enlighten.c 28.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Core of Xen paravirt_ops implementation.
 *
 * This file contains the xen_paravirt_ops structure itself, and the
 * implementations for:
 * - privileged instructions
 * - interrupt flags
 * - segment operations
 * - booting and setup
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/preempt.h>
18
#include <linux/hardirq.h>
19 20 21 22
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/start_kernel.h>
#include <linux/sched.h>
23
#include <linux/kprobes.h>
24 25
#include <linux/bootmem.h>
#include <linux/module.h>
26 27 28
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/highmem.h>
29
#include <linux/console.h>
C
Chris Wright 已提交
30
#include <linux/pci.h>
31
#include <linux/gfp.h>
32

33
#include <xen/xen.h>
34
#include <xen/interface/xen.h>
35
#include <xen/interface/version.h>
36 37 38 39
#include <xen/interface/physdev.h>
#include <xen/interface/vcpu.h>
#include <xen/features.h>
#include <xen/page.h>
40
#include <xen/hvc-console.h>
41 42

#include <asm/paravirt.h>
I
Ingo Molnar 已提交
43
#include <asm/apic.h>
44 45 46 47 48
#include <asm/page.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/fixmap.h>
#include <asm/processor.h>
49
#include <asm/proto.h>
50
#include <asm/msr-index.h>
51
#include <asm/traps.h>
52 53
#include <asm/setup.h>
#include <asm/desc.h>
54
#include <asm/pgalloc.h>
55
#include <asm/pgtable.h>
56
#include <asm/tlbflush.h>
57
#include <asm/reboot.h>
58
#include <asm/stackprotector.h>
59 60

#include "xen-ops.h"
J
Jeremy Fitzhardinge 已提交
61
#include "mmu.h"
62 63 64 65 66 67
#include "multicalls.h"

EXPORT_SYMBOL_GPL(hypercall_page);

DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
68

69 70 71
enum xen_domain_type xen_domain_type = XEN_NATIVE;
EXPORT_SYMBOL_GPL(xen_domain_type);

72 73 74
struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);

75
struct shared_info xen_dummy_shared_info;
76

77 78
void *xen_initial_gdt;

79 80 81 82
/*
 * Point at some empty memory to start with. We map the real shared_info
 * page as soon as fixmap is up and running.
 */
83
struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
84 85 86 87 88 89 90 91 92 93 94 95 96 97

/*
 * Flag to determine whether vcpu info placement is available on all
 * VCPUs.  We assume it is to start with, and then set it to zero on
 * the first failure.  This is because it can succeed on some VCPUs
 * and not others, since it can involve hypervisor memory allocation,
 * or because the guest failed to guarantee all the appropriate
 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 *
 * Note that any particular CPU may be using a placed vcpu structure,
 * but we can only optimise if the all are.
 *
 * 0: not available, 1: available
 */
98
static int have_vcpu_info_placement = 1;
99

100 101 102 103 104 105 106 107
static void clamp_max_cpus(void)
{
#ifdef CONFIG_SMP
	if (setup_max_cpus > MAX_VIRT_CPUS)
		setup_max_cpus = MAX_VIRT_CPUS;
#endif
}

108
static void xen_vcpu_setup(int cpu)
109
{
110 111 112 113
	struct vcpu_register_vcpu_info info;
	int err;
	struct vcpu_info *vcpup;

114
	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
115

116 117
	if (cpu < MAX_VIRT_CPUS)
		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
118

119 120 121 122 123
	if (!have_vcpu_info_placement) {
		if (cpu >= MAX_VIRT_CPUS)
			clamp_max_cpus();
		return;
	}
124

125
	vcpup = &per_cpu(xen_vcpu_info, cpu);
126
	info.mfn = arbitrary_virt_to_mfn(vcpup);
127 128
	info.offset = offset_in_page(vcpup);

129
	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
130 131 132 133 134 135 136 137 138 139
	       cpu, vcpup, info.mfn, info.offset);

	/* Check to see if the hypervisor will put the vcpu_info
	   structure where we want it, which allows direct access via
	   a percpu-variable. */
	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);

	if (err) {
		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
		have_vcpu_info_placement = 0;
140
		clamp_max_cpus();
141 142 143 144
	} else {
		/* This cpu is using the registered vcpu info, even if
		   later ones fail to. */
		per_cpu(xen_vcpu, cpu) = vcpup;
145

