cfq-iosched.c 76.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
16 17 18 19

/*
 * tunables
 */
20 21
/* max queue in one round of service */
static const int cfq_quantum = 4;
22
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 24 25 26
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
27
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
28
static int cfq_slice_async = HZ / 25;
29
static const int cfq_slice_async_rq = 2;
30
static int cfq_slice_idle = HZ / 125;
31 32
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
33

34
/*
35
 * offset from end of service tree
36
 */
37
#define CFQ_IDLE_DELAY		(HZ / 5)
38 39 40 41 42 43

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

44 45 46 47 48 49
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52

53 54
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
55
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
56

57 58
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
59

60
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61
static struct completion *ioc_gone;
62
static DEFINE_SPINLOCK(ioc_gone_lock);
63

64 65 66 67
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

68 69
#define sample_valid(samples)	((samples) > 80)

70 71 72 73 74 75 76 77 78
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
79
	unsigned count;
80
};
81
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

125 126 127 128
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
129
	unsigned long seeky_start;
130

131
	pid_t pid;
J
Jeff Moyer 已提交
132

133
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
134
	struct cfq_queue *new_cfqq;
135 136
};

137
/*
138
 * First index in the service_trees.
139 140 141 142 143 144 145 146
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	IDLE_WORKLOAD = -1,
	BE_WORKLOAD = 0,
	RT_WORKLOAD = 1
};

147 148 149 150 151 152 153 154 155 156
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};


157 158 159
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
160
struct cfq_data {
161
	struct request_queue *queue;
162 163

	/*
164 165 166
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
167
	struct cfq_rb_root service_trees[2][3];
168 169 170
	struct cfq_rb_root service_tree_idle;
	/*
	 * The priority currently being served
171
	 */
172
	enum wl_prio_t serving_prio;
173 174
	enum wl_type_t serving_type;
	unsigned long workload_expires;
175 176 177 178 179 180 181 182

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

183
	unsigned int busy_queues;
184
	unsigned int busy_queues_avg[2];
185

186
	int rq_in_driver[2];
187
	int sync_flight;
188 189 190 191 192

	/*
	 * queue-depth detection
	 */
	int rq_queued;
193
	int hw_tag;
194 195
	int hw_tag_samples;
	int rq_in_driver_peak;
L
Linus Torvalds 已提交
196

197 198 199 200
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
201
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
202

203 204 205
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

206 207 208 209 210
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
211

J
Jens Axboe 已提交
212
	sector_t last_position;
L
Linus Torvalds 已提交
213 214 215 216 217

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
218
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
219 220
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
221 222 223
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
224
	unsigned int cfq_latency;
225 226

	struct list_head cic_list;
L
Linus Torvalds 已提交
227

228 229 230 231
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
232 233

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
234 235
};

236
static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
237
					    enum wl_type_t type,
238 239 240 241 242
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
		return &cfqd->service_tree_idle;

243
	return &cfqd->service_trees[prio][type];
244 245
}

J
Jens Axboe 已提交
246
enum cfqq_state_flags {
247 248
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
249
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
250 251 252 253
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
254
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
255
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
256
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
J
Jens Axboe 已提交
257 258 259 260 261
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
262
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
263 264 265
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
266
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
267 268 269
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
270
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
271 272 273 274
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
275
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
276 277 278 279
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
280
CFQ_CFQQ_FNS(slice_new);
281
CFQ_CFQQ_FNS(sync);
282
CFQ_CFQQ_FNS(coop);
J
Jens Axboe 已提交
283 284
#undef CFQ_CFQQ_FNS

285 286 287 288 289
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

290 291 292 293 294 295 296 297 298
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

299 300 301 302 303 304 305 306 307 308

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

309 310 311 312 313
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
	if (wl == IDLE_WORKLOAD)
		return cfqd->service_tree_idle.count;

314 315 316
	return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
317 318
}

319
static void cfq_dispatch_insert(struct request_queue *, struct request *);
320
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
321
				       struct io_context *, gfp_t);
322
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
323 324
						struct io_context *);

325 326 327 328 329
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

330
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
331
					    bool is_sync)
332
{
333
	return cic->cfqq[is_sync];
334 335 336
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
337
				struct cfq_queue *cfqq, bool is_sync)
338
{
339
	cic->cfqq[is_sync] = cfqq;
340 341 342 343 344 345
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
346
static inline bool cfq_bio_sync(struct bio *bio)
347
{
348
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
349
}
L
Linus Torvalds 已提交
350

A
Andrew Morton 已提交
351 352 353 354
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
355
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
356
{
357 358
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
359
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
360
	}
A
Andrew Morton 已提交
361 362
}

363
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
364 365 366
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

367
	return !cfqd->busy_queues;
A
Andrew Morton 已提交
368 369
}

370 371 372 373 374
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
375
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
376
				 unsigned short prio)
377
{
378
	const int base_slice = cfqd->cfq_slice[sync];
379

380 381 382 383
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
384

385 386 387 388
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
389 390
}

391 392 393 394 395 396
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

397 398
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
399 400 401
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
402
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
403 404 405 406 407 408 409 410

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

411 412 413
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
434
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
435 436 437 438 439 440 441
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
442
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
443 444 445 446 447 448 449 450 451
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
452
/*
J
Jens Axboe 已提交
453
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
454
 * We choose the request that is closest to the head right now. Distance
455
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
456
 */
J
Jens Axboe 已提交
457
static struct request *
458
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
459
{
460
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
461
	unsigned long back_max;
462 463 464
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
465

