“d68185d1aef9b8d3801ff656ec3089503119e936”上不存在“README.md”
omap_hsmmc.c 55.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * drivers/mmc/host/omap_hsmmc.c
 *
 * Driver for OMAP2430/3430 MMC controller.
 *
 * Copyright (C) 2007 Texas Instruments.
 *
 * Authors:
 *	Syed Mohammed Khasim	<x0khasim@ti.com>
 *	Madhusudhan		<madhu.cr@ti.com>
 *	Mohit Jalori		<mjalori@ti.com>
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2. This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
 */

#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/kernel.h>
21
#include <linux/debugfs.h>
22
#include <linux/dmaengine.h>
23
#include <linux/seq_file.h>
24
#include <linux/sizes.h>
25 26 27 28 29 30
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/timer.h>
#include <linux/clk.h>
31 32 33
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h>
34
#include <linux/omap-dma.h>
35
#include <linux/mmc/host.h>
36
#include <linux/mmc/core.h>
37
#include <linux/mmc/mmc.h>
38
#include <linux/io.h>
39 40
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
41
#include <linux/pinctrl/consumer.h>
42
#include <linux/pm_runtime.h>
43
#include <linux/platform_data/mmc-omap.h>
44 45

/* OMAP HSMMC Host Controller Registers */
46
#define OMAP_HSMMC_SYSSTATUS	0x0014
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#define OMAP_HSMMC_CON		0x002C
#define OMAP_HSMMC_BLK		0x0104
#define OMAP_HSMMC_ARG		0x0108
#define OMAP_HSMMC_CMD		0x010C
#define OMAP_HSMMC_RSP10	0x0110
#define OMAP_HSMMC_RSP32	0x0114
#define OMAP_HSMMC_RSP54	0x0118
#define OMAP_HSMMC_RSP76	0x011C
#define OMAP_HSMMC_DATA		0x0120
#define OMAP_HSMMC_HCTL		0x0128
#define OMAP_HSMMC_SYSCTL	0x012C
#define OMAP_HSMMC_STAT		0x0130
#define OMAP_HSMMC_IE		0x0134
#define OMAP_HSMMC_ISE		0x0138
#define OMAP_HSMMC_CAPA		0x0140

#define VS18			(1 << 26)
#define VS30			(1 << 25)
65
#define HSS			(1 << 21)
66 67
#define SDVS18			(0x5 << 9)
#define SDVS30			(0x6 << 9)
68
#define SDVS33			(0x7 << 9)
69
#define SDVS_MASK		0x00000E00
70 71 72 73 74 75 76 77
#define SDVSCLR			0xFFFFF1FF
#define SDVSDET			0x00000400
#define AUTOIDLE		0x1
#define SDBP			(1 << 8)
#define DTO			0xe
#define ICE			0x1
#define ICS			0x2
#define CEN			(1 << 2)
78
#define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
79 80 81 82 83 84 85
#define CLKD_MASK		0x0000FFC0
#define CLKD_SHIFT		6
#define DTO_MASK		0x000F0000
#define DTO_SHIFT		16
#define INIT_STREAM		(1 << 1)
#define DP_SELECT		(1 << 21)
#define DDIR			(1 << 4)
86
#define DMAE			0x1
87 88 89
#define MSBS			(1 << 5)
#define BCE			(1 << 1)
#define FOUR_BIT		(1 << 1)
90
#define HSPE			(1 << 2)
91
#define DDR			(1 << 19)
92
#define DW8			(1 << 5)
93 94 95 96 97 98
#define OD			0x1
#define STAT_CLEAR		0xFFFFFFFF
#define INIT_STREAM_CMD		0x00000000
#define DUAL_VOLT_OCR_BIT	7
#define SRC			(1 << 25)
#define SRD			(1 << 26)
99
#define SOFTRESET		(1 << 1)
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/* Interrupt masks for IE and ISE register */
#define CC_EN			(1 << 0)
#define TC_EN			(1 << 1)
#define BWR_EN			(1 << 4)
#define BRR_EN			(1 << 5)
#define ERR_EN			(1 << 15)
#define CTO_EN			(1 << 16)
#define CCRC_EN			(1 << 17)
#define CEB_EN			(1 << 18)
#define CIE_EN			(1 << 19)
#define DTO_EN			(1 << 20)
#define DCRC_EN			(1 << 21)
#define DEB_EN			(1 << 22)
#define CERR_EN			(1 << 28)
#define BADA_EN			(1 << 29)

#define INT_EN_MASK		(BADA_EN | CERR_EN | DEB_EN | DCRC_EN |\
		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
		BRR_EN | BWR_EN | TC_EN | CC_EN)

121
#define MMC_AUTOSUSPEND_DELAY	100
122 123
#define MMC_TIMEOUT_MS		20		/* 20 mSec */
#define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
124 125
#define OMAP_MMC_MIN_CLOCK	400000
#define OMAP_MMC_MAX_CLOCK	52000000
126
#define DRIVER_NAME		"omap_hsmmc"
127

128 129 130 131
#define VDD_1V8			1800000		/* 180000 uV */
#define VDD_3V0			3000000		/* 300000 uV */
#define VDD_165_195		(ffs(MMC_VDD_165_195) - 1)

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * One controller can have multiple slots, like on some omap boards using
 * omap.c controller driver. Luckily this is not currently done on any known
 * omap_hsmmc.c device.
 */
#define mmc_slot(host)		(host->pdata->slots[host->slot_id])

/*
 * MMC Host controller read/write API's
 */
#define OMAP_HSMMC_READ(base, reg)	\
	__raw_readl((base) + OMAP_HSMMC_##reg)

#define OMAP_HSMMC_WRITE(base, reg, val) \
	__raw_writel((val), (base) + OMAP_HSMMC_##reg)

148 149 150 151 152
struct omap_hsmmc_next {
	unsigned int	dma_len;
	s32		cookie;
};

153
struct omap_hsmmc_host {
154 155 156 157 158 159 160
	struct	device		*dev;
	struct	mmc_host	*mmc;
	struct	mmc_request	*mrq;
	struct	mmc_command	*cmd;
	struct	mmc_data	*data;
	struct	clk		*fclk;
	struct	clk		*dbclk;
161 162 163 164 165 166 167 168 169
	/*
	 * vcc == configured supply
	 * vcc_aux == optional
	 *   -	MMC1, supply for DAT4..DAT7
	 *   -	MMC2/MMC2, external level shifter voltage supply, for
	 *	chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
	 */
	struct	regulator	*vcc;
	struct	regulator	*vcc_aux;
170 171
	struct	regulator	*pbias;
	bool			pbias_enabled;
172 173
	void	__iomem		*base;
	resource_size_t		mapbase;
174
	spinlock_t		irq_lock; /* Prevent races with irq handler */
175
	unsigned int		dma_len;
176
	unsigned int		dma_sg_idx;
177
	unsigned char		bus_mode;
178
	unsigned char		power_mode;
179
	int			suspended;
180 181 182 183
	u32			con;
	u32			hctl;
	u32			sysctl;
	u32			capa;
184 185
	int			irq;
	int			use_dma, dma_ch;
186 187
	struct dma_chan		*tx_chan;
	struct dma_chan		*rx_chan;
188
	int			slot_id;
189
	int			response_busy;
190
	int			context_loss;
191 192
	int			protect_card;
	int			reqs_blocked;
193
	int			use_reg;
194
	int			req_in_progress;
195
	unsigned long		clk_rate;
196
	struct omap_hsmmc_next	next_data;
197 198 199
	struct	omap_mmc_platform_data	*pdata;
};

200 201 202 203 204
struct omap_mmc_of_data {
	u32 reg_offset;
	u8 controller_flags;
};

205 206
static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);

207 208
static int omap_hsmmc_card_detect(struct device *dev, int slot)
{
209 210
	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
	struct omap_mmc_platform_data *mmc = host->pdata;
211 212 213 214 215 216 217

	/* NOTE: assumes card detect signal is active-low */
	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
}

static int omap_hsmmc_get_wp(struct device *dev, int slot)
{
218 219
	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
	struct omap_mmc_platform_data *mmc = host->pdata;
220 221 222 223 224 225 226

	/* NOTE: assumes write protect signal is active-high */
	return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
}

static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
{
227 228
	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
	struct omap_mmc_platform_data *mmc = host->pdata;
229 230 231 232 233 234 235 236 237

	/* NOTE: assumes card detect signal is active-low */
	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
}