146 147 148
		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
		       cpu, vcpup);
	}
149 150
}

151 152 153 154 155 156 157
/*
 * On restore, set the vcpu placement up again.
 * If it fails, then we're in a bad state, since
 * we can't back out from using it...
 */
void xen_vcpu_restore(void)
{
158
	int cpu;
159

160 161
	for_each_online_cpu(cpu) {
		bool other_cpu = (cpu != smp_processor_id());
162

163 164 165
		if (other_cpu &&
		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
			BUG();
166

167
		xen_setup_runstate_info(cpu);
168

169
		if (have_vcpu_info_placement)
170 171
			xen_vcpu_setup(cpu);

172 173 174
		if (other_cpu &&
		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
			BUG();
175 176 177
	}
}

178 179
static void __init xen_banner(void)
{
180 181 182 183
	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
	struct xen_extraversion extra;
	HYPERVISOR_xen_version(XENVER_extraversion, &extra);

184
	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
185
	       pv_info.name);
186 187
	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
	       version >> 16, version & 0xffff, extra.extraversion,
188
	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
189 190
}

191 192 193
static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;

194 195
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
		      unsigned int *cx, unsigned int *dx)
196
{
197
	unsigned maskebx = ~0;
198
	unsigned maskecx = ~0;
199 200 201 202 203 204
	unsigned maskedx = ~0;

	/*
	 * Mask out inconvenient features, to try and disable as many
	 * unsupported kernel subsystems as possible.
	 */
205 206
	switch (*ax) {
	case 1:
207 208
		maskecx = cpuid_leaf1_ecx_mask;
		maskedx = cpuid_leaf1_edx_mask;
209 210 211 212 213 214
		break;

	case 0xb:
		/* Suppress extended topology stuff */
		maskebx = 0;
		break;
215
	}
216 217

	asm(XEN_EMULATE_PREFIX "cpuid"
218 219 220 221 222
		: "=a" (*ax),
		  "=b" (*bx),
		  "=c" (*cx),
		  "=d" (*dx)
		: "0" (*ax), "2" (*cx));
223

224
	*bx &= maskebx;
225
	*cx &= maskecx;
226
	*dx &= maskedx;
227 228
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static __init void xen_init_cpuid_mask(void)
{
	unsigned int ax, bx, cx, dx;

	cpuid_leaf1_edx_mask =
		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */

	if (!xen_initial_domain())
		cpuid_leaf1_edx_mask &=
			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */

	ax = 1;
244
	cx = 0;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	xen_cpuid(&ax, &bx, &cx, &dx);

	/* cpuid claims we support xsave; try enabling it to see what happens */
	if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
		unsigned long cr4;

		set_in_cr4(X86_CR4_OSXSAVE);
		
		cr4 = read_cr4();

		if ((cr4 & X86_CR4_OSXSAVE) == 0)
			cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));

		clear_in_cr4(X86_CR4_OSXSAVE);
	}
}

262 263 264 265 266 267 268 269 270 271
static void xen_set_debugreg(int reg, unsigned long val)
{
	HYPERVISOR_set_debugreg(reg, val);
}

static unsigned long xen_get_debugreg(int reg)
{
	return HYPERVISOR_get_debugreg(reg);
}

272
static void xen_end_context_switch(struct task_struct *next)
273 274
{
	xen_mc_flush();
275
	paravirt_end_context_switch(next);
276 277 278 279 280 281 282
}

static unsigned long xen_store_tr(void)
{
	return 0;
}

283
/*
284 285 286 287
 * Set the page permissions for a particular virtual address.  If the
 * address is a vmalloc mapping (or other non-linear mapping), then
 * find the linear mapping of the page and also set its protections to
 * match.
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
 */
static void set_aliased_prot(void *v, pgprot_t prot)
{
	int level;
	pte_t *ptep;
	pte_t pte;
	unsigned long pfn;
	struct page *page;

	ptep = lookup_address((unsigned long)v, &level);
	BUG_ON(ptep == NULL);

	pfn = pte_pfn(*ptep);
	page = pfn_to_page(pfn);

	pte = pfn_pte(pfn, prot);

	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
		BUG();

	if (!PageHighMem(page)) {
		void *av = __va(PFN_PHYS(pfn));

		if (av != v)
			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
				BUG();
	} else
		kmap_flush_unused();
}