J
Jens Axboe 已提交
466 467 468 469
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
470

J
Jens Axboe 已提交
471 472 473 474
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
475 476 477 478
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
479

480 481
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
498
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
499 500 501 502 503 504

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
505
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
506 507

	/* Found required data */
508 509 510 511 512 513

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
514
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
515
		if (d1 < d2)
J
Jens Axboe 已提交
516
			return rq1;
517
		else if (d2 < d1)
J
Jens Axboe 已提交
518
			return rq2;
519 520
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
521
				return rq1;
522
			else
J
Jens Axboe 已提交
523
				return rq2;
524
		}
L
Linus Torvalds 已提交
525

526
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
527
		return rq1;
528
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
529 530
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
531 532 533 534 535 536 537 538
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
539
			return rq1;
L
Linus Torvalds 已提交
540
		else
J
Jens Axboe 已提交
541
			return rq2;
L
Linus Torvalds 已提交
542 543 544
	}
}

545 546 547
/*
 * The below is leftmost cache rbtree addon
 */
548
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
549 550 551 552
{
	if (!root->left)
		root->left = rb_first(&root->rb);

553 554 555 556
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
557 558
}

559 560 561 562 563 564
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

565 566 567 568
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
569
	rb_erase_init(n, &root->rb);
570
	--root->count;
571 572
}

L
Linus Torvalds 已提交
573 574 575
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
576 577 578
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
579
{
580 581
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
582
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
583

584
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
585 586

	if (rbprev)
J
Jens Axboe 已提交
587
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
588

589
	if (rbnext)
J
Jens Axboe 已提交
590
		next = rb_entry_rq(rbnext);
591 592 593
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
594
			next = rb_entry_rq(rbnext);
595
	}
L
Linus Torvalds 已提交
596

597
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
598 599
}

600 601
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
602
{
603 604 605 606
	struct cfq_rb_root *service_tree;

	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);

607 608 609
	/*
	 * just an approximation, should be ok.
	 */
610 611
	return  service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
		   cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
612 613
}

614
/*
615
 * The cfqd->service_trees holds all pending cfq_queue's that have
616 617 618
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
619
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
620
				 bool add_front)
621
{
622 623
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
624
	unsigned long rb_key;
625
	struct cfq_rb_root *service_tree;
626
	int left;
627

628
	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
629 630
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
631
		parent = rb_last(&service_tree->rb);
632 633 634 635 636 637
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
638 639 640 641 642 643
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
644
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
645
		rb_key -= cfqq->slice_resid;
646
		cfqq->slice_resid = 0;
647 648
	} else {
		rb_key = -HZ;
649
		__cfqq = cfq_rb_first(service_tree);
650 651
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
652

653
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
654
		/*
655
		 * same position, nothing more to do
656
		 */
657 658
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
659
			return;
L
Linus Torvalds 已提交
660

661 662
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
663
	}
664

665
	left = 1;
666
	parent = NULL;
667 668
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
669
	while (*p) {
670
		struct rb_node **n;
671

672 673 674
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

675
		/*
676
		 * sort by key, that represents service time.
677
		 */
678
		if (time_before(rb_key, __cfqq->rb_key))
679
			n = &(*p)->rb_left;
680
		else {
681
			n = &(*p)->rb_right;
682
			left = 0;
683
		}
684 685

		p = n;
686 687
	}

688
	if (left)
689
		service_tree->left = &cfqq->rb_node;
690

691 692
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
693 694
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
695 696
}

697
static struct cfq_queue *
698 699 700
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
717
		if (sector > blk_rq_pos(cfqq->next_rq))
718
			n = &(*p)->rb_right;
719
		else if (sector < blk_rq_pos(cfqq->next_rq))
720 721 722 723
			n = &(*p)->rb_left;
		else
			break;
		p = n;
724
		cfqq = NULL;
725 726 727 728 729
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
730
	return cfqq;
731 732 733 734 735 736 737
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

738 739 740 741
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
742 743 744 745 746 747

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

748
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
749 750
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
751 752
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
753 754 755
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
756 757
}

758 759 760
/*
 * Update cfqq's position in the service tree.
 */
761
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
762 763 764 765
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
766
	if (cfq_cfqq_on_rr(cfqq)) {
767
		cfq_service_tree_add(cfqd, cfqq, 0);
768 769
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
770 771
}

L
Linus Torvalds 已提交
772 773
/*
 * add to busy list of queues for service, trying to be fair in ordering
774
 * the pending list according to last request service
L
Linus Torvalds 已提交
775
 */
J
Jens Axboe 已提交
776
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
777
{
778
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
779 780
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
781 782
	cfqd->busy_queues++;

783
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
784 785
}

786 787 788 789
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
790
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
791
{
792
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
793 794
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
795

796 797 798 799
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
800 801 802 803
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
804

L
Linus Torvalds 已提交
805 806 807 808 809 810 811
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
812
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
813
{
J
Jens Axboe 已提交
814
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
815
	struct cfq_data *cfqd = cfqq->cfqd;
J
Jens Axboe 已提交
816
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
817

818 819
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
820

J
Jens Axboe 已提交
821
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
822

823
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
824
		cfq_del_cfqq_rr(cfqd, cfqq);
L
Linus Torvalds 已提交
825 826
}