#ifdef CONFIG_PM

static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
{
238 239
	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
	struct omap_mmc_platform_data *mmc = host->pdata;
240 241 242 243 244 245 246

	disable_irq(mmc->slots[0].card_detect_irq);
	return 0;
}

static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
{
247 248
	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
	struct omap_mmc_platform_data *mmc = host->pdata;
249 250 251 252 253 254 255 256 257 258 259 260

	enable_irq(mmc->slots[0].card_detect_irq);
	return 0;
}

#else

#define omap_hsmmc_suspend_cdirq	NULL
#define omap_hsmmc_resume_cdirq		NULL

#endif

261 262
#ifdef CONFIG_REGULATOR

263
static int omap_hsmmc_set_power(struct device *dev, int slot, int power_on,
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
				   int vdd)
{
	struct omap_hsmmc_host *host =
		platform_get_drvdata(to_platform_device(dev));
	int ret = 0;

	/*
	 * If we don't see a Vcc regulator, assume it's a fixed
	 * voltage always-on regulator.
	 */
	if (!host->vcc)
		return 0;

	if (mmc_slot(host).before_set_reg)
		mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);

280 281 282 283 284 285 286 287 288
	if (host->pbias) {
		if (host->pbias_enabled == 1) {
			ret = regulator_disable(host->pbias);
			if (!ret)
				host->pbias_enabled = 0;
		}
		regulator_set_voltage(host->pbias, VDD_3V0, VDD_3V0);
	}

289 290 291 292 293 294 295 296 297 298 299 300 301 302
	/*
	 * Assume Vcc regulator is used only to power the card ... OMAP
	 * VDDS is used to power the pins, optionally with a transceiver to
	 * support cards using voltages other than VDDS (1.8V nominal).  When a
	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
	 *
	 * In some cases this regulator won't support enable/disable;
	 * e.g. it's a fixed rail for a WLAN chip.
	 *
	 * In other cases vcc_aux switches interface power.  Example, for
	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
	 * chips/cards need an interface voltage rail too.
	 */
	if (power_on) {
303 304
		if (host->vcc)
			ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
305 306 307
		/* Enable interface voltage rail, if needed */
		if (ret == 0 && host->vcc_aux) {
			ret = regulator_enable(host->vcc_aux);
308
			if (ret < 0 && host->vcc)
309 310
				ret = mmc_regulator_set_ocr(host->mmc,
							host->vcc, 0);
311 312
		}
	} else {
313
		/* Shut down the rail */
314 315
		if (host->vcc_aux)
			ret = regulator_disable(host->vcc_aux);
316
		if (host->vcc) {
317 318 319 320
			/* Then proceed to shut down the local regulator */
			ret = mmc_regulator_set_ocr(host->mmc,
						host->vcc, 0);
		}
321 322
	}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	if (host->pbias) {
		if (vdd <= VDD_165_195)
			ret = regulator_set_voltage(host->pbias, VDD_1V8,
								VDD_1V8);
		else
			ret = regulator_set_voltage(host->pbias, VDD_3V0,
								VDD_3V0);
		if (ret < 0)
			goto error_set_power;

		if (host->pbias_enabled == 0) {
			ret = regulator_enable(host->pbias);
			if (!ret)
				host->pbias_enabled = 1;
		}
	}

340 341 342
	if (mmc_slot(host).after_set_reg)
		mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);

343
error_set_power:
344 345 346 347 348 349
	return ret;
}

static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
{
	struct regulator *reg;
350
	int ocr_value = 0;
351

352
	reg = devm_regulator_get(host->dev, "vmmc");
353
	if (IS_ERR(reg)) {
354 355
		dev_err(host->dev, "unable to get vmmc regulator %ld\n",
			PTR_ERR(reg));
356
		return PTR_ERR(reg);
357 358
	} else {
		host->vcc = reg;
359 360 361 362 363
		ocr_value = mmc_regulator_get_ocrmask(reg);
		if (!mmc_slot(host).ocr_mask) {
			mmc_slot(host).ocr_mask = ocr_value;
		} else {
			if (!(mmc_slot(host).ocr_mask & ocr_value)) {
364
				dev_err(host->dev, "ocrmask %x is not supported\n",
365
					mmc_slot(host).ocr_mask);
366 367 368 369
				mmc_slot(host).ocr_mask = 0;
				return -EINVAL;
			}
		}
370 371
	}
	mmc_slot(host).set_power = omap_hsmmc_set_power;
372

373 374 375 376
	/* Allow an aux regulator */
	reg = devm_regulator_get_optional(host->dev, "vmmc_aux");
	host->vcc_aux = IS_ERR(reg) ? NULL : reg;

377 378 379
	reg = devm_regulator_get_optional(host->dev, "pbias");
	host->pbias = IS_ERR(reg) ? NULL : reg;

380 381 382 383 384 385 386 387 388 389 390 391 392
	/* For eMMC do not power off when not in sleep state */
	if (mmc_slot(host).no_regulator_off_init)
		return 0;
	/*
	 * To disable boot_on regulator, enable regulator
	 * to increase usecount and then disable it.
	 */
	if ((host->vcc && regulator_is_enabled(host->vcc) > 0) ||
	    (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
		int vdd = ffs(mmc_slot(host).ocr_mask) - 1;

		mmc_slot(host).set_power(host->dev, host->slot_id, 1, vdd);
		mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
393 394 395 396 397 398 399 400 401 402
	}

	return 0;
}

static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
{
	mmc_slot(host).set_power = NULL;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static inline int omap_hsmmc_have_reg(void)
{
	return 1;
}

#else

static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
{
	return -EINVAL;
}

static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
{
}

static inline int omap_hsmmc_have_reg(void)
{
	return 0;
}

#endif

static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
{
	int ret;

	if (gpio_is_valid(pdata->slots[0].switch_pin)) {
		if (pdata->slots[0].cover)
			pdata->slots[0].get_cover_state =
					omap_hsmmc_get_cover_state;
		else
			pdata->slots[0].card_detect = omap_hsmmc_card_detect;
		pdata->slots[0].card_detect_irq =
				gpio_to_irq(pdata->slots[0].switch_pin);
		ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
		if (ret)
			return ret;
		ret = gpio_direction_input(pdata->slots[0].switch_pin);
		if (ret)
			goto err_free_sp;
	} else
		pdata->slots[0].switch_pin = -EINVAL;

	if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
		pdata->slots[0].get_ro = omap_hsmmc_get_wp;
		ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
		if (ret)
			goto err_free_cd;
		ret = gpio_direction_input(pdata->slots[0].gpio_wp);
		if (ret)
			goto err_free_wp;
	} else
		pdata->slots[0].gpio_wp = -EINVAL;

	return 0;

err_free_wp:
	gpio_free(pdata->slots[0].gpio_wp);
err_free_cd:
	if (gpio_is_valid(pdata->slots[0].switch_pin))
err_free_sp:
		gpio_free(pdata->slots[0].switch_pin);
	return ret;
}

static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
{
	if (gpio_is_valid(pdata->slots[0].gpio_wp))
		gpio_free(pdata->slots[0].gpio_wp);
	if (gpio_is_valid(pdata->slots[0].switch_pin))
		gpio_free(pdata->slots[0].switch_pin);
}

477 478 479 480 481 482 483 484 485
/*
 * Start clock to the card
 */
static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
{
	OMAP_HSMMC_WRITE(host->base, SYSCTL,
		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
}

486 487 488
/*
 * Stop clock to the card
 */
489
static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
490 491 492 493
{
	OMAP_HSMMC_WRITE(host->base, SYSCTL,
		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
M
Masanari Iida 已提交
494
		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
495 496
}

497 498
static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
				  struct mmc_command *cmd)
499 500 501 502
{
	unsigned int irq_mask;

	if (host->use_dma)
503
		irq_mask = INT_EN_MASK & ~(BRR_EN | BWR_EN);
504 505 506
	else
		irq_mask = INT_EN_MASK;

507 508
	/* Disable timeout for erases */
	if (cmd->opcode == MMC_ERASE)
509
		irq_mask &= ~DTO_EN;
510

511 512 513 514 515 516 517 518 519 520 521 522
	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
}

static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
{
	OMAP_HSMMC_WRITE(host->base, ISE, 0);
	OMAP_HSMMC_WRITE(host->base, IE, 0);
	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
}

