edma.c 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28

29
#include <linux/platform_data/edma.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

#include "dmaengine.h"
#include "virt-dma.h"

/*
 * This will go away when the private EDMA API is folded
 * into this driver and the platform device(s) are
 * instantiated in the arch code. We can only get away
 * with this simplification because DA8XX may not be built
 * in the same kernel image with other DaVinci parts. This
 * avoids having to sprinkle dmaengine driver platform devices
 * and data throughout all the existing board files.
 */
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
#define EDMA_CTLRS	2
#define EDMA_CHANS	32
#else
#define EDMA_CTLRS	1
#define EDMA_CHANS	64
#endif /* CONFIG_ARCH_DAVINCI_DA8XX */

51 52 53 54 55 56 57 58
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
59 60 61
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

62
struct edma_pset {
63 64
	u32				len;
	dma_addr_t			addr;
65 66 67
	struct edmacc_param		param;
};

68 69 70
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
71
	enum dma_transfer_direction	direction;
72
	int				cyclic;
73 74
	int				absync;
	int				pset_nr;
75
	struct edma_chan		*echan;
76
	int				processed;
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
98 99
	int				processed_stat;
	u32				sg_len;
100
	u32				residue;
101
	u32				residue_stat;
102

103
	struct edma_pset		pset[0];
104 105 106 107 108 109 110 111 112 113 114 115
};

struct edma_cc;

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	int				ch_num;
	bool				alloced;
	int				slot[EDMA_MAX_SLOTS];
116
	int				missed;
117
	struct dma_slave_config		cfg;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

struct edma_cc {
	int				ctlr;
	struct dma_device		dma_slave;
	struct edma_chan		slave_chans[EDMA_CHANS];
	int				num_slave_chans;
	int				dummy_slot;
};

static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
152
	struct virt_dma_desc *vdesc;
153
	struct edma_desc *edesc;
154 155 156 157 158 159 160 161 162 163 164 165 166 167
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

	/* If either we processed all psets or we're still not started */
	if (!echan->edesc ||
	    echan->edesc->pset_nr == echan->edesc->processed) {
		/* Get next vdesc */
		vdesc = vchan_next_desc(&echan->vchan);
		if (!vdesc) {
			echan->edesc = NULL;
			return;
		}
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
168 169
	}

170
	edesc = echan->edesc;
171

172 173 174
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
175
	edesc->sg_len = 0;
176 177

	/* Write descriptor PaRAM set(s) */
178 179
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
180
		edma_write_slot(echan->slot[i], &edesc->pset[j].param);
181
		edesc->sg_len += edesc->pset[j].len;
182
		dev_vdbg(echan->vchan.chan.device->dev,
183 184 185 186 187 188 189 190 191 192 193
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
194
			j, echan->ch_num, echan->slot[i],
195 196 197 198 199 200 201 202
			edesc->pset[j].param.opt,
			edesc->pset[j].param.src,
			edesc->pset[j].param.dst,
			edesc->pset[j].param.a_b_cnt,
			edesc->pset[j].param.ccnt,
			edesc->pset[j].param.src_dst_bidx,
			edesc->pset[j].param.src_dst_cidx,
			edesc->pset[j].param.link_bcntrld);
203
		/* Link to the previous slot if not the last set */
204
		if (i != (nslots - 1))
205 206 207
			edma_link(echan->slot[i], echan->slot[i+1]);
	}

208 209
	edesc->processed += nslots;

210 211 212 213 214
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
215 216 217 218 219 220 221
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
			edma_link(echan->slot[nslots-1], echan->slot[1]);
		else
			edma_link(echan->slot[nslots-1],
				  echan->ecc->dummy_slot);
	}
222

223
	if (edesc->processed <= MAX_NR_SG) {
224 225
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
226
		edma_start(echan->ch_num);
227 228 229 230
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
		edma_resume(echan->ch_num);
231
	}
232 233 234 235 236 237 238

	/*
	 * This happens due to setup times between intermediate transfers
	 * in long SG lists which have to be broken up into transfers of
	 * MAX_NR_SG
	 */
	if (echan->missed) {
239
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
240 241 242 243 244 245
		edma_clean_channel(echan->ch_num);
		edma_stop(echan->ch_num);
		edma_start(echan->ch_num);
		edma_trigger_channel(echan->ch_num);
		echan->missed = 0;
	}
246 247
}

