{
1165 1166
	if (!dev)
		return;
1167

1168
	del_timer_sync(&dev->timer_keyup);
1169

1170 1171 1172
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

1173 1174 1175 1176
	/* Freeing the table should also call the stop callback */
	ir_free_table(&dev->rc_map);
	IR_dprintk(1, "Freed keycode table\n");

1177 1178 1179
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;

1180
	device_del(&dev->dev);
1181

1182
	rc_free_device(dev);
1183
}
1184

1185
EXPORT_SYMBOL_GPL(rc_unregister_device);
1186 1187 1188 1189 1190

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1191
static int __init rc_core_init(void)
1192 1193 1194
{
	int rc = class_register(&ir_input_class);
	if (rc) {
1195
		printk(KERN_ERR "rc_core: unable to register rc class\n");
1196 1197 1198
		return rc;
	}

1199
	rc_map_register(&empty_map);
1200 1201 1202 1203

	return 0;
}

1204
static void __exit rc_core_exit(void)
1205 1206
{
	class_unregister(&ir_input_class);
1207
	rc_map_unregister(&empty_map);
1208 1209
}

1210
subsys_initcall(rc_core_init);
1211
module_exit(rc_core_exit);
1212

1213 1214 1215
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1216 1217 1218

MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_LICENSE("GPL");