523
/* Calculate divisor for the given clock frequency */
524
static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
525 526 527 528
{
	u16 dsor = 0;

	if (ios->clock) {
529
		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
530 531
		if (dsor > CLKD_MAX)
			dsor = CLKD_MAX;
532 533 534 535 536
	}

	return dsor;
}

537 538 539 540 541
static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
{
	struct mmc_ios *ios = &host->mmc->ios;
	unsigned long regval;
	unsigned long timeout;
542
	unsigned long clkdiv;
543

544
	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
545 546 547 548 549

	omap_hsmmc_stop_clock(host);

	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
	regval = regval & ~(CLKD_MASK | DTO_MASK);
550 551
	clkdiv = calc_divisor(host, ios);
	regval = regval | (clkdiv << 6) | (DTO << 16);
552 553 554 555 556 557 558 559 560 561
	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
	OMAP_HSMMC_WRITE(host->base, SYSCTL,
		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);

	/* Wait till the ICS bit is set */
	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
		&& time_before(jiffies, timeout))
		cpu_relax();

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	/*
	 * Enable High-Speed Support
	 * Pre-Requisites
	 *	- Controller should support High-Speed-Enable Bit
	 *	- Controller should not be using DDR Mode
	 *	- Controller should advertise that it supports High Speed
	 *	  in capabilities register
	 *	- MMC/SD clock coming out of controller > 25MHz
	 */
	if ((mmc_slot(host).features & HSMMC_HAS_HSPE_SUPPORT) &&
	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
		regval = OMAP_HSMMC_READ(host->base, HCTL);
		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
			regval |= HSPE;
		else
			regval &= ~HSPE;

		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
	}

583 584 585
	omap_hsmmc_start_clock(host);
}

586 587 588 589 590 591
static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
{
	struct mmc_ios *ios = &host->mmc->ios;
	u32 con;

	con = OMAP_HSMMC_READ(host->base, CON);
592 593 594 595
	if (ios->timing == MMC_TIMING_UHS_DDR50)
		con |= DDR;	/* configure in DDR mode */
	else
		con &= ~DDR;
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	switch (ios->bus_width) {
	case MMC_BUS_WIDTH_8:
		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
		break;
	case MMC_BUS_WIDTH_4:
		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
		OMAP_HSMMC_WRITE(host->base, HCTL,
			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
		break;
	case MMC_BUS_WIDTH_1:
		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
		OMAP_HSMMC_WRITE(host->base, HCTL,
			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
		break;
	}
}

static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
{
	struct mmc_ios *ios = &host->mmc->ios;
	u32 con;

	con = OMAP_HSMMC_READ(host->base, CON);
	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
	else
		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
}

625 626 627 628 629 630
#ifdef CONFIG_PM

/*
 * Restore the MMC host context, if it was lost as result of a
 * power state change.
 */
631
static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
632 633
{
	struct mmc_ios *ios = &host->mmc->ios;
634
	u32 hctl, capa;
635 636
	unsigned long timeout;

637 638 639 640 641 642 643 644
	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
		return 0;

	host->context_loss++;

645
	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
		if (host->power_mode != MMC_POWER_OFF &&
		    (1 << ios->vdd) <= MMC_VDD_23_24)
			hctl = SDVS18;
		else
			hctl = SDVS30;
		capa = VS30 | VS18;
	} else {
		hctl = SDVS18;
		capa = VS18;
	}

	OMAP_HSMMC_WRITE(host->base, HCTL,
			OMAP_HSMMC_READ(host->base, HCTL) | hctl);

	OMAP_HSMMC_WRITE(host->base, CAPA,
			OMAP_HSMMC_READ(host->base, CAPA) | capa);

	OMAP_HSMMC_WRITE(host->base, HCTL,
			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);

	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
		&& time_before(jiffies, timeout))
		;

671
	omap_hsmmc_disable_irq(host);
672 673 674 675 676

	/* Do not initialize card-specific things if the power is off */
	if (host->power_mode == MMC_POWER_OFF)
		goto out;

677
	omap_hsmmc_set_bus_width(host);
678

679
	omap_hsmmc_set_clock(host);
680

681 682
	omap_hsmmc_set_bus_mode(host);

683
out:
684 685
	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
		host->context_loss);
686 687 688 689 690 691
	return 0;
}

/*
 * Save the MMC host context (store the number of power state changes so far).
 */
692
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
693
{
694 695 696 697
	host->con =  OMAP_HSMMC_READ(host->base, CON);
	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
698 699 700 701
}

#else

702
static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
703 704 705 706
{
	return 0;
}

707
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
708 709 710 711 712
{
}

#endif

713 714 715 716
/*
 * Send init stream sequence to card
 * before sending IDLE command
 */
717
static void send_init_stream(struct omap_hsmmc_host *host)
718 719 720 721
{
	int reg = 0;
	unsigned long timeout;

722 723 724
	if (host->protect_card)
		return;

725
	disable_irq(host->irq);
726 727

	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
728 729 730 731 732
	OMAP_HSMMC_WRITE(host->base, CON,
		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);

	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
733 734
	while ((reg != CC_EN) && time_before(jiffies, timeout))
		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
735 736 737

	OMAP_HSMMC_WRITE(host->base, CON,
		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
738 739 740 741

	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
	OMAP_HSMMC_READ(host->base, STAT);

742 743 744 745
	enable_irq(host->irq);
}

static inline
746
int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
747 748 749
{
	int r = 1;

750 751
	if (mmc_slot(host).get_cover_state)
		r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
752 753 754 755
	return r;
}

static ssize_t
756
omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
757 758 759
			   char *buf)
{
	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
760
	struct omap_hsmmc_host *host = mmc_priv(mmc);
761

762 763
	return sprintf(buf, "%s\n",
			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
764 765
}

766
static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
767 768

static ssize_t
769
omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
770 771 772
			char *buf)
{
	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
773
	struct omap_hsmmc_host *host = mmc_priv(mmc);
774

775
	return sprintf(buf, "%s\n", mmc_slot(host).name);
776 777
}

778
static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
779 780 781 782 783

/*
 * Configure the response type and send the cmd.
 */
static void
784
omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
785 786 787 788
	struct mmc_data *data)
{
	int cmdreg = 0, resptype = 0, cmdtype = 0;

789
	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
790 791 792
		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
	host->cmd = cmd;

793
	omap_hsmmc_enable_irq(host, cmd);
794

795
	host->response_busy = 0;
796 797 798
	if (cmd->flags & MMC_RSP_PRESENT) {
		if (cmd->flags & MMC_RSP_136)
			resptype = 1;
799 800 801 802
		else if (cmd->flags & MMC_RSP_BUSY) {
			resptype = 3;
			host->response_busy = 1;
		} else
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
			resptype = 2;
	}

	/*
	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
	 * a val of 0x3, rest 0x0.
	 */
	if (cmd == host->mrq->stop)
		cmdtype = 0x3;

	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);

	if (data) {
		cmdreg |= DP_SELECT | MSBS | BCE;
		if (data->flags & MMC_DATA_READ)
			cmdreg |= DDIR;
		else
			cmdreg &= ~(DDIR);
	}

	if (host->use_dma)
825
		cmdreg |= DMAE;
826

827
	host->req_in_progress = 1;
828

829 830 831 832
	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
}

833
static int
834
omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
835 836 837 838 839 840 841
{
	if (data->flags & MMC_DATA_WRITE)
		return DMA_TO_DEVICE;
	else
		return DMA_FROM_DEVICE;
}

842 843 844 845 846 847
static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
	struct mmc_data *data)
{
	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
}

848 849 850
static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
{
	int dma_ch;
851
	unsigned long flags;
852

853
	spin_lock_irqsave(&host->irq_lock, flags);
854 855
	host->req_in_progress = 0;
	dma_ch = host->dma_ch;
856
	spin_unlock_irqrestore(&host->irq_lock, flags);
857 858 859 860 861 862 863 864 865

	omap_hsmmc_disable_irq(host);
	/* Do not complete the request if DMA is still in progress */
	if (mrq->data && host->use_dma && dma_ch != -1)
		return;
	host->mrq = NULL;
	mmc_request_done(host->mmc, mrq);
}

866 867 868 869
/*
 * Notify the transfer complete to MMC core
 */
static void
870
omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
871
{
872 873 874
	if (!data) {
		struct mmc_request *mrq = host->mrq;

875 876 877 878 879 880 881
		/* TC before CC from CMD6 - don't know why, but it happens */
		if (host->cmd && host->cmd->opcode == 6 &&
		    host->response_busy) {
			host->response_busy = 0;
			return;
		}

882
		omap_hsmmc_request_done(host, mrq);
883 884 885
		return;
	}

886 887 888 889 890 891 892
	host->data = NULL;

	if (!data->error)
		data->bytes_xfered += data->blocks * (data->blksz);
	else
		data->bytes_xfered = 0;