248
static int edma_terminate_all(struct dma_chan *chan)
249
{
250
	struct edma_chan *echan = to_edma_chan(chan);
251 252 253 254 255 256 257 258 259 260 261
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
262
		int cyclic = echan->edesc->cyclic;
263 264 265 266 267 268 269

		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);

270 271
		echan->edesc = NULL;
		edma_stop(echan->ch_num);
272 273 274 275
		/* Move the cyclic channel back to default queue */
		if (cyclic)
			edma_assign_channel_eventq(echan->ch_num,
						   EVENTQ_DEFAULT);
276 277 278 279 280 281 282 283 284
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

285
static int edma_slave_config(struct dma_chan *chan,
286
	struct dma_slave_config *cfg)
287
{
288 289
	struct edma_chan *echan = to_edma_chan(chan);

290 291
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
292 293
		return -EINVAL;

294
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
295 296 297 298

	return 0;
}

299
static int edma_dma_pause(struct dma_chan *chan)
300
{
301 302
	struct edma_chan *echan = to_edma_chan(chan);

303
	/* Pause/Resume only allowed with cyclic mode */
304
	if (!echan->edesc || !echan->edesc->cyclic)
305 306 307 308 309 310
		return -EINVAL;

	edma_pause(echan->ch_num);
	return 0;
}

311
static int edma_dma_resume(struct dma_chan *chan)
312
{
313 314
	struct edma_chan *echan = to_edma_chan(chan);

315 316 317 318 319 320 321 322
	/* Pause/Resume only allowed with cyclic mode */
	if (!echan->edesc->cyclic)
		return -EINVAL;

	edma_resume(echan->ch_num);
	return 0;
}

323 324 325 326 327 328 329 330 331 332 333
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
334
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
335 336 337 338 339 340
	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
	enum dma_slave_buswidth dev_width, unsigned int dma_length,
	enum dma_transfer_direction direction)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
341
	struct edmacc_param *param = &epset->param;
342 343 344 345 346
	int acnt, bcnt, ccnt, cidx;
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

	acnt = dev_width;
347 348 349 350

	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

401 402
	epset->len = dma_length;

403 404 405 406 407
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
408
		epset->addr = src_addr;
409 410 411 412 413
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
414
		epset->addr = dst_addr;
415 416 417 418 419
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
420 421 422 423 424
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

425
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
426 427
	/* Configure A or AB synchronized transfers */
	if (absync)
428
		param->opt |= SYNCDIM;
429

430 431
	param->src = src_addr;
	param->dst = dst_addr;
432

433 434
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
435

436 437
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
438 439 440 441 442 443
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
444
	param->link_bcntrld = 0xffffffff;
445 446 447
	return absync;
}

448 449 450 451 452 453 454 455
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
456
	dma_addr_t src_addr = 0, dst_addr = 0;
457 458
	enum dma_slave_buswidth dev_width;
	u32 burst;
459
	struct scatterlist *sg;
460
	int i, nslots, ret;
461 462 463 464

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

465
	if (direction == DMA_DEV_TO_MEM) {
466
		src_addr = echan->cfg.src_addr;
467 468 469
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
470
		dst_addr = echan->cfg.dst_addr;
471 472 473
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
474
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
475 476 477 478
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
479
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
480 481 482 483 484 485
		return NULL;
	}

	edesc = kzalloc(sizeof(*edesc) + sg_len *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
486
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
487 488 489 490
		return NULL;
	}

	edesc->pset_nr = sg_len;
491
	edesc->residue = 0;
492
	edesc->direction = direction;
493
	edesc->echan = echan;
494

495 496 497 498
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
499 500 501 502 503
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
504
				kfree(edesc);
505 506
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
507 508 509
				return NULL;
			}
		}
510 511 512 513
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
514 515 516 517 518
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
519

520 521 522
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
523 524
		if (ret < 0) {
			kfree(edesc);
525
			return NULL;
526 527
		}