J
Jens Axboe 已提交
827
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
828
{
J
Jens Axboe 已提交
829
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
830
	struct cfq_data *cfqd = cfqq->cfqd;
831
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
832

833
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
834 835 836 837 838

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
839
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
840
		cfq_dispatch_insert(cfqd->queue, __alias);
841 842 843

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
844 845 846 847

	/*
	 * check if this request is a better next-serve candidate
	 */
848
	prev = cfqq->next_rq;
849
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
850 851 852 853 854 855 856

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

857
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
858 859
}

J
Jens Axboe 已提交
860
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
861
{
862 863
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
864
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
865 866
}

867 868
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
869
{
870
	struct task_struct *tsk = current;
871
	struct cfq_io_context *cic;
872
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
873

874
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
875 876 877 878
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
879 880 881
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

882
		return elv_rb_find(&cfqq->sort_list, sector);
883
	}
L
Linus Torvalds 已提交
884 885 886 887

	return NULL;
}

888
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
889
{
890
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
891

892
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
893
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
894
						rq_in_driver(cfqd));
895

896
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
897 898
}

899
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
900
{
901
	struct cfq_data *cfqd = q->elevator->elevator_data;
902
	const int sync = rq_is_sync(rq);
903

904 905
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
906
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
907
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
908 909
}

910
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
911
{
J
Jens Axboe 已提交
912
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
913

J
Jens Axboe 已提交
914 915
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
916

917
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
918
	cfq_del_rq_rb(rq);
919

920
	cfqq->cfqd->rq_queued--;
921 922 923 924
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
925 926
}

927 928
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
929 930 931 932
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

933
	__rq = cfq_find_rq_fmerge(cfqd, bio);
934
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
935 936
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
937 938 939 940 941
	}

	return ELEVATOR_NO_MERGE;
}

942
static void cfq_merged_request(struct request_queue *q, struct request *req,
943
			       int type)
L
Linus Torvalds 已提交
944
{
945
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
946
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
947

J
Jens Axboe 已提交
948
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
949 950 951 952
	}
}

static void
953
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
954 955
		    struct request *next)
{
956
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
957 958 959 960
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
961
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
962
		list_move(&rq->queuelist, &next->queuelist);
963 964
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
965

966 967
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
968
	cfq_remove_request(next);
969 970
}

971
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
972 973 974
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
975
	struct cfq_io_context *cic;
976 977 978
	struct cfq_queue *cfqq;

	/*
979
	 * Disallow merge of a sync bio into an async request.
980
	 */
981
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
982
		return false;
983 984

	/*
985 986
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
987
	 */
988
	cic = cfq_cic_lookup(cfqd, current->io_context);
989
	if (!cic)
990
		return false;
991

992
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
993
	return cfqq == RQ_CFQQ(rq);
994 995
}

J
Jens Axboe 已提交
996 997
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
998 999
{
	if (cfqq) {
1000
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1001
		cfqq->slice_end = 0;
1002 1003 1004
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1005
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1006 1007
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1008
		cfq_mark_cfqq_slice_new(cfqq);
1009 1010

		del_timer(&cfqd->idle_slice_timer);
1011 1012 1013 1014 1015
	}

	cfqd->active_queue = cfqq;
}

1016 1017 1018 1019 1020
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1021
		    bool timed_out)
1022
{
1023 1024
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1025 1026 1027 1028 1029 1030
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1031
	 * store what was left of this slice, if the queue idled/timed out
1032
	 */
1033
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1034
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1035 1036
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1037

1038
	cfq_resort_rr_list(cfqd, cfqq);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1049
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1050 1051 1052 1053
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1054
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1055 1056
}

1057 1058 1059 1060
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1061
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1062
{
1063
	struct cfq_rb_root *service_tree =
1064
		service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1065

1066 1067 1068
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1069 1070
}

1071 1072 1073
/*
 * Get and set a new active queue for service.
 */
1074 1075
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1076
{
1077
	if (!cfqq)
1078
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1079

1080
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1081
	return cfqq;
1082 1083
}

1084 1085 1086
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1087 1088
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1089
	else
1090
		return cfqd->last_position - blk_rq_pos(rq);
1091 1092
}

1093 1094
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1095

1096 1097
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1098
{
1099
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1100

1101 1102
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1103

1104
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1105 1106
}

1107 1108 1109
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1110
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1122
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1123 1124 1125 1126 1127 1128 1129 1130
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1131
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1132 1133
		return __cfqq;

1134
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1135 1136 1137 1138 1139 1140 1141
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1142
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1159
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1160
{
1161 1162
	struct cfq_queue *cfqq;

1163 1164 1165 1166 1167
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1168
	/*
1169 1170 1171
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1172
	 */
1173 1174 1175 1176
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1177 1178 1179 1180 1181
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1182 1183
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1184

1185 1186 1187 1188 1189 1190
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1191
	return cfqq;
J
Jens Axboe 已提交
1192 1193
}

1194 1195 1196 1197 1198 1199 1200
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1201
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1215 1216 1217
	if (!service_tree)
		service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);

1218 1219 1220 1221 1222 1223
	if (service_tree->count == 0)
		return true;

	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
}

J
Jens Axboe 已提交
1224
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1225
{
1226
	struct cfq_queue *cfqq = cfqd->active_queue;
1227
	struct cfq_io_context *cic;
1228 1229
	unsigned long sl;