893 894 895
	if (data->stop && (data->error || !host->mrq->sbc))
		omap_hsmmc_start_command(host, data->stop, NULL);
	else
896
		omap_hsmmc_request_done(host, data->mrq);
897 898 899 900 901 902
}

/*
 * Notify the core about command completion
 */
static void
903
omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
904 905 906
{
	host->cmd = NULL;

907 908 909 910 911 912 913 914
	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
	    !host->mrq->sbc->error) {
		omap_hsmmc_start_dma_transfer(host);
		omap_hsmmc_start_command(host, host->mrq->cmd,
						host->mrq->data);
		return;
	}

915 916 917 918 919 920 921 922 923 924 925 926
	if (cmd->flags & MMC_RSP_PRESENT) {
		if (cmd->flags & MMC_RSP_136) {
			/* response type 2 */
			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
		} else {
			/* response types 1, 1b, 3, 4, 5, 6 */
			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
		}
	}
927
	if ((host->data == NULL && !host->response_busy) || cmd->error)
928
		omap_hsmmc_request_done(host, host->mrq);
929 930 931 932 933
}

/*
 * DMA clean up for command errors
 */
934
static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
935
{
936
	int dma_ch;
937
	unsigned long flags;
938

939
	host->data->error = errno;
940

941
	spin_lock_irqsave(&host->irq_lock, flags);
942 943
	dma_ch = host->dma_ch;
	host->dma_ch = -1;
944
	spin_unlock_irqrestore(&host->irq_lock, flags);
945 946

	if (host->use_dma && dma_ch != -1) {
947 948 949 950 951
		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);

		dmaengine_terminate_all(chan);
		dma_unmap_sg(chan->device->dev,
			host->data->sg, host->data->sg_len,
952
			omap_hsmmc_get_dma_dir(host, host->data));
953

954
		host->data->host_cookie = 0;
955 956 957 958 959 960 961 962
	}
	host->data = NULL;
}

/*
 * Readable error output
 */
#ifdef CONFIG_MMC_DEBUG
963
static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
964 965
{
	/* --- means reserved bit without definition at documentation */
966
	static const char *omap_hsmmc_status_bits[] = {
967 968 969 970
		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
971 972 973 974 975 976 977 978
	};
	char res[256];
	char *buf = res;
	int len, i;

	len = sprintf(buf, "MMC IRQ 0x%x :", status);
	buf += len;

979
	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
980
		if (status & (1 << i)) {
981
			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
982 983 984
			buf += len;
		}

985
	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
986
}
987 988 989 990 991
#else
static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
					     u32 status)
{
}
992 993
#endif  /* CONFIG_MMC_DEBUG */

994 995 996 997 998 999 1000
/*
 * MMC controller internal state machines reset
 *
 * Used to reset command or data internal state machines, using respectively
 *  SRC or SRD bit of SYSCTL register
 * Can be called from interrupt context
 */
1001 1002
static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
						   unsigned long bit)
1003 1004
{
	unsigned long i = 0;
1005
	unsigned long limit = MMC_TIMEOUT_US;
1006 1007 1008 1009

	OMAP_HSMMC_WRITE(host->base, SYSCTL,
			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);

1010 1011 1012 1013 1014
	/*
	 * OMAP4 ES2 and greater has an updated reset logic.
	 * Monitor a 0->1 transition first
	 */
	if (mmc_slot(host).features & HSMMC_HAS_UPDATED_RESET) {
1015
		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1016
					&& (i++ < limit))
1017
			udelay(1);
1018 1019 1020
	}
	i = 0;

1021 1022
	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
		(i++ < limit))
1023
		udelay(1);
1024 1025 1026 1027 1028 1029

	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
		dev_err(mmc_dev(host->mmc),
			"Timeout waiting on controller reset in %s\n",
			__func__);
}
1030

1031 1032
static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
					int err, int end_cmd)
1033
{
1034
	if (end_cmd) {
1035
		omap_hsmmc_reset_controller_fsm(host, SRC);
1036 1037 1038
		if (host->cmd)
			host->cmd->error = err;
	}
1039 1040 1041 1042

	if (host->data) {
		omap_hsmmc_reset_controller_fsm(host, SRD);
		omap_hsmmc_dma_cleanup(host, err);
1043 1044
	} else if (host->mrq && host->mrq->cmd)
		host->mrq->cmd->error = err;
1045 1046
}

1047
static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1048 1049
{
	struct mmc_data *data;
1050 1051
	int end_cmd = 0, end_trans = 0;

1052
	data = host->data;
1053
	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1054

1055
	if (status & ERR_EN) {
1056
		omap_hsmmc_dbg_report_irq(host, status);
1057

1058
		if (status & (CTO_EN | CCRC_EN))
1059
			end_cmd = 1;
1060
		if (status & (CTO_EN | DTO_EN))
1061
			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1062
		else if (status & (CCRC_EN | DCRC_EN))
1063
			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1064 1065

		if (host->data || host->response_busy) {
1066
			end_trans = !end_cmd;
1067
			host->response_busy = 0;
1068 1069 1070
		}
	}

1071
	OMAP_HSMMC_WRITE(host->base, STAT, status);
1072
	if (end_cmd || ((status & CC_EN) && host->cmd))
1073
		omap_hsmmc_cmd_done(host, host->cmd);
1074
	if ((end_trans || (status & TC_EN)) && host->mrq)
1075
		omap_hsmmc_xfer_done(host, data);
1076
}
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * MMC controller IRQ handler
 */
static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
{
	struct omap_hsmmc_host *host = dev_id;
	int status;

	status = OMAP_HSMMC_READ(host->base, STAT);
1087
	while (status & INT_EN_MASK && host->req_in_progress) {
1088
		omap_hsmmc_do_irq(host, status);
1089

1090 1091
		/* Flush posted write */
		status = OMAP_HSMMC_READ(host->base, STAT);
1092
	}
1093

1094 1095 1096
	return IRQ_HANDLED;
}

1097
static void set_sd_bus_power(struct omap_hsmmc_host *host)
A
Adrian Hunter 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
{
	unsigned long i;

	OMAP_HSMMC_WRITE(host->base, HCTL,
			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
	for (i = 0; i < loops_per_jiffy; i++) {
		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
			break;
		cpu_relax();
	}
}

1110
/*
1111 1112 1113 1114 1115
 * Switch MMC interface voltage ... only relevant for MMC1.
 *
 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
 * Some chips, like eMMC ones, use internal transceivers.
1116
 */
1117
static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1118 1119 1120 1121 1122
{
	u32 reg_val = 0;
	int ret;

	/* Disable the clocks */
1123
	pm_runtime_put_sync(host->dev);
1124
	if (host->dbclk)
1125
		clk_disable_unprepare(host->dbclk);
1126 1127 1128 1129 1130

	/* Turn the power off */
	ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);

	/* Turn the power ON with given VDD 1.8 or 3.0v */
1131 1132 1133
	if (!ret)
		ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
					       vdd);
1134
	pm_runtime_get_sync(host->dev);
1135
	if (host->dbclk)
1136
		clk_prepare_enable(host->dbclk);
1137

1138 1139 1140 1141 1142 1143
	if (ret != 0)
		goto err;

	OMAP_HSMMC_WRITE(host->base, HCTL,
		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1144

1145 1146 1147
	/*
	 * If a MMC dual voltage card is detected, the set_ios fn calls
	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1148
	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1149
	 *
1150 1151 1152 1153 1154 1155 1156 1157 1158
	 * Cope with a bit of slop in the range ... per data sheets:
	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
	 *    but recommended values are 1.71V to 1.89V
	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
	 *    but recommended values are 2.7V to 3.3V
	 *
	 * Board setup code shouldn't permit anything very out-of-range.
	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1159
	 */
1160
	if ((1 << vdd) <= MMC_VDD_23_24)
1161
		reg_val |= SDVS18;
1162 1163
	else
		reg_val |= SDVS30;
1164 1165

	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
A
Adrian Hunter 已提交
1166
	set_sd_bus_power(host);
1167 1168 1169

	return 0;
err:
1170
	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1171 1172 1173
	return ret;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182
/* Protect the card while the cover is open */
static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
{
	if (!mmc_slot(host).get_cover_state)
		return;

	host->reqs_blocked = 0;
	if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
		if (host->protect_card) {
1183
			dev_info(host->dev, "%s: cover is closed, "
1184 1185 1186 1187 1188 1189
					 "card is now accessible\n",
					 mmc_hostname(host->mmc));
			host->protect_card = 0;
		}
	} else {
		if (!host->protect_card) {
1190
			dev_info(host->dev, "%s: cover is open, "
1191 1192 1193 1194 1195 1196 1197
					 "card is now inaccessible\n",
					 mmc_hostname(host->mmc));
			host->protect_card = 1;
		}
	}
}