318 319
static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
{
320
	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
321 322
	int i;

323 324
	for(i = 0; i < entries; i += entries_per_page)
		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
325 326 327 328
}

static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
{
329
	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
330 331
	int i;

332 333
	for(i = 0; i < entries; i += entries_per_page)
		set_aliased_prot(ldt + i, PAGE_KERNEL);
334 335
}

336 337 338 339 340 341 342
static void xen_set_ldt(const void *addr, unsigned entries)
{
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_SET_LDT;
343
	op->arg1.linear_addr = (unsigned long)addr;
344 345 346 347 348 349 350
	op->arg2.nr_ents = entries;

	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

351
static void xen_load_gdt(const struct desc_ptr *dtr)
352 353 354 355
{
	unsigned long va = dtr->address;
	unsigned int size = dtr->size + 1;
	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
356
	unsigned long frames[pages];
357 358
	int f;

359 360 361 362
	/*
	 * A GDT can be up to 64k in size, which corresponds to 8192
	 * 8-byte entries, or 16 4k pages..
	 */
363 364 365 366 367

	BUG_ON(size > 65536);
	BUG_ON(va & ~PAGE_MASK);

	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
368
		int level;
369
		pte_t *ptep;
370 371 372
		unsigned long pfn, mfn;
		void *virt;

373 374 375 376 377 378 379 380
		/*
		 * The GDT is per-cpu and is in the percpu data area.
		 * That can be virtually mapped, so we need to do a
		 * page-walk to get the underlying MFN for the
		 * hypercall.  The page can also be in the kernel's
		 * linear range, so we need to RO that mapping too.
		 */
		ptep = lookup_address(va, &level);
381 382 383 384 385 386 387
		BUG_ON(ptep == NULL);

		pfn = pte_pfn(*ptep);
		mfn = pfn_to_mfn(pfn);
		virt = __va(PFN_PHYS(pfn));

		frames[f] = mfn;
388

389
		make_lowmem_page_readonly((void *)va);
390
		make_lowmem_page_readonly(virt);
391 392
	}

393 394
	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
		BUG();
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/*
 * load_gdt for early boot, when the gdt is only mapped once
 */
static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
{
	unsigned long va = dtr->address;
	unsigned int size = dtr->size + 1;
	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
	unsigned long frames[pages];
	int f;

	/*
	 * A GDT can be up to 64k in size, which corresponds to 8192
	 * 8-byte entries, or 16 4k pages..
	 */

	BUG_ON(size > 65536);
	BUG_ON(va & ~PAGE_MASK);

	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
		pte_t pte;
		unsigned long pfn, mfn;

		pfn = virt_to_pfn(va);
		mfn = pfn_to_mfn(pfn);

		pte = pfn_pte(pfn, PAGE_KERNEL_RO);

		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
			BUG();

		frames[f] = mfn;
	}

	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
		BUG();
}

435 436 437 438
static void load_TLS_descriptor(struct thread_struct *t,
				unsigned int cpu, unsigned int i)
{
	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
439
	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
440 441 442 443 444 445 446
	struct multicall_space mc = __xen_mc_entry(0);

	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
}

static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
{
447
	/*
448 449 450 451 452 453 454 455
	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
	 * and lazy gs handling is enabled, it means we're in a
	 * context switch, and %gs has just been saved.  This means we
	 * can zero it out to prevent faults on exit from the
	 * hypervisor if the next process has no %gs.  Either way, it
	 * has been saved, and the new value will get loaded properly.
	 * This will go away as soon as Xen has been modified to not
	 * save/restore %gs for normal hypercalls.
456 457 458 459 460 461 462 463
	 *
	 * On x86_64, this hack is not used for %gs, because gs points
	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
	 * must not zero %gs on x86_64
	 *
	 * For x86_64, we need to zero %fs, otherwise we may get an
	 * exception between the new %fs descriptor being loaded and
	 * %fs being effectively cleared at __switch_to().
464
	 */
465 466
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
#ifdef CONFIG_X86_32
467
		lazy_load_gs(0);
468 469 470 471 472 473 474 475 476 477 478 479
#else
		loadsegment(fs, 0);
#endif
	}

	xen_mc_batch();

	load_TLS_descriptor(t, cpu, 0);
	load_TLS_descriptor(t, cpu, 1);
	load_TLS_descriptor(t, cpu, 2);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
480 481
}