1230
	/*
J
Jens Axboe 已提交
1231 1232 1233
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1234
	 */
J
Jens Axboe 已提交
1235
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1236 1237
		return;

1238
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1239
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1240 1241 1242 1243

	/*
	 * idle is disabled, either manually or by past process history
	 */
1244
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1245 1246
		return;

1247 1248 1249
	/*
	 * still requests with the driver, don't idle
	 */
1250
	if (rq_in_driver(cfqd))
1251 1252
		return;

1253 1254 1255
	/*
	 * task has exited, don't wait
	 */
1256
	cic = cfqd->active_cic;
1257
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1258 1259
		return;

1260 1261 1262 1263 1264 1265 1266 1267 1268
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1269
	cfq_mark_cfqq_wait_request(cfqq);
1270

J
Jens Axboe 已提交
1271
	sl = cfqd->cfq_slice_idle;
1272

1273
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1274
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1275 1276
}

1277 1278 1279
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1280
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1281
{
1282
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1283
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1284

1285 1286
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1287
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1288
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1289
	cfqq->dispatched++;
1290
	elv_dispatch_sort(q, rq);
1291 1292 1293

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1294 1295 1296 1297 1298
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1299
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1300
{
1301
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1302

J
Jens Axboe 已提交
1303
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1304
		return NULL;
1305 1306 1307

	cfq_mark_cfqq_fifo_expire(cfqq);

1308 1309
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1310

1311
	rq = rq_entry_fifo(cfqq->fifo.next);
1312
	if (time_before(jiffies, rq_fifo_time(rq)))
1313
		rq = NULL;
L
Linus Torvalds 已提交
1314

1315
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1316
	return rq;
L
Linus Torvalds 已提交
1317 1318
}

1319 1320 1321 1322
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1323

1324
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1325

1326
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1327 1328
}

J
Jeff Moyer 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1344
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1373 1374
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
				    bool prio_changed)
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;
		cur_best = SYNC_WORKLOAD;
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

static void choose_service_tree(struct cfq_data *cfqd)
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
		cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
}

1475
/*
1476 1477
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1478
 */
1479
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1480
{
1481
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1482

1483 1484 1485
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1486

1487
	/*
J
Jens Axboe 已提交
1488
	 * The active queue has run out of time, expire it and select new.
1489
	 */
1490
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1491
		goto expire;
L
Linus Torvalds 已提交
1492

1493
	/*
J
Jens Axboe 已提交
1494 1495
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1496
	 */
1497
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1498
		goto keep_queue;
J
Jens Axboe 已提交
1499

1500 1501 1502 1503
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1504
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1505
	 */
1506
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1507 1508 1509
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1510
		goto expire;
J
Jeff Moyer 已提交
1511
	}
1512

J
Jens Axboe 已提交
1513 1514 1515 1516 1517
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1518
	if (timer_pending(&cfqd->idle_slice_timer) ||
1519
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1520 1521
		cfqq = NULL;
		goto keep_queue;
1522 1523
	}

J
Jens Axboe 已提交
1524
expire:
1525
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1526
new_queue:
1527 1528 1529 1530 1531 1532 1533
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
		choose_service_tree(cfqd);

1534
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1535
keep_queue:
J
Jens Axboe 已提交
1536
	return cfqq;
1537 1538
}

J
Jens Axboe 已提交
1539
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
	return dispatched;
}

1552 1553 1554 1555
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1556
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1557
{
1558
	struct cfq_queue *cfqq;
1559
	int dispatched = 0;
1560
	int i, j;
1561
	for (i = 0; i < 2; ++i)
1562 1563 1564 1565
		for (j = 0; j < 3; ++j)
			while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
				!= NULL)
				dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1566

1567
	while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1568
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1569

1570
	cfq_slice_expired(cfqd, 0);
1571 1572 1573

	BUG_ON(cfqd->busy_queues);

1574
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1575 1576 1577
	return dispatched;
}

1578
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1579 1580
{
	unsigned int max_dispatch;
1581

1582 1583 1584
	/*
	 * Drain async requests before we start sync IO
	 */
1585
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1586
		return false;
1587

1588 1589 1590 1591
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1592
		return false;
1593 1594 1595 1596

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1597

1598 1599 1600 1601 1602 1603 1604
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1605
		if (cfq_class_idle(cfqq))
1606
			return false;
1607

1608 1609 1610 1611
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1612
			return false;
1613

1614
		/*
1615
		 * Sole queue user, allow bigger slice
1616
		 */
1617 1618 1619 1620 1621 1622 1623 1624
		max_dispatch *= 4;
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1625
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1626 1627
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1628

1629
		depth = last_sync / cfqd->cfq_slice[1];
1630 1631
		if (!depth && !cfqq->dispatched)
			depth = 1;
1632 1633
		if (depth < max_dispatch)
			max_dispatch = depth;
1634
	}
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1694 1695
		return 0;

1696
	/*
1697
	 * Dispatch a request from this cfqq, if it is allowed
1698
	 */
1699 1700 1701
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1702
	cfqq->slice_dispatch++;
1703
	cfq_clear_cfqq_must_dispatch(cfqq);
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1714 1715
	}

1716
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1717
	return 1;
L
Linus Torvalds 已提交
1718 1719 1720
}

/*
J
Jens Axboe 已提交
1721 1722
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1728 1729 1730
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1731 1732 1733 1734

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1735
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1736
	BUG_ON(rb_first(&cfqq->sort_list));
1737
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
J
Jens Axboe 已提交
1738
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1739

