edma.c 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
26
#include <linux/of.h>
27

28
#include <linux/platform_data/edma.h>
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

#include "dmaengine.h"
#include "virt-dma.h"

/*
 * This will go away when the private EDMA API is folded
 * into this driver and the platform device(s) are
 * instantiated in the arch code. We can only get away
 * with this simplification because DA8XX may not be built
 * in the same kernel image with other DaVinci parts. This
 * avoids having to sprinkle dmaengine driver platform devices
 * and data throughout all the existing board files.
 */
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
#define EDMA_CTLRS	2
#define EDMA_CHANS	32
#else
#define EDMA_CTLRS	1
#define EDMA_CHANS	64
#endif /* CONFIG_ARCH_DAVINCI_DA8XX */

50 51 52 53 54 55 56 57
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
58 59 60
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

61
struct edma_pset {
62 63
	u32				len;
	dma_addr_t			addr;
64 65 66
	struct edmacc_param		param;
};

67 68 69
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
70
	enum dma_transfer_direction	direction;
71
	int				cyclic;
72 73
	int				absync;
	int				pset_nr;
74
	struct edma_chan		*echan;
75
	int				processed;
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
97 98
	int				processed_stat;
	u32				sg_len;
99
	u32				residue;
100
	u32				residue_stat;
101

102
	struct edma_pset		pset[0];
103 104 105 106 107 108 109 110 111 112 113 114
};

struct edma_cc;

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	int				ch_num;
	bool				alloced;
	int				slot[EDMA_MAX_SLOTS];
115
	int				missed;
116
	struct dma_slave_config		cfg;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
};

struct edma_cc {
	int				ctlr;
	struct dma_device		dma_slave;
	struct edma_chan		slave_chans[EDMA_CHANS];
	int				num_slave_chans;
	int				dummy_slot;
};

static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
151
	struct virt_dma_desc *vdesc;
152
	struct edma_desc *edesc;
153 154 155 156 157 158 159 160 161 162 163 164 165 166
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

	/* If either we processed all psets or we're still not started */
	if (!echan->edesc ||
	    echan->edesc->pset_nr == echan->edesc->processed) {
		/* Get next vdesc */
		vdesc = vchan_next_desc(&echan->vchan);
		if (!vdesc) {
			echan->edesc = NULL;
			return;
		}
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
167 168
	}

169
	edesc = echan->edesc;
170

171 172 173
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
174
	edesc->sg_len = 0;
175 176

	/* Write descriptor PaRAM set(s) */
177 178
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
179
		edma_write_slot(echan->slot[i], &edesc->pset[j].param);
180
		edesc->sg_len += edesc->pset[j].len;
181
		dev_vdbg(echan->vchan.chan.device->dev,
182 183 184 185 186 187 188 189 190 191 192
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
193
			j, echan->ch_num, echan->slot[i],
194 195 196 197 198 199 200 201
			edesc->pset[j].param.opt,
			edesc->pset[j].param.src,
			edesc->pset[j].param.dst,
			edesc->pset[j].param.a_b_cnt,
			edesc->pset[j].param.ccnt,
			edesc->pset[j].param.src_dst_bidx,
			edesc->pset[j].param.src_dst_cidx,
			edesc->pset[j].param.link_bcntrld);
202
		/* Link to the previous slot if not the last set */
203
		if (i != (nslots - 1))
204 205 206
			edma_link(echan->slot[i], echan->slot[i+1]);
	}

207 208
	edesc->processed += nslots;

209 210 211 212 213
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
214 215 216 217 218 219 220
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
			edma_link(echan->slot[nslots-1], echan->slot[1]);
		else
			edma_link(echan->slot[nslots-1],
				  echan->ecc->dummy_slot);
	}
221

222
	if (edesc->processed <= MAX_NR_SG) {
223 224
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
225
		edma_start(echan->ch_num);
226 227 228 229
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
		edma_resume(echan->ch_num);
230
	}
231 232 233 234 235 236 237