482 483 484 485 486
#ifdef CONFIG_X86_64
static void xen_load_gs_index(unsigned int idx)
{
	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
		BUG();
487
}
488
#endif
489 490

static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
491
				const void *ptr)
492
{
493
	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
494
	u64 entry = *(u64 *)ptr;
495

496 497
	preempt_disable();

498 499 500
	xen_mc_flush();
	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
		BUG();
501 502

	preempt_enable();
503 504
}

505
static int cvt_gate_to_trap(int vector, const gate_desc *val,
506 507
			    struct trap_info *info)
{
508 509
	unsigned long addr;

510
	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
511 512 513
		return 0;

	info->vector = vector;
514 515 516

	addr = gate_offset(*val);
#ifdef CONFIG_X86_64
517 518 519 520 521 522 523
	/*
	 * Look for known traps using IST, and substitute them
	 * appropriately.  The debugger ones are the only ones we care
	 * about.  Xen will handle faults like double_fault and
	 * machine_check, so we should never see them.  Warn if
	 * there's an unexpected IST-using fault handler.
	 */
524 525 526 527 528 529
	if (addr == (unsigned long)debug)
		addr = (unsigned long)xen_debug;
	else if (addr == (unsigned long)int3)
		addr = (unsigned long)xen_int3;
	else if (addr == (unsigned long)stack_segment)
		addr = (unsigned long)xen_stack_segment;
530 531 532 533 534 535 536 537 538 539 540 541 542
	else if (addr == (unsigned long)double_fault ||
		 addr == (unsigned long)nmi) {
		/* Don't need to handle these */
		return 0;
#ifdef CONFIG_X86_MCE
	} else if (addr == (unsigned long)machine_check) {
		return 0;
#endif
	} else {
		/* Some other trap using IST? */
		if (WARN_ON(val->ist != 0))
			return 0;
	}
543 544 545
#endif	/* CONFIG_X86_64 */
	info->address = addr;

546 547
	info->cs = gate_segment(*val);
	info->flags = val->dpl;
548
	/* interrupt gates clear IF */
549 550
	if (val->type == GATE_INTERRUPT)
		info->flags |= 1 << 2;
551 552 553 554 555

	return 1;
}

/* Locations of each CPU's IDT */
556
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
557 558 559

/* Set an IDT entry.  If the entry is part of the current IDT, then
   also update Xen. */
560
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
561 562
{
	unsigned long p = (unsigned long)&dt[entrynum];
563 564 565 566 567 568
	unsigned long start, end;

	preempt_disable();

	start = __get_cpu_var(idt_desc).address;
	end = start + __get_cpu_var(idt_desc).size + 1;
569 570 571

	xen_mc_flush();

572
	native_write_idt_entry(dt, entrynum, g);
573 574 575 576 577 578

	if (p >= start && (p + 8) <= end) {
		struct trap_info info[2];

		info[1].address = 0;

579
		if (cvt_gate_to_trap(entrynum, g, &info[0]))
580 581 582
			if (HYPERVISOR_set_trap_table(info))
				BUG();
	}
583 584

	preempt_enable();
585 586
}

587
static void xen_convert_trap_info(const struct desc_ptr *desc,
588
				  struct trap_info *traps)
589 590 591
{
	unsigned in, out, count;

592
	count = (desc->size+1) / sizeof(gate_desc);
593 594 595
	BUG_ON(count > 256);

	for (in = out = 0; in < count; in++) {
596
		gate_desc *entry = (gate_desc*)(desc->address) + in;
597

598
		if (cvt_gate_to_trap(in, entry, &traps[out]))
599 600 601
			out++;
	}
	traps[out].address = 0;
602 603 604 605
}

void xen_copy_trap_info(struct trap_info *traps)
{
606
	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
607 608 609 610 611 612 613

	xen_convert_trap_info(desc, traps);
}

/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
   hold a spinlock to protect the static traps[] array (static because
   it avoids allocation, and saves stack space). */
614
static void xen_load_idt(const struct desc_ptr *desc)
615 616 617 618 619 620
{
	static DEFINE_SPINLOCK(lock);
	static struct trap_info traps[257];

	spin_lock(&lock);

621 622
	__get_cpu_var(idt_desc) = *desc;