1740
	if (unlikely(cfqd->active_queue == cfqq)) {
1741
		__cfq_slice_expired(cfqd, cfqq, 0);
1742
		cfq_schedule_dispatch(cfqd);
1743
	}
1744

L
Linus Torvalds 已提交
1745 1746 1747
	kmem_cache_free(cfq_pool, cfqq);
}

1748 1749 1750
/*
 * Must always be called with the rcu_read_lock() held
 */
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1762
/*
1763
 * Call func for each cic attached to this ioc.
1764
 */
1765
static void
1766 1767
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1768
{
1769
	rcu_read_lock();
1770
	__call_for_each_cic(ioc, func);
1771
	rcu_read_unlock();
1772 1773 1774 1775 1776 1777 1778 1779 1780
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1781
	elv_ioc_count_dec(cfq_ioc_count);
1782

1783 1784 1785 1786 1787 1788 1789
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1790
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1791 1792 1793 1794 1795
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1796
}
1797

1798 1799 1800
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1811
	hlist_del_rcu(&cic->cic_list);
1812 1813
	spin_unlock_irqrestore(&ioc->lock, flags);

1814
	cfq_cic_free(cic);
1815 1816
}

1817 1818 1819 1820 1821
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1822 1823 1824
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1825 1826 1827 1828
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1829
	 */
1830
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1831 1832
}

1833
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1834
{
J
Jeff Moyer 已提交
1835 1836
	struct cfq_queue *__cfqq, *next;

1837
	if (unlikely(cfqq == cfqd->active_queue)) {
1838
		__cfq_slice_expired(cfqd, cfqq, 0);
1839
		cfq_schedule_dispatch(cfqd);
1840
	}
1841

J
Jeff Moyer 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1858 1859
	cfq_put_queue(cfqq);
}
1860

1861 1862 1863
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1864 1865
	struct io_context *ioc = cic->ioc;

1866
	list_del_init(&cic->queue_list);
1867 1868 1869 1870

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1871
	smp_wmb();
1872
	cic->dead_key = (unsigned long) cic->key;
1873 1874
	cic->key = NULL;

1875 1876 1877
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1878 1879 1880
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1881 1882
	}

1883 1884 1885
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1886
	}
1887 1888
}

1889 1890
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1891 1892 1893 1894
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1895
		struct request_queue *q = cfqd->queue;
1896
		unsigned long flags;
1897

1898
		spin_lock_irqsave(q->queue_lock, flags);
1899 1900 1901 1902 1903 1904 1905 1906 1907

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1908
		spin_unlock_irqrestore(q->queue_lock, flags);
1909
	}
L
Linus Torvalds 已提交
1910 1911
}

1912 1913 1914 1915
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1916
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1917
{
1918
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1919 1920
}

1921
static struct cfq_io_context *
A
Al Viro 已提交
1922
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1923
{
1924
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1925

1926 1927
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1928
	if (cic) {
1929
		cic->last_end_request = jiffies;
1930
		INIT_LIST_HEAD(&cic->queue_list);
1931
		INIT_HLIST_NODE(&cic->cic_list);
1932 1933
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
1934
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939
	}

	return cic;
}

1940
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1941 1942 1943 1944
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
1945
	if (!cfq_cfqq_prio_changed(cfqq))
1946 1947
		return;

1948
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1949
	switch (ioprio_class) {
1950 1951 1952 1953
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
1954
		 * no prio set, inherit CPU scheduling settings
1955 1956
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
1957
		cfqq->ioprio_class = task_nice_ioclass(tsk);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
1972 1973 1974 1975 1976 1977 1978 1979
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
1980
	cfq_clear_cfqq_prio_changed(cfqq);
1981 1982
}

J
Jens Axboe 已提交
1983
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1984
{
1985 1986
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
1987
	unsigned long flags;
1988

1989 1990 1991
	if (unlikely(!cfqd))
		return;

1992
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1993

1994
	cfqq = cic->cfqq[BLK_RW_ASYNC];
1995 1996
	if (cfqq) {
		struct cfq_queue *new_cfqq;
1997 1998
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
1999
		if (new_cfqq) {
2000
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2001 2002
			cfq_put_queue(cfqq);
		}
2003
	}
2004

2005
	cfqq = cic->cfqq[BLK_RW_SYNC];
2006 2007 2008
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2009
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2010 2011
}

2012
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2013
{
2014
	call_for_each_cic(ioc, changed_ioprio);
2015
	ioc->ioprio_changed = 0;
2016 2017
}

2018
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2019
			  pid_t pid, bool is_sync)
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2038
static struct cfq_queue *
2039
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2040
		     struct io_context *ioc, gfp_t gfp_mask)
2041 2042
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2043
	struct cfq_io_context *cic;
2044 2045

retry:
2046
	cic = cfq_cic_lookup(cfqd, ioc);
2047 2048
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2049

2050 2051 2052 2053 2054 2055
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2056 2057 2058 2059 2060
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2061
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2062
					gfp_mask | __GFP_ZERO,
2063
					cfqd->queue->node);
2064
			spin_lock_irq(cfqd->queue->queue_lock);
2065 2066
			if (new_cfqq)
				goto retry;
2067
		} else {
2068 2069 2070
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2071 2072
		}