528
		edesc->absync = ret;
529
		edesc->residue += sg_dma_len(sg);
530 531 532 533

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
534
			edesc->pset[i].param.opt |= TCINTEN;
535

536 537
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
538
			edesc->pset[i].param.opt |= TCINTEN;
539
	}
540
	edesc->residue_stat = edesc->residue;
541 542 543 544

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

545
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	int ret;
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);

	if (unlikely(!echan || !len))
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

	edesc->pset_nr = 1;

	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
	if (ret < 0)
		return NULL;

	edesc->absync = ret;

	/*
	 * Enable intermediate transfer chaining to re-trigger channel
	 * on completion of every TR, and enable transfer-completion
	 * interrupt on completion of the whole transfer.
	 */
577 578
	edesc->pset[0].param.opt |= ITCCHEN;
	edesc->pset[0].param.opt |= TCINTEN;
579 580 581 582

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

583 584 585
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
586
	unsigned long tx_flags)
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
610
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
611 612 613 614
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
615
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + nslots *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
640
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
641 642 643 644 645
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
646
	edesc->residue = edesc->residue_stat = buf_len;
647
	edesc->direction = direction;
648
	edesc->echan = echan;
649

650 651
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
652 653 654 655 656 657 658 659

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
660
				kfree(edesc);
661 662
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
663 664 665 666 667 668 669 670 671 672 673 674 675
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
676 677
		if (ret < 0) {
			kfree(edesc);
678
			return NULL;
679
		}
680

681 682 683 684
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
685

686 687
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
688 689 690 691 692 693 694 695 696 697 698 699
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
700 701 702 703 704 705 706 707
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
708 709 710 711

		edesc->absync = ret;

		/*
712
		 * Enable period interrupt only if it is requested
713
		 */
714 715
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
716 717
	}

718 719 720
	/* Place the cyclic channel to highest priority queue */
	edma_assign_channel_eventq(echan->ch_num, EVENTQ_0);

721 722 723 724 725 726 727 728
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
{
	struct edma_chan *echan = data;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edma_desc *edesc;
729
	struct edmacc_param p;
730

731 732 733 734 735
	edesc = echan->edesc;

	/* Pause the channel for non-cyclic */
	if (!edesc || (edesc && !edesc->cyclic))
		edma_pause(echan->ch_num);
736 737

	switch (ch_status) {
738
	case EDMA_DMA_COMPLETE:
739
		spin_lock(&echan->vchan.lock);
740 741

		if (edesc) {
742 743 744
			if (edesc->cyclic) {
				vchan_cyclic_callback(&edesc->vdesc);
			} else if (edesc->processed == edesc->pset_nr) {
745
				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
746
				edesc->residue = 0;
747 748
				edma_stop(echan->ch_num);
				vchan_cookie_complete(&edesc->vdesc);
749
				edma_execute(echan);
750 751
			} else {
				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
752 753 754 755 756 757

				/* Update statistics for tx_status */
				edesc->residue -= edesc->sg_len;
				edesc->residue_stat = edesc->residue;
				edesc->processed_stat = edesc->processed;

758
				edma_execute(echan);
759
			}
760 761
		}

762
		spin_unlock(&echan->vchan.lock);
763 764

		break;
765
	case EDMA_DMA_CC_ERROR:
766
		spin_lock(&echan->vchan.lock);
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);

		/*
		 * Issue later based on missed flag which will be sure
		 * to happen as:
		 * (1) we finished transmitting an intermediate slot and
		 *     edma_execute is coming up.
		 * (2) or we finished current transfer and issue will
		 *     call edma_execute.
		 *
		 * Important note: issuing can be dangerous here and
		 * lead to some nasty recursion when we are in a NULL
		 * slot. So we avoid doing so and set the missed flag.
		 */
		if (p.a_b_cnt == 0 && p.ccnt == 0) {
			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
			echan->missed = 1;
		} else {
			/*
			 * The slot is already programmed but the event got
			 * missed, so its safe to issue it here.
			 */
			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
			edma_clean_channel(echan->ch_num);
			edma_stop(echan->ch_num);
			edma_start(echan->ch_num);
			edma_trigger_channel(echan->ch_num);
		}