	/*
	 * This happens due to setup times between intermediate transfers
	 * in long SG lists which have to be broken up into transfers of
	 * MAX_NR_SG
	 */
	if (echan->missed) {
238
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
239 240 241 242 243 244
		edma_clean_channel(echan->ch_num);
		edma_stop(echan->ch_num);
		edma_start(echan->ch_num);
		edma_trigger_channel(echan->ch_num);
		echan->missed = 0;
	}
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
}

static int edma_terminate_all(struct edma_chan *echan)
{
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
260
		int cyclic = echan->edesc->cyclic;
261 262
		echan->edesc = NULL;
		edma_stop(echan->ch_num);
263 264 265 266
		/* Move the cyclic channel back to default queue */
		if (cyclic)
			edma_assign_channel_eventq(echan->ch_num,
						   EVENTQ_DEFAULT);
267 268 269 270 271 272 273 274 275 276
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

static int edma_slave_config(struct edma_chan *echan,
277
	struct dma_slave_config *cfg)
278
{
279 280
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
281 282
		return -EINVAL;

283
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
284 285 286 287

	return 0;
}

288 289 290
static int edma_dma_pause(struct edma_chan *echan)
{
	/* Pause/Resume only allowed with cyclic mode */
291
	if (!echan->edesc || !echan->edesc->cyclic)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
		return -EINVAL;

	edma_pause(echan->ch_num);
	return 0;
}

static int edma_dma_resume(struct edma_chan *echan)
{
	/* Pause/Resume only allowed with cyclic mode */
	if (!echan->edesc->cyclic)
		return -EINVAL;

	edma_resume(echan->ch_num);
	return 0;
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			unsigned long arg)
{
	int ret = 0;
	struct dma_slave_config *config;
	struct edma_chan *echan = to_edma_chan(chan);

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		edma_terminate_all(echan);
		break;
	case DMA_SLAVE_CONFIG:
		config = (struct dma_slave_config *)arg;
		ret = edma_slave_config(echan, config);
		break;
323 324 325 326 327 328 329 330
	case DMA_PAUSE:
		ret = edma_dma_pause(echan);
		break;

	case DMA_RESUME:
		ret = edma_dma_resume(echan);
		break;

331 332 333 334 335 336 337
	default:
		ret = -ENOSYS;
	}

	return ret;
}

338 339 340 341 342 343 344 345 346 347 348
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
349
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
350 351 352 353 354 355
	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
	enum dma_slave_buswidth dev_width, unsigned int dma_length,
	enum dma_transfer_direction direction)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
356
	struct edmacc_param *param = &epset->param;
357 358 359 360 361
	int acnt, bcnt, ccnt, cidx;
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

	acnt = dev_width;
362 363 364 365

	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

416 417
	epset->len = dma_length;

418 419 420 421 422
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
423
		epset->addr = src_addr;
424 425 426 427 428
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
429
		epset->addr = dst_addr;
430 431 432 433 434
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
435 436 437 438 439
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

440
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
441 442
	/* Configure A or AB synchronized transfers */
	if (absync)
443
		param->opt |= SYNCDIM;
444

445 446
	param->src = src_addr;
	param->dst = dst_addr;
447

448 449
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
450

451 452
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
453 454 455 456 457 458
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
459
	param->link_bcntrld = 0xffffffff;
460 461 462
	return absync;
}

463 464 465 466 467 468 469 470
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
471
	dma_addr_t src_addr = 0, dst_addr = 0;
472 473
	enum dma_slave_buswidth dev_width;
	u32 burst;
474
	struct scatterlist *sg;
475
	int i, nslots, ret;
476 477 478 479

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

480
	if (direction == DMA_DEV_TO_MEM) {
481
		src_addr = echan->cfg.src_addr;
482 483 484
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
485
		dst_addr = echan->cfg.dst_addr;
486 487 488
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
489
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
490 491 492 493
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
494
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
495 496 497 498 499 500
		return NULL;
	}

	edesc = kzalloc(sizeof(*edesc) + sg_len *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
501
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
502 503 504 505
		return NULL;
	}

	edesc->pset_nr = sg_len;
506
	edesc->residue = 0;
507
	edesc->direction = direction;
508
	edesc->echan = echan;
509

510 511 512 513
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
514 515 516 517 518
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
519
				kfree(edesc);
520 521
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
522 523 524
				return NULL;
			}
		}
525 526 527 528
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
529 530 531 532 533
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
534

535 536 537
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
538 539
		if (ret < 0) {
			kfree(edesc);
540
			return NULL;
541 542
		}

