xhci-mem.c 74.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/dmapool.h>
27 28 29

#include "xhci.h"

30 31 32 33 34 35 36
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
37 38
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
					unsigned int cycle_state, gfp_t flags)
39 40 41
{
	struct xhci_segment *seg;
	dma_addr_t	dma;
42
	int		i;
43 44 45

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
46
		return NULL;
47 48 49 50

	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
	if (!seg->trbs) {
		kfree(seg);
51
		return NULL;
52 53
	}

54
	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
55 56 57 58 59
	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
	if (cycle_state == 0) {
		for (i = 0; i < TRBS_PER_SEGMENT; i++)
			seg->trbs[i].link.control |= TRB_CYCLE;
	}
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (seg->trbs) {
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
	kfree(seg);
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88
static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
				struct xhci_segment *first)
{
	struct xhci_segment *seg;

	seg = first->next;
	while (seg != first) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first);
}

89 90 91 92 93 94 95 96
/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
A
Andiry Xu 已提交
97
		struct xhci_segment *next, enum xhci_ring_type type)
98 99 100 101 102 103
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
A
Andiry Xu 已提交
104
	if (type != TYPE_EVENT) {
105 106
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
			cpu_to_le64(next->dma);
107 108

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
M
Matt Evans 已提交
109
		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 111
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
112
		/* Always set the chain bit with 0.95 hardware */
113 114
		/* Set chain bit for isoc rings on AMD 0.96 host */
		if (xhci_link_trb_quirk(xhci) ||
A
Andiry Xu 已提交
115 116
				(type == TYPE_ISOC &&
				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
117
			val |= TRB_CHAIN;
M
Matt Evans 已提交
118
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 120 121
	}
}

A
Andiry Xu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Link the ring to the new segments.
 * Set Toggle Cycle for the new ring if needed.
 */
static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
		struct xhci_segment *first, struct xhci_segment *last,
		unsigned int num_segs)
{
	struct xhci_segment *next;

	if (!ring || !first || !last)
		return;

	next = ring->enq_seg->next;
	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
	xhci_link_segments(xhci, last, next, ring->type);
	ring->num_segs += num_segs;
	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;

	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
			&= ~cpu_to_le32(LINK_TOGGLE);
		last->trbs[TRBS_PER_SEGMENT-1].link.control
			|= cpu_to_le32(LINK_TOGGLE);
		ring->last_seg = last;
	}
}

150
/* XXX: Do we need the hcd structure in all these functions? */
151
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152
{
153
	if (!ring)
154
		return;
155 156 157 158

	if (ring->first_seg)
		xhci_free_segments_for_ring(xhci, ring->first_seg);

159 160 161
	kfree(ring);
}

162 163
static void xhci_initialize_ring_info(struct xhci_ring *ring,
					unsigned int cycle_state)
164 165 166 167 168 169 170 171 172
{
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
173 174 175
	 *
	 * New rings are initialized with cycle state equal to 1; if we are
	 * handling ring expansion, set the cycle state equal to the old ring.
176
	 */
177
	ring->cycle_state = cycle_state;
178 179 180
	/* Not necessary for new rings, but needed for re-initialized rings */
	ring->enq_updates = 0;
	ring->deq_updates = 0;
181 182 183 184 185 186

	/*
	 * Each segment has a link TRB, and leave an extra TRB for SW
	 * accounting purpose
	 */
	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 188
}

189 190 191
/* Allocate segments and link them for a ring */
static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
		struct xhci_segment **first, struct xhci_segment **last,
192 193
		unsigned int num_segs, unsigned int cycle_state,
		enum xhci_ring_type type, gfp_t flags)
194 195 196
{
	struct xhci_segment *prev;

197
	prev = xhci_segment_alloc(xhci, cycle_state, flags);
198 199 200 201 202 203 204 205
	if (!prev)
		return -ENOMEM;
	num_segs--;

	*first = prev;
	while (num_segs > 0) {
		struct xhci_segment	*next;

206
		next = xhci_segment_alloc(xhci, cycle_state, flags);
207
		if (!next) {
208 209 210 211 212 213
			prev = *first;
			while (prev) {
				next = prev->next;
				xhci_segment_free(xhci, prev);
				prev = next;
			}
214 215 216 217 218 219 220 221 222 223 224 225 226
			return -ENOMEM;
		}
		xhci_link_segments(xhci, prev, next, type);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, *first, type);
	*last = prev;

	return 0;
}

227 228 229 230 231 232 233 234
/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
235 236
		unsigned int num_segs, unsigned int cycle_state,
		enum xhci_ring_type type, gfp_t flags)
237 238
{
	struct xhci_ring	*ring;
239
	int ret;
240 241 242

	ring = kzalloc(sizeof *(ring), flags);
	if (!ring)
243
		return NULL;
244

245
	ring->num_segs = num_segs;
246
	INIT_LIST_HEAD(&ring->td_list);
A
Andiry Xu 已提交
247
	ring->type = type;
248 249 250
	if (num_segs == 0)
		return ring;