2073 2074 2075 2076 2077 2078
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2079 2080 2081 2082 2083 2084 2085 2086
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2087 2088 2089
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2090
	switch (ioprio_class) {
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2102
static struct cfq_queue *
2103
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2104 2105
	      gfp_t gfp_mask)
{
2106 2107
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2108
	struct cfq_queue **async_cfqq = NULL;
2109 2110
	struct cfq_queue *cfqq = NULL;

2111 2112 2113 2114 2115
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2116
	if (!cfqq)
2117
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2118 2119 2120 2121

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2122
	if (!is_sync && !(*async_cfqq)) {
2123
		atomic_inc(&cfqq->ref);
2124
		*async_cfqq = cfqq;
2125 2126 2127 2128 2129 2130
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2131 2132 2133
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2134
static void
2135 2136
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2137
{
2138 2139
	unsigned long flags;

2140
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2141

2142 2143
	spin_lock_irqsave(&ioc->lock, flags);

2144
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2145

2146
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2147
	hlist_del_rcu(&cic->cic_list);
2148 2149 2150
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2151 2152
}

2153
static struct cfq_io_context *
2154
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2155 2156
{
	struct cfq_io_context *cic;
2157
	unsigned long flags;
2158
	void *k;
2159

2160 2161 2162
	if (unlikely(!ioc))
		return NULL;

2163 2164
	rcu_read_lock();

J
Jens Axboe 已提交
2165 2166 2167
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2168
	cic = rcu_dereference(ioc->ioc_data);
2169 2170
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2171
		return cic;
2172
	}
J
Jens Axboe 已提交
2173

2174 2175 2176 2177 2178
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2179 2180 2181
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2182
			cfq_drop_dead_cic(cfqd, ioc, cic);
2183
			rcu_read_lock();
2184
			continue;
2185
		}
2186

2187
		spin_lock_irqsave(&ioc->lock, flags);
2188
		rcu_assign_pointer(ioc->ioc_data, cic);
2189
		spin_unlock_irqrestore(&ioc->lock, flags);
2190 2191
		break;
	} while (1);
2192

2193
	return cic;
2194 2195
}

2196 2197 2198 2199 2200
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2201 2202
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2203
{
2204
	unsigned long flags;
2205
	int ret;
2206

2207 2208 2209 2210
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2211

2212 2213 2214
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2215 2216
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2217
		spin_unlock_irqrestore(&ioc->lock, flags);
2218

2219 2220 2221 2222 2223 2224 2225
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2226 2227
	}

2228 2229
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2230

2231
	return ret;
2232 2233
}

L
Linus Torvalds 已提交
2234 2235 2236
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2237
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2238 2239
 */
static struct cfq_io_context *
2240
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2241
{
2242
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2243 2244
	struct cfq_io_context *cic;

2245
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2246

2247
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2248 2249 2250
	if (!ioc)
		return NULL;

2251
	cic = cfq_cic_lookup(cfqd, ioc);
2252 2253
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2254

2255 2256 2257
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2258

2259 2260 2261
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2262
out:
2263 2264 2265 2266
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2267
	return cic;
2268 2269
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2270 2271 2272 2273 2274
err:
	put_io_context(ioc);
	return NULL;
}

2275 2276
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2277
{
2278 2279
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2280

2281 2282 2283 2284
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2285

2286
static void
2287
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2288
		       struct request *rq)
2289 2290 2291 2292
{
	sector_t sdist;
	u64 total;

2293
	if (!cfqq->last_request_pos)
2294
		sdist = 0;
2295 2296
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2297
	else
2298
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2299 2300 2301 2302 2303

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2304 2305
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2306
	else
2307
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2308

2309 2310 2311 2312 2313
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2327
}
L
Linus Torvalds 已提交
2328

2329 2330 2331 2332 2333 2334 2335 2336
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2337
	int old_idle, enable_idle;
2338

2339 2340 2341 2342
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2343 2344
		return;

2345
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2346

2347
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2348
	    (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
2349 2350
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2351
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2352 2353 2354
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2355 2356
	}

2357 2358 2359 2360 2361 2362 2363
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2364
}
L
Linus Torvalds 已提交
2365

2366 2367 2368 2369
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2370
static bool
2371
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2372
		   struct request *rq)
2373
{
J
Jens Axboe 已提交
2374
	struct cfq_queue *cfqq;
2375

J
Jens Axboe 已提交
2376 2377
	cfqq = cfqd->active_queue;
	if (!cfqq)
2378
		return false;
2379

J
Jens Axboe 已提交
2380
	if (cfq_slice_used(cfqq))
2381
		return true;
J
Jens Axboe 已提交
2382 2383

	if (cfq_class_idle(new_cfqq))
2384
		return false;
2385 2386

	if (cfq_class_idle(cfqq))
2387
		return true;
2388

2389 2390 2391 2392
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD
	    && new_cfqq->service_tree == cfqq->service_tree)
		return true;

2393 2394 2395 2396
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2397
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2398
		return true;
2399

2400 2401 2402 2403 2404
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2405
		return true;
2406

2407 2408 2409 2410
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2411
		return true;
2412

2413
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2414
		return false;
2415 2416 2417 2418 2419

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2420
	if (cfq_rq_close(cfqd, cfqq, rq))
2421
		return true;
2422

2423
	return false;
2424 2425 2426 2427 2428 2429 2430 2431
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2432
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2433
	cfq_slice_expired(cfqd, 1);
2434