623
	xen_convert_trap_info(desc, traps);
624 625 626 627 628 629 630 631 632 633 634

	xen_mc_flush();
	if (HYPERVISOR_set_trap_table(traps))
		BUG();

	spin_unlock(&lock);
}

/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
   they're handled differently. */
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
635
				const void *desc, int type)
636
{
637 638
	preempt_disable();

639 640 641
	switch (type) {
	case DESC_LDT:
	case DESC_TSS:
642 643 644 645
		/* ignore */
		break;

	default: {
646
		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
647 648

		xen_mc_flush();
649
		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
650 651 652 653
			BUG();
	}

	}
654 655

	preempt_enable();
656 657
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/*
 * Version of write_gdt_entry for use at early boot-time needed to
 * update an entry as simply as possible.
 */
static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
					    const void *desc, int type)
{
	switch (type) {
	case DESC_LDT:
	case DESC_TSS:
		/* ignore */
		break;

	default: {
		xmaddr_t maddr = virt_to_machine(&dt[entry]);

		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
			dt[entry] = *(struct desc_struct *)desc;
	}

	}
}

681
static void xen_load_sp0(struct tss_struct *tss,
682
			 struct thread_struct *thread)
683 684
{
	struct multicall_space mcs = xen_mc_entry(0);
685
	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void xen_set_iopl_mask(unsigned mask)
{
	struct physdev_set_iopl set_iopl;

	/* Force the change at ring 0. */
	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
}

static void xen_io_delay(void)
{
}

#ifdef CONFIG_X86_LOCAL_APIC
703
static u32 xen_apic_read(u32 reg)
704 705 706
{
	return 0;
}
707

708
static void xen_apic_write(u32 reg, u32 val)
709 710 711 712
{
	/* Warn to see if there's any stray references */
	WARN_ON(1);
}
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

static u64 xen_apic_icr_read(void)
{
	return 0;
}

static void xen_apic_icr_write(u32 low, u32 id)
{
	/* Warn to see if there's any stray references */
	WARN_ON(1);
}

static void xen_apic_wait_icr_idle(void)
{
        return;
}

730 731 732 733 734
static u32 xen_safe_apic_wait_icr_idle(void)
{
        return 0;
}

735 736 737 738 739 740 741 742 743
static void set_xen_basic_apic_ops(void)
{
	apic->read = xen_apic_read;
	apic->write = xen_apic_write;
	apic->icr_read = xen_apic_icr_read;
	apic->icr_write = xen_apic_icr_write;
	apic->wait_icr_idle = xen_apic_wait_icr_idle;
	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
}
744

745 746
#endif

747 748 749 750 751 752 753 754 755 756 757
static void xen_clts(void)
{
	struct multicall_space mcs;

	mcs = xen_mc_entry(0);

	MULTI_fpu_taskswitch(mcs.mc, 0);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

758 759 760 761 762 763 764 765 766 767 768 769 770 771
static DEFINE_PER_CPU(unsigned long, xen_cr0_value);

static unsigned long xen_read_cr0(void)
{
	unsigned long cr0 = percpu_read(xen_cr0_value);

	if (unlikely(cr0 == 0)) {
		cr0 = native_read_cr0();
		percpu_write(xen_cr0_value, cr0);
	}

	return cr0;
}

772 773 774 775
static void xen_write_cr0(unsigned long cr0)
{
	struct multicall_space mcs;

776 777
	percpu_write(xen_cr0_value, cr0);

778 779 780 781 782 783 784 785 786
	/* Only pay attention to cr0.TS; everything else is
	   ignored. */
	mcs = xen_mc_entry(0);

	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

787 788
static void xen_write_cr4(unsigned long cr4)
{
789 790 791 792
	cr4 &= ~X86_CR4_PGE;
	cr4 &= ~X86_CR4_PSE;

	native_write_cr4(cr4);
793 794
}

795 796 797 798 799 800
static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
{
	int ret;

	ret = 0;

T
Tej 已提交
801
	switch (msr) {
802 803 804 805 806 807 808 809 810 811 812
#ifdef CONFIG_X86_64
		unsigned which;
		u64 base;