543
		edesc->absync = ret;
544
		edesc->residue += sg_dma_len(sg);
545 546 547 548

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
549
			edesc->pset[i].param.opt |= TCINTEN;
550

551 552
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
553
			edesc->pset[i].param.opt |= TCINTEN;
554
	}
555
	edesc->residue_stat = edesc->residue;
556 557 558 559

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	int ret;
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);

	if (unlikely(!echan || !len))
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

	edesc->pset_nr = 1;

	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
	if (ret < 0)
		return NULL;

	edesc->absync = ret;

	/*
	 * Enable intermediate transfer chaining to re-trigger channel
	 * on completion of every TR, and enable transfer-completion
	 * interrupt on completion of the whole transfer.
	 */
592 593
	edesc->pset[0].param.opt |= ITCCHEN;
	edesc->pset[0].param.opt |= TCINTEN;
594 595 596 597

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

598 599 600
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
601
	unsigned long tx_flags)
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
625
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
626 627 628 629
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
630
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + nslots *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
655
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
656 657 658 659 660
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
661
	edesc->residue = edesc->residue_stat = buf_len;
662
	edesc->direction = direction;
663
	edesc->echan = echan;
664

665 666
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
667 668 669 670 671 672 673 674

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
675
				kfree(edesc);
676 677
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
678 679 680 681 682 683 684 685 686 687 688 689 690
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
691 692
		if (ret < 0) {
			kfree(edesc);
693
			return NULL;
694
		}
695

696 697 698 699
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
700

701 702
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
703 704 705 706 707 708 709 710 711 712 713 714
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
715 716 717 718 719 720 721 722
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
723 724 725 726

		edesc->absync = ret;

		/*
727
		 * Enable period interrupt only if it is requested
728
		 */
729 730
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
731 732
	}

733 734 735
	/* Place the cyclic channel to highest priority queue */
	edma_assign_channel_eventq(echan->ch_num, EVENTQ_0);

736 737 738 739 740 741 742 743
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
{
	struct edma_chan *echan = data;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edma_desc *edesc;
744
	struct edmacc_param p;
745

746 747 748 749 750
	edesc = echan->edesc;

	/* Pause the channel for non-cyclic */
	if (!edesc || (edesc && !edesc->cyclic))
		edma_pause(echan->ch_num);
751 752

	switch (ch_status) {
753
	case EDMA_DMA_COMPLETE:
754
		spin_lock(&echan->vchan.lock);
755 756

		if (edesc) {
757 758 759
			if (edesc->cyclic) {
				vchan_cyclic_callback(&edesc->vdesc);
			} else if (edesc->processed == edesc->pset_nr) {
760
				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
761
				edesc->residue = 0;
762 763
				edma_stop(echan->ch_num);
				vchan_cookie_complete(&edesc->vdesc);
764
				edma_execute(echan);
765 766
			} else {
				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
767 768 769 770 771 772

				/* Update statistics for tx_status */
				edesc->residue -= edesc->sg_len;
				edesc->residue_stat = edesc->residue;
				edesc->processed_stat = edesc->processed;

773
				edma_execute(echan);
774
			}
775 776
		}

777
		spin_unlock(&echan->vchan.lock);
778 779

		break;
780
	case EDMA_DMA_CC_ERROR:
781
		spin_lock(&echan->vchan.lock);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);

		/*
		 * Issue later based on missed flag which will be sure
		 * to happen as:
		 * (1) we finished transmitting an intermediate slot and
		 *     edma_execute is coming up.
		 * (2) or we finished current transfer and issue will
		 *     call edma_execute.
		 *
		 * Important note: issuing can be dangerous here and
		 * lead to some nasty recursion when we are in a NULL
		 * slot. So we avoid doing so and set the missed flag.
		 */
		if (p.a_b_cnt == 0 && p.ccnt == 0) {
			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
			echan->missed = 1;
		} else {
			/*
			 * The slot is already programmed but the event got
			 * missed, so its safe to issue it here.
			 */
			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
			edma_clean_channel(echan->ch_num);
			edma_stop(echan->ch_num);
			edma_start(echan->ch_num);
			edma_trigger_channel(echan->ch_num);
		}

812
		spin_unlock(&echan->vchan.lock);
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		break;
	default:
		break;
	}
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int ret;
	int a_ch_num;
	LIST_HEAD(descs);