251
	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
252
			&ring->last_seg, num_segs, cycle_state, type, flags);
253
	if (ret)
254 255
		goto fail;

A
Andiry Xu 已提交
256 257
	/* Only event ring does not use link TRB */
	if (type != TYPE_EVENT) {
258
		/* See section 4.9.2.1 and 6.4.4.1 */
259
		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
260
			cpu_to_le32(LINK_TOGGLE);
261
	}
262
	xhci_initialize_ring_info(ring, cycle_state);
263 264 265
	return ring;

fail:
266
	kfree(ring);
267
	return NULL;
268 269
}

270 271 272 273 274 275 276 277 278 279
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		unsigned int ep_index)
{
	int rings_cached;

	rings_cached = virt_dev->num_rings_cached;
	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
		virt_dev->ring_cache[rings_cached] =
			virt_dev->eps[ep_index].ring;
280
		virt_dev->num_rings_cached++;
281 282
		xhci_dbg(xhci, "Cached old ring, "
				"%d ring%s cached\n",
283 284
				virt_dev->num_rings_cached,
				(virt_dev->num_rings_cached > 1) ? "s" : "");
285 286 287 288 289 290 291 292 293
	} else {
		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
		xhci_dbg(xhci, "Ring cache full (%d rings), "
				"freeing ring\n",
				virt_dev->num_rings_cached);
	}
	virt_dev->eps[ep_index].ring = NULL;
}

294 295 296 297
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 * pointers to the beginning of the ring.
 */
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
298 299
			struct xhci_ring *ring, unsigned int cycle_state,
			enum xhci_ring_type type)
300 301
{
	struct xhci_segment	*seg = ring->first_seg;
302 303
	int i;

304 305 306
	do {
		memset(seg->trbs, 0,
				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
307 308 309 310
		if (cycle_state == 0) {
			for (i = 0; i < TRBS_PER_SEGMENT; i++)
				seg->trbs[i].link.control |= TRB_CYCLE;
		}
311
		/* All endpoint rings have link TRBs */
A
Andiry Xu 已提交
312
		xhci_link_segments(xhci, seg, seg->next, type);
313 314
		seg = seg->next;
	} while (seg != ring->first_seg);
A
Andiry Xu 已提交
315
	ring->type = type;
316
	xhci_initialize_ring_info(ring, cycle_state);
317 318 319 320 321 322
	/* td list should be empty since all URBs have been cancelled,
	 * but just in case...
	 */
	INIT_LIST_HEAD(&ring->td_list);
}

A
Andiry Xu 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * Expand an existing ring.
 * Look for a cached ring or allocate a new ring which has same segment numbers
 * and link the two rings.
 */
int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
				unsigned int num_trbs, gfp_t flags)
{
	struct xhci_segment	*first;
	struct xhci_segment	*last;
	unsigned int		num_segs;
	unsigned int		num_segs_needed;
	int			ret;

	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
				(TRBS_PER_SEGMENT - 1);

	/* Allocate number of segments we needed, or double the ring size */
	num_segs = ring->num_segs > num_segs_needed ?
			ring->num_segs : num_segs_needed;

	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
			num_segs, ring->cycle_state, ring->type, flags);
	if (ret)
		return -ENOMEM;

	xhci_link_rings(xhci, ring, first, last, num_segs);
	xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
			ring->num_segs);

	return 0;
}

356 357
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)

358
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
359 360
						    int type, gfp_t flags)
{
361 362 363 364 365 366
	struct xhci_container_ctx *ctx;

	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
		return NULL;

	ctx = kzalloc(sizeof(*ctx), flags);
367 368 369 370 371 372 373 374 375 376 377 378 379
	if (!ctx)
		return NULL;

	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
	memset(ctx->bytes, 0, ctx->size);
	return ctx;
}

380
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
381 382
			     struct xhci_container_ctx *ctx)
{
383 384
	if (!ctx)
		return;
385 386 387 388 389 390 391
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
					      struct xhci_container_ctx *ctx)
{
392 393 394
	if (ctx->type != XHCI_CTX_TYPE_INPUT)
		return NULL;

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

421 422 423

/***************** Streams structures manipulation *************************/

424
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
425 426 427 428 429 430
		unsigned int num_stream_ctxs,
		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
431
		dma_free_coherent(&pdev->dev,
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
				stream_ctx, dma);
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_free(xhci->small_streams_pool,
				stream_ctx, dma);
	else
		return dma_pool_free(xhci->medium_streams_pool,
				stream_ctx, dma);
}