2435 2436 2437 2438 2439
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2440 2441

	cfq_service_tree_add(cfqd, cfqq, 1);
2442

2443 2444
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2445 2446 2447
}

/*
J
Jens Axboe 已提交
2448
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2449 2450 2451
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2452 2453
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2454
{
J
Jens Axboe 已提交
2455
	struct cfq_io_context *cic = RQ_CIC(rq);
2456

2457
	cfqd->rq_queued++;
2458 2459 2460
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2461
	cfq_update_io_thinktime(cfqd, cic);
2462
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2463 2464
	cfq_update_idle_window(cfqd, cfqq, cic);

2465
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2466 2467 2468

	if (cfqq == cfqd->active_queue) {
		/*
2469 2470 2471
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2472 2473
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2474 2475 2476
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2477
		 */
2478
		if (cfq_cfqq_wait_request(cfqq)) {
2479 2480
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2481
				del_timer(&cfqd->idle_slice_timer);
T
Tejun Heo 已提交
2482
			__blk_run_queue(cfqd->queue);
2483
			}
2484
			cfq_mark_cfqq_must_dispatch(cfqq);
2485
		}
J
Jens Axboe 已提交
2486
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2487 2488 2489
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2490 2491
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2492 2493
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2494
		__blk_run_queue(cfqd->queue);
2495
	}
L
Linus Torvalds 已提交
2496 2497
}

2498
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2499
{
2500
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2501
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2502

2503
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2504
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2505

2506
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2507
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2508
	cfq_add_rq_rb(rq);
2509

J
Jens Axboe 已提交
2510
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2511 2512
}

2513 2514 2515 2516 2517 2518
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2519 2520
	struct cfq_queue *cfqq = cfqd->active_queue;

2521 2522
	if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
		cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2523 2524

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2525
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2526 2527
		return;

S
Shaohua Li 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	if (cfqd->hw_tag_samples++ < 50)
		return;

	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;

	cfqd->hw_tag_samples = 0;
	cfqd->rq_in_driver_peak = 0;
}

2550
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2551
{
J
Jens Axboe 已提交
2552
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2553
	struct cfq_data *cfqd = cfqq->cfqd;
2554
	const int sync = rq_is_sync(rq);
2555
	unsigned long now;
L
Linus Torvalds 已提交
2556

2557
	now = jiffies;
2558
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2559

2560 2561
	cfq_update_hw_tag(cfqd);

2562
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2563
	WARN_ON(!cfqq->dispatched);
2564
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2565
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2566

2567 2568 2569
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2570
	if (sync) {
J
Jens Axboe 已提交
2571
		RQ_CIC(rq)->last_end_request = now;
2572 2573
		cfqd->last_end_sync_rq = now;
	}
2574 2575 2576 2577 2578 2579

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2580 2581
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2582 2583 2584 2585
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2586 2587 2588 2589 2590 2591 2592
		/*
		 * If there are no requests waiting in this queue, and
		 * there are other queues ready to issue requests, AND
		 * those other queues are issuing requests within our
		 * mean seek distance, give them a chance to run instead
		 * of idling.
		 */
2593
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2594
			cfq_slice_expired(cfqd, 1);
2595
		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2596
			 sync && !rq_noidle(rq))
J
Jens Axboe 已提交
2597
			cfq_arm_slice_timer(cfqd);
2598
	}
J
Jens Axboe 已提交
2599

2600
	if (!rq_in_driver(cfqd))
2601
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2602 2603
}

2604 2605 2606 2607 2608
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2609
{
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2621
		 * unboost the queue (if needed)
2622
		 */
2623 2624
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2625 2626
	}
}
L
Linus Torvalds 已提交
2627

2628
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2629
{
2630
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2631
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2632
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2633
	}
L
Linus Torvalds 已提交
2634

2635 2636 2637
	return ELV_MQUEUE_MAY;
}

2638
static int cfq_may_queue(struct request_queue *q, int rw)
2639 2640 2641
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2642
	struct cfq_io_context *cic;
2643 2644 2645 2646 2647 2648 2649 2650
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2651
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2652 2653 2654
	if (!cic)
		return ELV_MQUEUE_MAY;

2655
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2656
	if (cfqq) {
2657
		cfq_init_prio_data(cfqq, cic->ioc);
2658 2659
		cfq_prio_boost(cfqq);

2660
		return __cfq_may_queue(cfqq);
2661 2662 2663
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668
}

/*
 * queue lock held here
 */
2669
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2670
{
J
Jens Axboe 已提交
2671
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2672

J
Jens Axboe 已提交
2673
	if (cfqq) {
2674
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2675

2676 2677
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2678

J
Jens Axboe 已提交
2679
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2680 2681

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2682
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2683 2684 2685 2686 2687

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2688 2689 2690 2691 2692 2693
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2694
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2695 2696 2697 2698
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2725
/*
2726
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2727
 */
2728
static int
2729
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2730 2731 2732 2733
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2734
	const bool is_sync = rq_is_sync(rq);
2735
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2736 2737 2738 2739
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2740
	cic = cfq_get_io_context(cfqd, gfp_mask);
2741

L
Linus Torvalds 已提交
2742 2743
	spin_lock_irqsave(q->queue_lock, flags);

2744 2745 2746
	if (!cic)
		goto queue_fail;

2747
new_queue:
2748
	cfqq = cic_to_cfqq(cic, is_sync);
2749
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2750
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2751
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2752
	} else {
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2763 2764 2765 2766 2767 2768 2769 2770
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2771
	}
L
Linus Torvalds 已提交
2772 2773

	cfqq->allocated[rw]++;
2774
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2775