1198
/*
1199
 * irq handler to notify the core about card insertion/removal
1200
 */
1201
static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
1202
{
1203
	struct omap_hsmmc_host *host = dev_id;
1204
	struct omap_mmc_slot_data *slot = &mmc_slot(host);
1205 1206 1207
	int carddetect;

	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1208

1209
	if (slot->card_detect)
1210
		carddetect = slot->card_detect(host->dev, host->slot_id);
1211 1212
	else {
		omap_hsmmc_protect_card(host);
1213
		carddetect = -ENOSYS;
1214
	}
1215

1216
	if (carddetect)
1217
		mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1218
	else
1219 1220 1221 1222
		mmc_detect_change(host->mmc, (HZ * 50) / 1000);
	return IRQ_HANDLED;
}

1223
static void omap_hsmmc_dma_callback(void *param)
1224
{
1225 1226
	struct omap_hsmmc_host *host = param;
	struct dma_chan *chan;
1227
	struct mmc_data *data;
1228
	int req_in_progress;
1229

1230
	spin_lock_irq(&host->irq_lock);
1231
	if (host->dma_ch < 0) {
1232
		spin_unlock_irq(&host->irq_lock);
1233
		return;
1234
	}
1235

1236
	data = host->mrq->data;
1237
	chan = omap_hsmmc_get_dma_chan(host, data);
1238
	if (!data->host_cookie)
1239 1240
		dma_unmap_sg(chan->device->dev,
			     data->sg, data->sg_len,
1241
			     omap_hsmmc_get_dma_dir(host, data));
1242 1243

	req_in_progress = host->req_in_progress;
1244
	host->dma_ch = -1;
1245
	spin_unlock_irq(&host->irq_lock);
1246 1247 1248 1249 1250 1251 1252 1253

	/* If DMA has finished after TC, complete the request */
	if (!req_in_progress) {
		struct mmc_request *mrq = host->mrq;

		host->mrq = NULL;
		mmc_request_done(host->mmc, mrq);
	}
1254 1255
}

1256 1257
static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
				       struct mmc_data *data,
1258
				       struct omap_hsmmc_next *next,
1259
				       struct dma_chan *chan)
1260 1261 1262 1263 1264
{
	int dma_len;

	if (!next && data->host_cookie &&
	    data->host_cookie != host->next_data.cookie) {
1265
		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1266 1267 1268 1269 1270 1271
		       " host->next_data.cookie %d\n",
		       __func__, data->host_cookie, host->next_data.cookie);
		data->host_cookie = 0;
	}

	/* Check if next job is already prepared */
1272
	if (next || data->host_cookie != host->next_data.cookie) {
1273
		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
				     omap_hsmmc_get_dma_dir(host, data));

	} else {
		dma_len = host->next_data.dma_len;
		host->next_data.dma_len = 0;
	}


	if (dma_len == 0)
		return -EINVAL;

	if (next) {
		next->dma_len = dma_len;
		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
	} else
		host->dma_len = dma_len;

	return 0;
}

1294 1295 1296
/*
 * Routine to configure and start DMA for the MMC card
 */
1297
static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1298
					struct mmc_request *req)
1299
{
1300 1301 1302
	struct dma_slave_config cfg;
	struct dma_async_tx_descriptor *tx;
	int ret = 0, i;
1303
	struct mmc_data *data = req->data;
1304
	struct dma_chan *chan;
1305

1306
	/* Sanity check: all the SG entries must be aligned by block size. */
1307
	for (i = 0; i < data->sg_len; i++) {
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		struct scatterlist *sgl;

		sgl = data->sg + i;
		if (sgl->length % data->blksz)
			return -EINVAL;
	}
	if ((data->blksz % 4) != 0)
		/* REVISIT: The MMC buffer increments only when MSB is written.
		 * Return error for blksz which is non multiple of four.
		 */
		return -EINVAL;

1320
	BUG_ON(host->dma_ch != -1);
1321

1322 1323
	chan = omap_hsmmc_get_dma_chan(host, data);

1324 1325 1326 1327 1328 1329
	cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
	cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	cfg.src_maxburst = data->blksz / 4;
	cfg.dst_maxburst = data->blksz / 4;
1330

1331 1332
	ret = dmaengine_slave_config(chan, &cfg);
	if (ret)
1333
		return ret;
1334

1335
	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1336 1337
	if (ret)
		return ret;
1338

1339 1340 1341 1342 1343 1344 1345 1346
	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!tx) {
		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
		/* FIXME: cleanup */
		return -1;
	}
1347

1348 1349
	tx->callback = omap_hsmmc_dma_callback;
	tx->callback_param = host;
1350

1351 1352
	/* Does not fail */
	dmaengine_submit(tx);
1353

1354
	host->dma_ch = 1;
1355

1356 1357 1358
	return 0;
}

1359
static void set_data_timeout(struct omap_hsmmc_host *host,
1360 1361
			     unsigned int timeout_ns,
			     unsigned int timeout_clks)
1362 1363 1364 1365 1366 1367 1368 1369 1370
{
	unsigned int timeout, cycle_ns;
	uint32_t reg, clkd, dto = 0;

	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
	if (clkd == 0)
		clkd = 1;

1371
	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1372 1373
	timeout = timeout_ns / cycle_ns;
	timeout += timeout_clks;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	if (timeout) {
		while ((timeout & 0x80000000) == 0) {
			dto += 1;
			timeout <<= 1;
		}
		dto = 31 - dto;
		timeout <<= 1;
		if (timeout && dto)
			dto += 1;
		if (dto >= 13)
			dto -= 13;
		else
			dto = 0;
		if (dto > 14)
			dto = 14;
	}

	reg &= ~DTO_MASK;
	reg |= dto << DTO_SHIFT;
	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
{
	struct mmc_request *req = host->mrq;
	struct dma_chan *chan;

	if (!req->data)
		return;
	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
				| (req->data->blocks << 16));
	set_data_timeout(host, req->data->timeout_ns,
				req->data->timeout_clks);
	chan = omap_hsmmc_get_dma_chan(host, req->data);
	dma_async_issue_pending(chan);
}

1411 1412 1413 1414
/*
 * Configure block length for MMC/SD cards and initiate the transfer.
 */
static int
1415
omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1416 1417 1418 1419 1420 1421
{
	int ret;
	host->data = req->data;

	if (req->data == NULL) {
		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1422 1423 1424 1425 1426 1427
		/*
		 * Set an arbitrary 100ms data timeout for commands with
		 * busy signal.
		 */
		if (req->cmd->flags & MMC_RSP_BUSY)
			set_data_timeout(host, 100000000U, 0);
1428 1429 1430 1431
		return 0;
	}

	if (host->use_dma) {
1432
		ret = omap_hsmmc_setup_dma_transfer(host, req);
1433
		if (ret != 0) {
1434
			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1435 1436 1437 1438 1439 1440
			return ret;
		}
	}
	return 0;
}

1441 1442 1443 1444 1445 1446
static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
				int err)
{
	struct omap_hsmmc_host *host = mmc_priv(mmc);
	struct mmc_data *data = mrq->data;

1447
	if (host->use_dma && data->host_cookie) {
1448 1449
		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);

1450 1451
		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
			     omap_hsmmc_get_dma_dir(host, data));
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		data->host_cookie = 0;
	}
}

static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
			       bool is_first_req)
{
	struct omap_hsmmc_host *host = mmc_priv(mmc);

	if (mrq->data->host_cookie) {
		mrq->data->host_cookie = 0;
		return ;
	}

1466 1467 1468
	if (host->use_dma) {
		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);

1469
		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1470
						&host->next_data, c))
1471
			mrq->data->host_cookie = 0;
1472
	}
1473 1474
}