/*
 * The stream context array for each endpoint with bulk streams enabled can
 * vary in size, based on:
 *  - how many streams the endpoint supports,
 *  - the maximum primary stream array size the host controller supports,
 *  - and how many streams the device driver asks for.
 *
 * The stream context array must be a power of 2, and can be as small as
 * 64 bytes or as large as 1MB.
 */
452
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
453 454 455 456 457 458
		unsigned int num_stream_ctxs, dma_addr_t *dma,
		gfp_t mem_flags)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
459
		return dma_alloc_coherent(&pdev->dev,
460
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
461
				dma, mem_flags);
462 463 464 465 466 467 468 469
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_alloc(xhci->small_streams_pool,
				mem_flags, dma);
	else
		return dma_pool_alloc(xhci->medium_streams_pool,
				mem_flags, dma);
}

470 471 472 473 474 475
struct xhci_ring *xhci_dma_to_transfer_ring(
		struct xhci_virt_ep *ep,
		u64 address)
{
	if (ep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&ep->stream_info->trb_address_map,
476
				address >> TRB_SEGMENT_SHIFT);
477 478 479 480
	return ep->ring;
}

/* Only use this when you know stream_info is valid */
481
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
482
static struct xhci_ring *dma_to_stream_ring(
483 484 485 486
		struct xhci_stream_info *stream_info,
		u64 address)
{
	return radix_tree_lookup(&stream_info->trb_address_map,
487
			address >> TRB_SEGMENT_SHIFT);
488 489 490
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
struct xhci_ring *xhci_stream_id_to_ring(
		struct xhci_virt_device *dev,
		unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep = &dev->eps[ep_index];

	if (stream_id == 0)
		return ep->ring;
	if (!ep->stream_info)
		return NULL;

	if (stream_id > ep->stream_info->num_streams)
		return NULL;
	return ep->stream_info->stream_rings[stream_id];
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
static int xhci_test_radix_tree(struct xhci_hcd *xhci,
		unsigned int num_streams,
		struct xhci_stream_info *stream_info)
{
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	u64 addr;

	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		struct xhci_ring *mapped_ring;
		int trb_size = sizeof(union xhci_trb);

		cur_ring = stream_info->stream_rings[cur_stream];
		for (addr = cur_ring->first_seg->dma;
523
				addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
				addr += trb_size) {
			mapped_ring = dma_to_stream_ring(stream_info, addr);
			if (cur_ring != mapped_ring) {
				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
						"didn't map to stream ID %u; "
						"mapped to ring %p\n",
						(unsigned long long) addr,
						cur_stream,
						mapped_ring);
				return -EINVAL;
			}
		}
		/* One TRB after the end of the ring segment shouldn't return a
		 * pointer to the current ring (although it may be a part of a
		 * different ring).
		 */
		mapped_ring = dma_to_stream_ring(stream_info, addr);
		if (mapped_ring != cur_ring) {
			/* One TRB before should also fail */
			addr = cur_ring->first_seg->dma - trb_size;
			mapped_ring = dma_to_stream_ring(stream_info, addr);
		}
		if (mapped_ring == cur_ring) {
			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
					"mapped to valid stream ID %u; "
					"mapped ring = %p\n",
					(unsigned long long) addr,
					cur_stream,
					mapped_ring);
			return -EINVAL;
		}
	}
	return 0;
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

/*
 * Change an endpoint's internal structure so it supports stream IDs.  The
 * number of requested streams includes stream 0, which cannot be used by device
 * drivers.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use.  This is because the number of
 * stream context array entries must be a power of two.
 *
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to.  We need to do this because the host controller won't tell
 * us which stream ring the TRB came from.  We could store the stream ID in an
 * event data TRB, but that doesn't help us for the cancellation case, since the
 * endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses.  For example, say I
 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 * 	0x10c90fff >> 10 = 0x43243
 * 	0x10c912c0 >> 10 = 0x43244
 * 	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 */
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
		unsigned int num_streams, gfp_t mem_flags)
{
	struct xhci_stream_info *stream_info;
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	unsigned long key;
	u64 addr;
	int ret;

	xhci_dbg(xhci, "Allocating %u streams and %u "
			"stream context array entries.\n",
			num_streams, num_stream_ctxs);
	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
		return NULL;
	}
	xhci->cmd_ring_reserved_trbs++;

	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
	if (!stream_info)
		goto cleanup_trbs;