J
Jens Axboe 已提交
2776
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2777

J
Jens Axboe 已提交
2778 2779 2780
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2781

2782 2783 2784
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2785

2786
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2787
	spin_unlock_irqrestore(q->queue_lock, flags);
2788
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2789 2790 2791
	return 1;
}

2792
static void cfq_kick_queue(struct work_struct *work)
2793
{
2794
	struct cfq_data *cfqd =
2795
		container_of(work, struct cfq_data, unplug_work);
2796
	struct request_queue *q = cfqd->queue;
2797

2798
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2799
	__blk_run_queue(cfqd->queue);
2800
	spin_unlock_irq(q->queue_lock);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2811
	int timed_out = 1;
2812

2813 2814
	cfq_log(cfqd, "idle timer fired");

2815 2816
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2817 2818
	cfqq = cfqd->active_queue;
	if (cfqq) {
2819 2820
		timed_out = 0;

2821 2822 2823 2824 2825 2826
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2827 2828 2829
		/*
		 * expired
		 */
2830
		if (cfq_slice_used(cfqq))
2831 2832 2833 2834 2835 2836
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2837
		if (!cfqd->busy_queues)
2838 2839 2840 2841 2842
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2843
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2844 2845 2846
			goto out_kick;
	}
expire:
2847
	cfq_slice_expired(cfqd, timed_out);
2848
out_kick:
2849
	cfq_schedule_dispatch(cfqd);
2850 2851 2852 2853
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2854 2855 2856
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2857
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2858
}
2859

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2870 2871 2872

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2873 2874
}

J
Jens Axboe 已提交
2875
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2876
{
2877
	struct cfq_data *cfqd = e->elevator_data;
2878
	struct request_queue *q = cfqd->queue;
2879

J
Jens Axboe 已提交
2880
	cfq_shutdown_timer_wq(cfqd);
2881

2882
	spin_lock_irq(q->queue_lock);
2883

2884
	if (cfqd->active_queue)
2885
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2886 2887

	while (!list_empty(&cfqd->cic_list)) {
2888 2889 2890
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2891 2892

		__cfq_exit_single_io_context(cfqd, cic);
2893
	}
2894

2895
	cfq_put_async_queues(cfqd);
2896

2897
	spin_unlock_irq(q->queue_lock);
2898 2899 2900 2901

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
2902 2903
}

2904
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
2905 2906
{
	struct cfq_data *cfqd;
2907
	int i, j;
L
Linus Torvalds 已提交
2908

2909
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
2910
	if (!cfqd)
J
Jens Axboe 已提交
2911
		return NULL;
L
Linus Torvalds 已提交
2912

2913
	for (i = 0; i < 2; ++i)
2914 2915
		for (j = 0; j < 3; ++j)
			cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2916
	cfqd->service_tree_idle = CFQ_RB_ROOT;
2917 2918 2919 2920 2921 2922 2923 2924 2925

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

2926 2927 2928 2929 2930 2931 2932 2933
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);

2934
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
2935 2936 2937

	cfqd->queue = q;

2938 2939 2940 2941
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

2942
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2943

L
Linus Torvalds 已提交
2944
	cfqd->cfq_quantum = cfq_quantum;
2945 2946
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
2947 2948
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
2949 2950 2951 2952
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
2953
	cfqd->cfq_latency = 1;
2954
	cfqd->hw_tag = 1;
2955
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
2956
	return cfqd;
L
Linus Torvalds 已提交
2957 2958 2959 2960
}

static void cfq_slab_kill(void)
{
2961 2962 2963 2964
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
2965 2966 2967 2968 2969 2970 2971 2972
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
2973
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
2974 2975 2976
	if (!cfq_pool)
		goto fail;

2977
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3006
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3007
{									\
3008
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3015 3016
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3017 3018
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3019 3020 3021 3022
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3023
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3024 3025 3026
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3027
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3028
{									\
3029
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3043 3044 3045 3046
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3047
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3048 3049
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3050 3051 3052
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3053 3054
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3055
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3056 3057
#undef STORE_FUNCTION

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3071
	CFQ_ATTR(low_latency),
3072
	__ATTR_NULL
L
Linus Torvalds 已提交
3073 3074 3075 3076 3077 3078 3079
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3080
		.elevator_allow_merge_fn =	cfq_allow_merge,
3081
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3082
		.elevator_add_req_fn =		cfq_insert_request,
3083
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3084 3085 3086
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3087 3088
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3089 3090 3091 3092 3093
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3094
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3095
	},
3096
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101 3102
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3103 3104 3105 3106 3107 3108 3109 3110
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3111 3112 3113
	if (cfq_slab_setup())
		return -ENOMEM;

3114
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3115

3116
	return 0;
L
Linus Torvalds 已提交
3117 3118 3119 3120
}

static void __exit cfq_exit(void)
{
3121
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3122
	elv_unregister(&iosched_cfq);
3123
	ioc_gone = &all_gone;
3124 3125
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3126 3127 3128 3129 3130

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3131
	if (elv_ioc_count_read(cfq_ioc_count))
3132
		wait_for_completion(&all_gone);
3133
	cfq_slab_kill();
L
Linus Torvalds 已提交
3134 3135 3136 3137 3138 3139 3140 3141
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");