	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
					chan, EVENTQ_DEFAULT);

	if (a_ch_num < 0) {
		ret = -ENODEV;
		goto err_no_chan;
	}

	if (a_ch_num != echan->ch_num) {
		dev_err(dev, "failed to allocate requested channel %u:%u\n",
			EDMA_CTLR(echan->ch_num),
			EDMA_CHAN_SLOT(echan->ch_num));
		ret = -ENODEV;
		goto err_wrong_chan;
	}

	echan->alloced = true;
	echan->slot[0] = echan->ch_num;

848
	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
849
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884

	return 0;

err_wrong_chan:
	edma_free_channel(a_ch_num);
err_no_chan:
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int i;

	/* Terminate transfers */
	edma_stop(echan->ch_num);

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
		if (echan->slot[i] >= 0) {
			edma_free_slot(echan->slot[i]);
			echan->slot[i] = -1;
		}
	}

	/* Free EDMA channel */
	if (echan->alloced) {
		edma_free_channel(echan->ch_num);
		echan->alloced = false;
	}

885
	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
886 887 888 889 890 891 892 893 894 895 896 897 898 899
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
	pos = edma_get_position(edesc->echan->slot[0], dst);

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

948 949 950 951 952 953 954 955 956 957 958
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
959
	if (ret == DMA_COMPLETE || !txstate)
960 961 962
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
963
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
964
		txstate->residue = edma_residue(echan->edesc);
965 966
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

static void __init edma_chan_init(struct edma_cc *ecc,
				  struct dma_device *dma,
				  struct edma_chan *echans)
{
	int i, j;

	for (i = 0; i < EDMA_CHANS; i++) {
		struct edma_chan *echan = &echans[i];
		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		vchan_init(&echan->vchan, dma);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

992 993
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
994
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
995 996 997 998 999 1000
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

static int edma_dma_device_slave_caps(struct dma_chan *dchan,
				      struct dma_slave_caps *caps)
{
	caps->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1001
	caps->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1002 1003 1004
	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	caps->cmd_pause = true;
	caps->cmd_terminate = true;
1005
	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1006 1007 1008 1009

	return 0;
}

1010 1011 1012 1013
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
			  struct device *dev)
{
	dma->device_prep_slave_sg = edma_prep_slave_sg;
1014
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1015
	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1016 1017 1018 1019 1020
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
	dma->device_free_chan_resources = edma_free_chan_resources;
	dma->device_issue_pending = edma_issue_pending;
	dma->device_tx_status = edma_tx_status;
	dma->device_control = edma_control;
1021
	dma->device_slave_caps = edma_dma_device_slave_caps;
1022 1023
	dma->dev = dev;

1024 1025 1026 1027 1028 1029
	/*
	 * code using dma memcpy must make sure alignment of
	 * length is at dma->copy_align boundary.
	 */
	dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;

1030 1031 1032
	INIT_LIST_HEAD(&dma->channels);
}

B
Bill Pemberton 已提交
1033
static int edma_probe(struct platform_device *pdev)
1034 1035 1036 1037
{
	struct edma_cc *ecc;
	int ret;

1038 1039 1040 1041
	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
	if (!ecc) {
		dev_err(&pdev->dev, "Can't allocate controller\n");
		return -ENOMEM;
	}

	ecc->ctlr = pdev->id;
	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
1052
		return ecc->dummy_slot;
1053 1054 1055 1056
	}

	dma_cap_zero(ecc->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
1057
	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
1058
	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);

	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);

	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret)
		goto err_reg1;

	platform_set_drvdata(pdev, ecc);

	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");

	return 0;

err_reg1:
	edma_free_slot(ecc->dummy_slot);
	return ret;
}

1079
static int edma_remove(struct platform_device *pdev)
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

	dma_async_device_unregister(&ecc->dma_slave);
	edma_free_slot(ecc->dummy_slot);

	return 0;
}

static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
1092
	.remove		= edma_remove,
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	.driver = {
		.name = "edma-dma-engine",
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		return ch_req == echan->ch_num;
	}
	return false;
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
1111
	return platform_driver_register(&edma_driver);
1112 1113 1114 1115 1116 1117 1118 1119 1120
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
1121
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1122 1123
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");