797
		spin_unlock(&echan->vchan.lock);
798

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		break;
	default:
		break;
	}
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int ret;
	int a_ch_num;
	LIST_HEAD(descs);

	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
815
					echan, EVENTQ_DEFAULT);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832

	if (a_ch_num < 0) {
		ret = -ENODEV;
		goto err_no_chan;
	}

	if (a_ch_num != echan->ch_num) {
		dev_err(dev, "failed to allocate requested channel %u:%u\n",
			EDMA_CTLR(echan->ch_num),
			EDMA_CHAN_SLOT(echan->ch_num));
		ret = -ENODEV;
		goto err_wrong_chan;
	}

	echan->alloced = true;
	echan->slot[0] = echan->ch_num;

833
	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
834
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

	return 0;

err_wrong_chan:
	edma_free_channel(a_ch_num);
err_no_chan:
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int i;

	/* Terminate transfers */
	edma_stop(echan->ch_num);

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
		if (echan->slot[i] >= 0) {
			edma_free_slot(echan->slot[i]);
			echan->slot[i] = -1;
		}
	}

	/* Free EDMA channel */
	if (echan->alloced) {
		edma_free_channel(echan->ch_num);
		echan->alloced = false;
	}

870
	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
871 872 873 874 875 876 877 878 879 880 881 882 883 884
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
	pos = edma_get_position(edesc->echan->slot[0], dst);

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

933 934 935 936 937 938 939 940 941 942 943
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
944
	if (ret == DMA_COMPLETE || !txstate)
945 946 947
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
948
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
949
		txstate->residue = edma_residue(echan->edesc);
950 951
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

static void __init edma_chan_init(struct edma_cc *ecc,
				  struct dma_device *dma,
				  struct edma_chan *echans)
{
	int i, j;

	for (i = 0; i < EDMA_CHANS; i++) {
		struct edma_chan *echan = &echans[i];
		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		vchan_init(&echan->vchan, dma);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

977 978
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
979
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
980 981
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

982 983 984 985
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
			  struct device *dev)
{
	dma->device_prep_slave_sg = edma_prep_slave_sg;
986
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
987
	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
988 989 990 991
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
	dma->device_free_chan_resources = edma_free_chan_resources;
	dma->device_issue_pending = edma_issue_pending;
	dma->device_tx_status = edma_tx_status;
992 993 994 995
	dma->device_config = edma_slave_config;
	dma->device_pause = edma_dma_pause;
	dma->device_resume = edma_dma_resume;
	dma->device_terminate_all = edma_terminate_all;
996 997 998 999 1000 1001

	dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

1002 1003
	dma->dev = dev;

1004 1005 1006 1007 1008 1009
	/*
	 * code using dma memcpy must make sure alignment of
	 * length is at dma->copy_align boundary.
	 */
	dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;

1010 1011 1012
	INIT_LIST_HEAD(&dma->channels);
}

B
Bill Pemberton 已提交
1013
static int edma_probe(struct platform_device *pdev)
1014 1015 1016 1017
{
	struct edma_cc *ecc;
	int ret;

1018 1019 1020 1021
	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
	if (!ecc) {
		dev_err(&pdev->dev, "Can't allocate controller\n");
		return -ENOMEM;
	}

	ecc->ctlr = pdev->id;
	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
1032
		return ecc->dummy_slot;
1033 1034 1035 1036
	}

	dma_cap_zero(ecc->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
1037
	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
1038
	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);

	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);

	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret)
		goto err_reg1;

	platform_set_drvdata(pdev, ecc);

	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");

	return 0;

err_reg1:
	edma_free_slot(ecc->dummy_slot);
	return ret;
}

1059
static int edma_remove(struct platform_device *pdev)
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

	dma_async_device_unregister(&ecc->dma_slave);
	edma_free_slot(ecc->dummy_slot);

	return 0;
}

static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
1072
	.remove		= edma_remove,
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	.driver = {
		.name = "edma-dma-engine",
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		return ch_req == echan->ch_num;
	}
	return false;
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
1091
	return platform_driver_register(&edma_driver);
1092 1093 1094 1095 1096 1097 1098 1099 1100
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
1101
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1102 1103
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");