1475 1476 1477
/*
 * Request function. for read/write operation
 */
1478
static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1479
{
1480
	struct omap_hsmmc_host *host = mmc_priv(mmc);
1481
	int err;
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	BUG_ON(host->req_in_progress);
	BUG_ON(host->dma_ch != -1);
	if (host->protect_card) {
		if (host->reqs_blocked < 3) {
			/*
			 * Ensure the controller is left in a consistent
			 * state by resetting the command and data state
			 * machines.
			 */
			omap_hsmmc_reset_controller_fsm(host, SRD);
			omap_hsmmc_reset_controller_fsm(host, SRC);
			host->reqs_blocked += 1;
		}
		req->cmd->error = -EBADF;
		if (req->data)
			req->data->error = -EBADF;
		req->cmd->retries = 0;
		mmc_request_done(mmc, req);
		return;
	} else if (host->reqs_blocked)
		host->reqs_blocked = 0;
1504 1505
	WARN_ON(host->mrq != NULL);
	host->mrq = req;
1506
	host->clk_rate = clk_get_rate(host->fclk);
1507
	err = omap_hsmmc_prepare_data(host, req);
1508 1509 1510 1511 1512 1513 1514 1515
	if (err) {
		req->cmd->error = err;
		if (req->data)
			req->data->error = err;
		host->mrq = NULL;
		mmc_request_done(mmc, req);
		return;
	}
1516 1517 1518 1519
	if (req->sbc) {
		omap_hsmmc_start_command(host, req->sbc, NULL);
		return;
	}
1520

1521
	omap_hsmmc_start_dma_transfer(host);
1522
	omap_hsmmc_start_command(host, req->cmd, req->data);
1523 1524 1525
}

/* Routine to configure clock values. Exposed API to core */
1526
static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1527
{
1528
	struct omap_hsmmc_host *host = mmc_priv(mmc);
1529
	int do_send_init_stream = 0;
1530

1531
	pm_runtime_get_sync(host->dev);
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	if (ios->power_mode != host->power_mode) {
		switch (ios->power_mode) {
		case MMC_POWER_OFF:
			mmc_slot(host).set_power(host->dev, host->slot_id,
						 0, 0);
			break;
		case MMC_POWER_UP:
			mmc_slot(host).set_power(host->dev, host->slot_id,
						 1, ios->vdd);
			break;
		case MMC_POWER_ON:
			do_send_init_stream = 1;
			break;
		}
		host->power_mode = ios->power_mode;
1548 1549
	}

1550 1551
	/* FIXME: set registers based only on changes to ios */

1552
	omap_hsmmc_set_bus_width(host);
1553

1554
	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1555 1556 1557
		/* Only MMC1 can interface at 3V without some flavor
		 * of external transceiver; but they all handle 1.8V.
		 */
1558
		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1559
			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1560 1561 1562 1563 1564 1565
				/*
				 * The mmc_select_voltage fn of the core does
				 * not seem to set the power_mode to
				 * MMC_POWER_UP upon recalculating the voltage.
				 * vdd 1.8v.
				 */
1566 1567
			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
				dev_dbg(mmc_dev(host->mmc),
1568 1569 1570 1571
						"Switch operation failed\n");
		}
	}

1572
	omap_hsmmc_set_clock(host);
1573

1574
	if (do_send_init_stream)
1575 1576
		send_init_stream(host);

1577
	omap_hsmmc_set_bus_mode(host);
1578

1579
	pm_runtime_put_autosuspend(host->dev);
1580 1581 1582 1583
}

static int omap_hsmmc_get_cd(struct mmc_host *mmc)
{
1584
	struct omap_hsmmc_host *host = mmc_priv(mmc);
1585

1586
	if (!mmc_slot(host).card_detect)
1587
		return -ENOSYS;
1588
	return mmc_slot(host).card_detect(host->dev, host->slot_id);
1589 1590 1591 1592
}

static int omap_hsmmc_get_ro(struct mmc_host *mmc)
{
1593
	struct omap_hsmmc_host *host = mmc_priv(mmc);
1594

1595
	if (!mmc_slot(host).get_ro)
1596
		return -ENOSYS;
1597
	return mmc_slot(host).get_ro(host->dev, 0);
1598 1599
}

1600 1601 1602 1603 1604 1605 1606 1607
static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
{
	struct omap_hsmmc_host *host = mmc_priv(mmc);

	if (mmc_slot(host).init_card)
		mmc_slot(host).init_card(card);
}

1608
static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1609 1610 1611 1612
{
	u32 hctl, capa, value;

	/* Only MMC1 supports 3.0V */
1613
	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		hctl = SDVS30;
		capa = VS30 | VS18;
	} else {
		hctl = SDVS18;
		capa = VS18;
	}

	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);

	value = OMAP_HSMMC_READ(host->base, CAPA);
	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);

	/* Set SD bus power bit */
A
Adrian Hunter 已提交
1628
	set_sd_bus_power(host);
1629 1630
}

1631
static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
1632
{
1633
	struct omap_hsmmc_host *host = mmc_priv(mmc);
1634

1635 1636
	pm_runtime_get_sync(host->dev);

1637 1638 1639
	return 0;
}

1640
static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
1641
{
1642
	struct omap_hsmmc_host *host = mmc_priv(mmc);
1643

1644 1645 1646
	pm_runtime_mark_last_busy(host->dev);
	pm_runtime_put_autosuspend(host->dev);

1647 1648 1649
	return 0;
}

1650 1651 1652
static const struct mmc_host_ops omap_hsmmc_ops = {
	.enable = omap_hsmmc_enable_fclk,
	.disable = omap_hsmmc_disable_fclk,
1653 1654
	.post_req = omap_hsmmc_post_req,
	.pre_req = omap_hsmmc_pre_req,
1655 1656
	.request = omap_hsmmc_request,
	.set_ios = omap_hsmmc_set_ios,
1657 1658
	.get_cd = omap_hsmmc_get_cd,
	.get_ro = omap_hsmmc_get_ro,
1659
	.init_card = omap_hsmmc_init_card,
1660 1661 1662
	/* NYET -- enable_sdio_irq */
};

1663 1664
#ifdef CONFIG_DEBUG_FS

1665
static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1666 1667
{
	struct mmc_host *mmc = s->private;
1668
	struct omap_hsmmc_host *host = mmc_priv(mmc);
1669

1670 1671
	seq_printf(s, "mmc%d:\n ctx_loss:\t%d\n\nregs:\n",
			mmc->index, host->context_loss);
1672

1673
	pm_runtime_get_sync(host->dev);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

	seq_printf(s, "CON:\t\t0x%08x\n",
			OMAP_HSMMC_READ(host->base, CON));
	seq_printf(s, "HCTL:\t\t0x%08x\n",
			OMAP_HSMMC_READ(host->base, HCTL));
	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
			OMAP_HSMMC_READ(host->base, SYSCTL));
	seq_printf(s, "IE:\t\t0x%08x\n",
			OMAP_HSMMC_READ(host->base, IE));
	seq_printf(s, "ISE:\t\t0x%08x\n",
			OMAP_HSMMC_READ(host->base, ISE));
	seq_printf(s, "CAPA:\t\t0x%08x\n",
			OMAP_HSMMC_READ(host->base, CAPA));
1687

1688 1689
	pm_runtime_mark_last_busy(host->dev);
	pm_runtime_put_autosuspend(host->dev);
1690

1691 1692 1693
	return 0;
}

1694
static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1695
{
1696
	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1697 1698 1699
}

static const struct file_operations mmc_regs_fops = {
1700
	.open           = omap_hsmmc_regs_open,
1701 1702 1703 1704 1705
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

1706
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1707 1708 1709 1710 1711 1712 1713 1714
{
	if (mmc->debugfs_root)
		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
			mmc, &mmc_regs_fops);
}

#else

1715
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1716 1717 1718 1719 1720
{
}

#endif

1721
#ifdef CONFIG_OF
1722 1723 1724 1725 1726 1727 1728 1729
static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
	/* See 35xx errata 2.1.1.128 in SPRZ278F */
	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
};

static const struct omap_mmc_of_data omap4_mmc_of_data = {
	.reg_offset = 0x100,
};
1730 1731 1732 1733 1734

static const struct of_device_id omap_mmc_of_match[] = {
	{
		.compatible = "ti,omap2-hsmmc",
	},
1735 1736 1737 1738
	{
		.compatible = "ti,omap3-pre-es3-hsmmc",
		.data = &omap3_pre_es3_mmc_of_data,
	},
1739 1740 1741 1742 1743
	{
		.compatible = "ti,omap3-hsmmc",
	},
	{
		.compatible = "ti,omap4-hsmmc",
1744
		.data = &omap4_mmc_of_data,
1745 1746
	},
	{},
1747
};
1748 1749 1750 1751 1752 1753
MODULE_DEVICE_TABLE(of, omap_mmc_of_match);

static struct omap_mmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
{
	struct omap_mmc_platform_data *pdata;
	struct device_node *np = dev->of_node;
1754
	u32 bus_width, max_freq;
1755 1756 1757 1758 1759 1760
	int cd_gpio, wp_gpio;

	cd_gpio = of_get_named_gpio(np, "cd-gpios", 0);
	wp_gpio = of_get_named_gpio(np, "wp-gpios", 0);
	if (cd_gpio == -EPROBE_DEFER || wp_gpio == -EPROBE_DEFER)
		return ERR_PTR(-EPROBE_DEFER);
1761 1762 1763