	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;

	set:
		base = ((u64)high << 32) | low;
		if (HYPERVISOR_set_segment_base(which, base) != 0)
813
			ret = -EIO;
814 815
		break;
#endif
816 817 818 819 820 821 822 823 824 825 826 827 828

	case MSR_STAR:
	case MSR_CSTAR:
	case MSR_LSTAR:
	case MSR_SYSCALL_MASK:
	case MSR_IA32_SYSENTER_CS:
	case MSR_IA32_SYSENTER_ESP:
	case MSR_IA32_SYSENTER_EIP:
		/* Fast syscall setup is all done in hypercalls, so
		   these are all ignored.  Stub them out here to stop
		   Xen console noise. */
		break;

829 830 831 832 833 834 835
	default:
		ret = native_write_msr_safe(msr, low, high);
	}

	return ret;
}

836
void xen_setup_shared_info(void)
837 838
{
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
839 840 841 842 843
		set_fixmap(FIX_PARAVIRT_BOOTMAP,
			   xen_start_info->shared_info);

		HYPERVISOR_shared_info =
			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
844 845 846 847
	} else
		HYPERVISOR_shared_info =
			(struct shared_info *)__va(xen_start_info->shared_info);

848 849 850 851
#ifndef CONFIG_SMP
	/* In UP this is as good a place as any to set up shared info */
	xen_setup_vcpu_info_placement();
#endif
852 853

	xen_setup_mfn_list_list();
854 855
}

856
/* This is called once we have the cpu_possible_map */
857
void xen_setup_vcpu_info_placement(void)
858 859 860 861 862 863 864 865 866 867 868
{
	int cpu;

	for_each_possible_cpu(cpu)
		xen_vcpu_setup(cpu);

	/* xen_vcpu_setup managed to place the vcpu_info within the
	   percpu area for all cpus, so make use of it */
	if (have_vcpu_info_placement) {
		printk(KERN_INFO "Xen: using vcpu_info placement\n");

869 870 871 872
		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
873
		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
874
	}
875 876
}

877 878
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
			  unsigned long addr, unsigned len)
879 880 881 882 883 884
{
	char *start, *end, *reloc;
	unsigned ret;

	start = end = reloc = NULL;

885 886
#define SITE(op, x)							\
	case PARAVIRT_PATCH(op.x):					\
887 888 889 890 891 892 893 894
	if (have_vcpu_info_placement) {					\
		start = (char *)xen_##x##_direct;			\
		end = xen_##x##_direct_end;				\
		reloc = xen_##x##_direct_reloc;				\
	}								\
	goto patch_site

	switch (type) {
895 896 897 898
		SITE(pv_irq_ops, irq_enable);
		SITE(pv_irq_ops, irq_disable);
		SITE(pv_irq_ops, save_fl);
		SITE(pv_irq_ops, restore_fl);
899 900 901 902 903 904
#undef SITE

	patch_site:
		if (start == NULL || (end-start) > len)
			goto default_patch;

905
		ret = paravirt_patch_insns(insnbuf, len, start, end);
906 907 908 909 910 911 912

		/* Note: because reloc is assigned from something that
		   appears to be an array, gcc assumes it's non-null,
		   but doesn't know its relationship with start and
		   end. */
		if (reloc > start && reloc < end) {
			int reloc_off = reloc - start;
913 914
			long *relocp = (long *)(insnbuf + reloc_off);
			long delta = start - (char *)addr;
915 916 917 918 919 920 921

			*relocp += delta;
		}
		break;

	default_patch:
	default:
922 923
		ret = paravirt_patch_default(type, clobbers, insnbuf,
					     addr, len);
924 925 926 927 928 929
		break;
	}

	return ret;
}

930
static const struct pv_info xen_info __initdata = {
931 932 933 934
	.paravirt_enabled = 1,
	.shared_kernel_pmd = 0,

	.name = "Xen",
935
};
936

937
static const struct pv_init_ops xen_init_ops __initdata = {
938
	.patch = xen_patch,
939
};
940

941
static const struct pv_time_ops xen_time_ops __initdata = {
942
	.sched_clock = xen_clocksource_read,
943
};
944

945
static const struct pv_cpu_ops xen_cpu_ops __initdata = {
946 947 948 949 950
	.cpuid = xen_cpuid,

	.set_debugreg = xen_set_debugreg,
	.get_debugreg = xen_get_debugreg,

951
	.clts = xen_clts,
952

953
	.read_cr0 = xen_read_cr0,
954
	.write_cr0 = xen_write_cr0,
955 956 957 958 959 960 961 962

	.read_cr4 = native_read_cr4,
	.read_cr4_safe = native_read_cr4_safe,
	.write_cr4 = xen_write_cr4,

	.wbinvd = native_wbinvd,

	.read_msr = native_read_msr_safe,
963
	.write_msr = xen_write_msr_safe,
964 965 966
	.read_tsc = native_read_tsc,
	.read_pmc = native_read_pmc,

967
	.iret = xen_iret,
968
	.irq_enable_sysexit = xen_sysexit,
969 970 971 972
#ifdef CONFIG_X86_64
	.usergs_sysret32 = xen_sysret32,
	.usergs_sysret64 = xen_sysret64,
#endif
973 974 975 976 977 978

	.load_tr_desc = paravirt_nop,
	.set_ldt = xen_set_ldt,
	.load_gdt = xen_load_gdt,
	.load_idt = xen_load_idt,
	.load_tls = xen_load_tls,
979 980 981
#ifdef CONFIG_X86_64
	.load_gs_index = xen_load_gs_index,
#endif
982

983 984 985
	.alloc_ldt = xen_alloc_ldt,
	.free_ldt = xen_free_ldt,

986 987 988 989 990 991 992
	.store_gdt = native_store_gdt,
	.store_idt = native_store_idt,
	.store_tr = xen_store_tr,

	.write_ldt_entry = xen_write_ldt_entry,
	.write_gdt_entry = xen_write_gdt_entry,
	.write_idt_entry = xen_write_idt_entry,
993
	.load_sp0 = xen_load_sp0,
994 995 996 997

	.set_iopl_mask = xen_set_iopl_mask,
	.io_delay = xen_io_delay,

998 999 1000
	/* Xen takes care of %gs when switching to usermode for us */
	.swapgs = paravirt_nop,

1001 1002
	.start_context_switch = paravirt_start_context_switch,
	.end_context_switch = xen_end_context_switch,
1003 1004 1005
};

static const struct pv_apic_ops xen_apic_ops __initdata = {
1006 1007 1008
#ifdef CONFIG_X86_LOCAL_APIC
	.startup_ipi_hook = paravirt_nop,
#endif
1009 1010
};

1011 1012
static void xen_reboot(int reason)
{
1013 1014
	struct sched_shutdown r = { .reason = reason };

1015 1016 1017 1018
#ifdef CONFIG_SMP
	smp_send_stop();
#endif

1019
	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		BUG();
}

static void xen_restart(char *msg)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_emergency_restart(void)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_machine_halt(void)
{
	xen_reboot(SHUTDOWN_poweroff);
}

static void xen_crash_shutdown(struct pt_regs *regs)
{
	xen_reboot(SHUTDOWN_crash);
}

static const struct machine_ops __initdata xen_machine_ops = {
	.restart = xen_restart,
	.halt = xen_machine_halt,
	.power_off = xen_machine_halt,
	.shutdown = xen_machine_halt,
	.crash_shutdown = xen_crash_shutdown,
	.emergency_restart = xen_emergency_restart,
};

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/*
 * Set up the GDT and segment registers for -fstack-protector.  Until
 * we do this, we have to be careful not to call any stack-protected
 * function, which is most of the kernel.
 */
static void __init xen_setup_stackprotector(void)
{
	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
	pv_cpu_ops.load_gdt = xen_load_gdt_boot;

	setup_stack_canary_segment(0);
	switch_to_new_gdt(0);

	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
	pv_cpu_ops.load_gdt = xen_load_gdt;
}

1069 1070 1071 1072 1073 1074 1075 1076
/* First C function to be called on Xen boot */
asmlinkage void __init xen_start_kernel(void)
{
	pgd_t *pgd;

	if (!xen_start_info)
		return;

1077 1078
	xen_domain_type = XEN_PV_DOMAIN;

1079
	/* Install Xen paravirt ops */
1080 1081 1082 1083 1084 1085
	pv_info = xen_info;
	pv_init_ops = xen_init_ops;
	pv_time_ops = xen_time_ops;
	pv_cpu_ops = xen_cpu_ops;
	pv_apic_ops = xen_apic_ops;

1086
	x86_init.resources.memory_setup = xen_memory_setup;
1087
	x86_init.oem.arch_setup = xen_arch_setup;
1088
	x86_init.oem.banner = xen_banner;
1089 1090

	x86_init.timers.timer_init = xen_time_init;
1091 1092
	x86_init.timers.setup_percpu_clockev = x86_init_noop;
	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
1093