	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata)
1764
		return ERR_PTR(-ENOMEM); /* out of memory */
1765 1766 1767 1768 1769 1770

	if (of_find_property(np, "ti,dual-volt", NULL))
		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;

	/* This driver only supports 1 slot */
	pdata->nr_slots = 1;
1771 1772
	pdata->slots[0].switch_pin = cd_gpio;
	pdata->slots[0].gpio_wp = wp_gpio;
1773 1774 1775 1776 1777

	if (of_find_property(np, "ti,non-removable", NULL)) {
		pdata->slots[0].nonremovable = true;
		pdata->slots[0].no_regulator_off_init = true;
	}
1778
	of_property_read_u32(np, "bus-width", &bus_width);
1779 1780 1781 1782 1783 1784 1785 1786
	if (bus_width == 4)
		pdata->slots[0].caps |= MMC_CAP_4_BIT_DATA;
	else if (bus_width == 8)
		pdata->slots[0].caps |= MMC_CAP_8_BIT_DATA;

	if (of_find_property(np, "ti,needs-special-reset", NULL))
		pdata->slots[0].features |= HSMMC_HAS_UPDATED_RESET;

1787 1788 1789
	if (!of_property_read_u32(np, "max-frequency", &max_freq))
		pdata->max_freq = max_freq;

1790 1791 1792
	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
		pdata->slots[0].features |= HSMMC_HAS_HSPE_SUPPORT;

1793 1794 1795 1796 1797 1798
	if (of_find_property(np, "keep-power-in-suspend", NULL))
		pdata->slots[0].pm_caps |= MMC_PM_KEEP_POWER;

	if (of_find_property(np, "enable-sdio-wakeup", NULL))
		pdata->slots[0].pm_caps |= MMC_PM_WAKE_SDIO_IRQ;

1799 1800 1801 1802 1803 1804
	return pdata;
}
#else
static inline struct omap_mmc_platform_data
			*of_get_hsmmc_pdata(struct device *dev)
{
1805
	return ERR_PTR(-EINVAL);
1806 1807 1808
}
#endif

1809
static int omap_hsmmc_probe(struct platform_device *pdev)
1810 1811 1812
{
	struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
	struct mmc_host *mmc;
1813
	struct omap_hsmmc_host *host = NULL;
1814
	struct resource *res;
1815
	int ret, irq;
1816
	const struct of_device_id *match;
1817 1818
	dma_cap_mask_t mask;
	unsigned tx_req, rx_req;
1819
	struct pinctrl *pinctrl;
1820
	const struct omap_mmc_of_data *data;
1821 1822 1823 1824

	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
	if (match) {
		pdata = of_get_hsmmc_pdata(&pdev->dev);
1825 1826 1827 1828

		if (IS_ERR(pdata))
			return PTR_ERR(pdata);

1829
		if (match->data) {
1830 1831 1832
			data = match->data;
			pdata->reg_offset = data->reg_offset;
			pdata->controller_flags |= data->controller_flags;
1833 1834
		}
	}
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	if (pdata == NULL) {
		dev_err(&pdev->dev, "Platform Data is missing\n");
		return -ENXIO;
	}

	if (pdata->nr_slots == 0) {
		dev_err(&pdev->dev, "No Slots\n");
		return -ENXIO;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
	if (res == NULL || irq < 0)
		return -ENXIO;

1851
	res = request_mem_region(res->start, resource_size(res), pdev->name);
1852 1853 1854
	if (res == NULL)
		return -EBUSY;

1855 1856 1857 1858
	ret = omap_hsmmc_gpio_init(pdata);
	if (ret)
		goto err;

1859
	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1860 1861
	if (!mmc) {
		ret = -ENOMEM;
1862
		goto err_alloc;
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	}

	host		= mmc_priv(mmc);
	host->mmc	= mmc;
	host->pdata	= pdata;
	host->dev	= &pdev->dev;
	host->use_dma	= 1;
	host->dma_ch	= -1;
	host->irq	= irq;
	host->slot_id	= 0;
1873
	host->mapbase	= res->start + pdata->reg_offset;
1874
	host->base	= ioremap(host->mapbase, SZ_4K);
1875
	host->power_mode = MMC_POWER_OFF;
1876
	host->next_data.cookie = 1;
1877
	host->pbias_enabled = 0;
1878 1879 1880

	platform_set_drvdata(pdev, host);

1881
	mmc->ops	= &omap_hsmmc_ops;
1882

1883 1884 1885 1886 1887 1888
	mmc->f_min = OMAP_MMC_MIN_CLOCK;

	if (pdata->max_freq > 0)
		mmc->f_max = pdata->max_freq;
	else
		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1889

1890
	spin_lock_init(&host->irq_lock);
1891

1892
	host->fclk = clk_get(&pdev->dev, "fck");
1893 1894 1895 1896 1897 1898
	if (IS_ERR(host->fclk)) {
		ret = PTR_ERR(host->fclk);
		host->fclk = NULL;
		goto err1;
	}

1899 1900 1901 1902
	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
		mmc->caps2 |= MMC_CAP2_NO_MULTI_READ;
	}
1903

1904 1905 1906 1907
	pm_runtime_enable(host->dev);
	pm_runtime_get_sync(host->dev);
	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(host->dev);
1908

1909 1910
	omap_hsmmc_context_save(host);

1911 1912 1913 1914 1915 1916
	host->dbclk = clk_get(&pdev->dev, "mmchsdb_fck");
	/*
	 * MMC can still work without debounce clock.
	 */
	if (IS_ERR(host->dbclk)) {
		host->dbclk = NULL;
1917
	} else if (clk_prepare_enable(host->dbclk) != 0) {
1918 1919 1920
		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
		clk_put(host->dbclk);
		host->dbclk = NULL;
1921
	}
1922

1923 1924
	/* Since we do only SG emulation, we can have as many segs
	 * as we want. */
1925
	mmc->max_segs = 1024;
1926

1927 1928 1929 1930 1931
	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
	mmc->max_seg_size = mmc->max_req_size;

1932
	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1933
		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
1934

1935 1936
	mmc->caps |= mmc_slot(host).caps;
	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1937 1938
		mmc->caps |= MMC_CAP_4_BIT_DATA;

1939
	if (mmc_slot(host).nonremovable)
1940 1941
		mmc->caps |= MMC_CAP_NONREMOVABLE;

1942 1943
	mmc->pm_caps = mmc_slot(host).pm_caps;

1944
	omap_hsmmc_conf_bus_power(host);
1945

1946 1947 1948 1949 1950 1951 1952 1953
	if (!pdev->dev.of_node) {
		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
		if (!res) {
			dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
			ret = -ENXIO;
			goto err_irq;
		}
		tx_req = res->start;
1954

1955 1956 1957 1958 1959 1960 1961
		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
		if (!res) {
			dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
			ret = -ENXIO;
			goto err_irq;
		}
		rx_req = res->start;
1962
	}
1963

1964 1965 1966
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

1967 1968 1969 1970
	host->rx_chan =
		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
						 &rx_req, &pdev->dev, "rx");

1971 1972
	if (!host->rx_chan) {
		dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
1973
		ret = -ENXIO;
1974 1975 1976
		goto err_irq;
	}

1977 1978 1979 1980
	host->tx_chan =
		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
						 &tx_req, &pdev->dev, "tx");

1981 1982
	if (!host->tx_chan) {
		dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
1983
		ret = -ENXIO;
1984
		goto err_irq;
1985
	}
1986 1987

	/* Request IRQ for MMC operations */
1988
	ret = request_irq(host->irq, omap_hsmmc_irq, 0,
1989 1990
			mmc_hostname(mmc), host);
	if (ret) {
1991
		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1992 1993 1994 1995 1996
		goto err_irq;
	}

	if (pdata->init != NULL) {
		if (pdata->init(&pdev->dev) != 0) {
1997
			dev_err(mmc_dev(host->mmc),
1998
				"Unable to configure MMC IRQs\n");
1999 2000 2001
			goto err_irq_cd_init;
		}
	}
2002