1094
	x86_platform.calibrate_tsc = xen_tsc_khz;
1095 1096
	x86_platform.get_wallclock = xen_get_wallclock;
	x86_platform.set_wallclock = xen_set_wallclock;
1097

1098
	/*
1099
	 * Set up some pagetable state before starting to set any ptes.
1100
	 */
1101

1102 1103
	xen_init_mmu_ops();

1104 1105 1106 1107 1108 1109 1110
	/* Prevent unwanted bits from being set in PTEs. */
	__supported_pte_mask &= ~_PAGE_GLOBAL;
	if (!xen_initial_domain())
		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);

	__supported_pte_mask |= _PAGE_IOMAP;

1111 1112 1113 1114 1115 1116
	/*
	 * Prevent page tables from being allocated in highmem, even
	 * if CONFIG_HIGHPTE is enabled.
	 */
	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;

1117
	/* Work out if we support NX */
1118
	x86_configure_nx();
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	xen_setup_features();

	/* Get mfn list */
	if (!xen_feature(XENFEAT_auto_translated_physmap))
		xen_build_dynamic_phys_to_machine();

	/*
	 * Set up kernel GDT and segment registers, mainly so that
	 * -fstack-protector code can be executed.
	 */
	xen_setup_stackprotector();
1131

1132
	xen_init_irq_ops();
1133 1134
	xen_init_cpuid_mask();

1135
#ifdef CONFIG_X86_LOCAL_APIC
1136
	/*
1137
	 * set up the basic apic ops.
1138
	 */
1139
	set_xen_basic_apic_ops();
1140
#endif
1141

1142 1143 1144 1145 1146
	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
	}

1147 1148
	machine_ops = xen_machine_ops;

1149 1150 1151 1152 1153 1154
	/*
	 * The only reliable way to retain the initial address of the
	 * percpu gdt_page is to remember it here, so we can go and
	 * mark it RW later, when the initial percpu area is freed.
	 */
	xen_initial_gdt = &per_cpu(gdt_page, 0);
1155

1156
	xen_smp_init();
1157 1158 1159

	pgd = (pgd_t *)xen_start_info->pt_base;

1160
	/* Don't do the full vcpu_info placement stuff until we have a
1161
	   possible map and a non-dummy shared_info. */
1162
	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1163

1164 1165 1166
	local_irq_disable();
	early_boot_irqs_off();

1167
	xen_raw_console_write("mapping kernel into physical memory\n");
1168
	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1169

1170
	init_mm.pgd = pgd;
1171 1172 1173

	/* keep using Xen gdt for now; no urgent need to change it */

1174
#ifdef CONFIG_X86_32
1175
	pv_info.kernel_rpl = 1;
1176
	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1177
		pv_info.kernel_rpl = 0;
1178 1179 1180
#else
	pv_info.kernel_rpl = 0;
#endif
1181 1182

	/* set the limit of our address space */
1183
	xen_reserve_top();
1184

1185
#ifdef CONFIG_X86_32
1186 1187 1188
	/* set up basic CPUID stuff */
	cpu_detect(&new_cpu_data);
	new_cpu_data.hard_math = 1;
1189
	new_cpu_data.wp_works_ok = 1;
1190
	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1191
#endif
1192 1193

	/* Poke various useful things into boot_params */
1194 1195 1196 1197
	boot_params.hdr.type_of_loader = (9 << 4) | 0;
	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
		? __pa(xen_start_info->mod_start) : 0;
	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1198
	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1199

1200
	if (!xen_initial_domain()) {
1201
		add_preferred_console("xenboot", 0, NULL);
1202
		add_preferred_console("tty", 0, NULL);
1203
		add_preferred_console("hvc", 0, NULL);
C
Chris Wright 已提交
1204 1205 1206
	} else {
		/* Make sure ACS will be enabled */
		pci_request_acs();
1207
	}
C
Chris Wright 已提交
1208
		
1209

1210 1211
	xen_raw_console_write("about to get started...\n");

1212 1213
	xen_setup_runstate_info(0);

1214
	/* Start the world */
1215
#ifdef CONFIG_X86_32
1216
	i386_start_kernel();
1217
#else
1218
	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1219
#endif
1220
}