2003
	if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
2004 2005 2006 2007 2008 2009
		ret = omap_hsmmc_reg_get(host);
		if (ret)
			goto err_reg;
		host->use_reg = 1;
	}

2010
	mmc->ocr_avail = mmc_slot(host).ocr_mask;
2011 2012

	/* Request IRQ for card detect */
2013
	if ((mmc_slot(host).card_detect_irq)) {
2014 2015 2016
		ret = request_threaded_irq(mmc_slot(host).card_detect_irq,
					   NULL,
					   omap_hsmmc_detect,
2017
					   IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
2018
					   mmc_hostname(mmc), host);
2019
		if (ret) {
2020
			dev_err(mmc_dev(host->mmc),
2021 2022 2023
				"Unable to grab MMC CD IRQ\n");
			goto err_irq_cd;
		}
2024 2025
		pdata->suspend = omap_hsmmc_suspend_cdirq;
		pdata->resume = omap_hsmmc_resume_cdirq;
2026 2027
	}

2028
	omap_hsmmc_disable_irq(host);
2029

2030 2031 2032 2033 2034
	pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
	if (IS_ERR(pinctrl))
		dev_warn(&pdev->dev,
			"pins are not configured from the driver\n");

2035 2036
	omap_hsmmc_protect_card(host);

2037 2038
	mmc_add_host(mmc);

2039
	if (mmc_slot(host).name != NULL) {
2040 2041 2042 2043
		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
		if (ret < 0)
			goto err_slot_name;
	}
2044
	if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
2045 2046 2047
		ret = device_create_file(&mmc->class_dev,
					&dev_attr_cover_switch);
		if (ret < 0)
2048
			goto err_slot_name;
2049 2050
	}

2051
	omap_hsmmc_debugfs(mmc);
2052 2053
	pm_runtime_mark_last_busy(host->dev);
	pm_runtime_put_autosuspend(host->dev);
2054

2055 2056 2057 2058 2059
	return 0;

err_slot_name:
	mmc_remove_host(mmc);
	free_irq(mmc_slot(host).card_detect_irq, host);
2060 2061 2062 2063 2064 2065
err_irq_cd:
	if (host->use_reg)
		omap_hsmmc_reg_put(host);
err_reg:
	if (host->pdata->cleanup)
		host->pdata->cleanup(&pdev->dev);
2066 2067 2068
err_irq_cd_init:
	free_irq(host->irq, host);
err_irq:
2069 2070 2071 2072
	if (host->tx_chan)
		dma_release_channel(host->tx_chan);
	if (host->rx_chan)
		dma_release_channel(host->rx_chan);
2073
	pm_runtime_put_sync(host->dev);
2074
	pm_runtime_disable(host->dev);
2075
	clk_put(host->fclk);
2076
	if (host->dbclk) {
2077
		clk_disable_unprepare(host->dbclk);
2078 2079 2080 2081
		clk_put(host->dbclk);
	}
err1:
	iounmap(host->base);
2082 2083 2084
	mmc_free_host(mmc);
err_alloc:
	omap_hsmmc_gpio_free(pdata);
2085
err:
2086 2087 2088
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res)
		release_mem_region(res->start, resource_size(res));
2089 2090 2091
	return ret;
}

2092
static int omap_hsmmc_remove(struct platform_device *pdev)
2093
{
2094
	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2095 2096
	struct resource *res;

2097 2098 2099 2100 2101 2102 2103 2104 2105
	pm_runtime_get_sync(host->dev);
	mmc_remove_host(host->mmc);
	if (host->use_reg)
		omap_hsmmc_reg_put(host);
	if (host->pdata->cleanup)
		host->pdata->cleanup(&pdev->dev);
	free_irq(host->irq, host);
	if (mmc_slot(host).card_detect_irq)
		free_irq(mmc_slot(host).card_detect_irq, host);
2106

2107 2108 2109 2110 2111
	if (host->tx_chan)
		dma_release_channel(host->tx_chan);
	if (host->rx_chan)
		dma_release_channel(host->rx_chan);

2112 2113 2114
	pm_runtime_put_sync(host->dev);
	pm_runtime_disable(host->dev);
	clk_put(host->fclk);
2115
	if (host->dbclk) {
2116
		clk_disable_unprepare(host->dbclk);
2117
		clk_put(host->dbclk);
2118 2119
	}

2120
	omap_hsmmc_gpio_free(host->pdata);
2121
	iounmap(host->base);
2122
	mmc_free_host(host->mmc);
2123

2124 2125
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res)
2126
		release_mem_region(res->start, resource_size(res));
2127 2128 2129 2130 2131

	return 0;
}

#ifdef CONFIG_PM
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
static int omap_hsmmc_prepare(struct device *dev)
{
	struct omap_hsmmc_host *host = dev_get_drvdata(dev);

	if (host->pdata->suspend)
		return host->pdata->suspend(dev, host->slot_id);

	return 0;
}

static void omap_hsmmc_complete(struct device *dev)
{
	struct omap_hsmmc_host *host = dev_get_drvdata(dev);

	if (host->pdata->resume)
		host->pdata->resume(dev, host->slot_id);

}

2151
static int omap_hsmmc_suspend(struct device *dev)
2152
{
2153
	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2154

2155
	if (!host)
2156 2157
		return 0;

2158
	pm_runtime_get_sync(host->dev);
2159

2160 2161 2162 2163
	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
		omap_hsmmc_disable_irq(host);
		OMAP_HSMMC_WRITE(host->base, HCTL,
				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2164
	}
2165

2166
	if (host->dbclk)
2167
		clk_disable_unprepare(host->dbclk);
2168

2169
	pm_runtime_put_sync(host->dev);
2170
	return 0;
2171 2172 2173
}

/* Routine to resume the MMC device */
2174
static int omap_hsmmc_resume(struct device *dev)
2175
{
2176 2177 2178 2179
	struct omap_hsmmc_host *host = dev_get_drvdata(dev);

	if (!host)
		return 0;
2180

2181
	pm_runtime_get_sync(host->dev);
2182

2183
	if (host->dbclk)
2184
		clk_prepare_enable(host->dbclk);
2185

2186 2187
	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
		omap_hsmmc_conf_bus_power(host);
2188

2189
	omap_hsmmc_protect_card(host);
2190

2191 2192
	pm_runtime_mark_last_busy(host->dev);
	pm_runtime_put_autosuspend(host->dev);
2193
	return 0;
2194 2195 2196
}

#else
2197 2198
#define omap_hsmmc_prepare	NULL
#define omap_hsmmc_complete	NULL
2199
#define omap_hsmmc_suspend	NULL
2200
#define omap_hsmmc_resume	NULL
2201 2202
#endif

2203 2204 2205 2206 2207 2208
static int omap_hsmmc_runtime_suspend(struct device *dev)
{
	struct omap_hsmmc_host *host;

	host = platform_get_drvdata(to_platform_device(dev));
	omap_hsmmc_context_save(host);
2209
	dev_dbg(dev, "disabled\n");
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

	return 0;
}

static int omap_hsmmc_runtime_resume(struct device *dev)
{
	struct omap_hsmmc_host *host;

	host = platform_get_drvdata(to_platform_device(dev));
	omap_hsmmc_context_restore(host);
2220
	dev_dbg(dev, "enabled\n");
2221 2222 2223 2224

	return 0;
}

2225
static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2226 2227
	.suspend	= omap_hsmmc_suspend,
	.resume		= omap_hsmmc_resume,
2228 2229
	.prepare	= omap_hsmmc_prepare,
	.complete	= omap_hsmmc_complete,
2230 2231
	.runtime_suspend = omap_hsmmc_runtime_suspend,
	.runtime_resume = omap_hsmmc_runtime_resume,
2232 2233 2234
};

static struct platform_driver omap_hsmmc_driver = {
2235
	.probe		= omap_hsmmc_probe,
2236
	.remove		= omap_hsmmc_remove,
2237 2238 2239
	.driver		= {
		.name = DRIVER_NAME,
		.owner = THIS_MODULE,
2240
		.pm = &omap_hsmmc_dev_pm_ops,
2241
		.of_match_table = of_match_ptr(omap_mmc_of_match),
2242 2243 2244
	},
};

2245
module_platform_driver(omap_hsmmc_driver);
2246 2247 2248 2249
MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Texas Instruments Inc");
新手
引导
客服 返回
顶部