	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kzalloc(
			sizeof(struct xhci_ring *)*num_streams,
			mem_flags);
	if (!stream_info->stream_rings)
		goto cleanup_info;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
			num_stream_ctxs, &stream_info->ctx_array_dma,
			mem_flags);
	if (!stream_info->stream_ctx_array)
		goto cleanup_ctx;
	memset(stream_info->stream_ctx_array, 0,
			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);

	/* Allocate everything needed to free the stream rings later */
	stream_info->free_streams_command =
		xhci_alloc_command(xhci, true, true, mem_flags);
	if (!stream_info->free_streams_command)
		goto cleanup_ctx;

	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);

	/* Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		stream_info->stream_rings[cur_stream] =
656
			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
657 658 659
		cur_ring = stream_info->stream_rings[cur_stream];
		if (!cur_ring)
			goto cleanup_rings;
660
		cur_ring->stream_id = cur_stream;
661 662 663 664
		/* Set deq ptr, cycle bit, and stream context type */
		addr = cur_ring->first_seg->dma |
			SCT_FOR_CTX(SCT_PRI_TR) |
			cur_ring->cycle_state;
665 666
		stream_info->stream_ctx_array[cur_stream].stream_ring =
			cpu_to_le64(addr);
667 668 669 670
		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
				cur_stream, (unsigned long long) addr);

		key = (unsigned long)
671
			(cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
		ret = radix_tree_insert(&stream_info->trb_address_map,
				key, cur_ring);
		if (ret) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
			goto cleanup_rings;
		}
	}
	/* Leave the other unused stream ring pointers in the stream context
	 * array initialized to zero.  This will cause the xHC to give us an
	 * error if the device asks for a stream ID we don't have setup (if it
	 * was any other way, the host controller would assume the ring is
	 * "empty" and wait forever for data to be queued to that stream ID).
	 */
#if XHCI_DEBUG
	/* Do a little test on the radix tree to make sure it returns the
	 * correct values.
	 */
	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
		goto cleanup_rings;
#endif

	return stream_info;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
702
					addr >> TRB_SEGMENT_SHIFT);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
	kfree(stream_info->stream_rings);
cleanup_info:
	kfree(stream_info);
cleanup_trbs:
	xhci->cmd_ring_reserved_trbs--;
	return NULL;
}
/*
 * Sets the MaxPStreams field and the Linear Stream Array field.
 * Sets the dequeue pointer to the stream context array.
 */
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_stream_info *stream_info)
{
	u32 max_primary_streams;
	/* MaxPStreams is the number of stream context array entries, not the
	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
	 */
	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
			1 << (max_primary_streams + 1));
M
Matt Evans 已提交
732 733 734 735
	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
				       | EP_HAS_LSA);
	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
736 737 738 739 740 741 742 743 744 745 746 747
}

/*
 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 * not at the beginning of the ring).
 */
void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_virt_ep *ep)
{
	dma_addr_t addr;
M
Matt Evans 已提交
748
	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
749
	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
M
Matt Evans 已提交
750
	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
}

/* Frees all stream contexts associated with the endpoint,
 *
 * Caller should fix the endpoint context streams fields.
 */
void xhci_free_stream_info(struct xhci_hcd *xhci,
		struct xhci_stream_info *stream_info)
{
	int cur_stream;
	struct xhci_ring *cur_ring;
	dma_addr_t addr;

	if (!stream_info)
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
			cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
773
					addr >> TRB_SEGMENT_SHIFT);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
	xhci->cmd_ring_reserved_trbs--;
	if (stream_info->stream_ctx_array)
		xhci_free_stream_ctx(xhci,
				stream_info->num_stream_ctxs,
				stream_info->stream_ctx_array,
				stream_info->ctx_array_dma);

	if (stream_info)
		kfree(stream_info->stream_rings);
	kfree(stream_info);
}


/***************** Device context manipulation *************************/

794 795 796 797 798 799 800 801 802
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
		struct xhci_virt_ep *ep)
{
	init_timer(&ep->stop_cmd_timer);
	ep->stop_cmd_timer.data = (unsigned long) ep;
	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
	ep->xhci = xhci;
}

803 804 805 806 807
static void xhci_free_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int slot_id)
{
	struct list_head *tt_list_head;
808 809
	struct xhci_tt_bw_info *tt_info, *next;
	bool slot_found = false;
810 811 812 813 814 815 816 817 818 819 820

	/* If the device never made it past the Set Address stage,
	 * it may not have the real_port set correctly.
	 */
	if (virt_dev->real_port == 0 ||
			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
		xhci_dbg(xhci, "Bad real port.\n");
		return;
	}

	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
821 822 823 824 825 826 827
	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
		/* Multi-TT hubs will have more than one entry */
		if (tt_info->slot_id == slot_id) {
			slot_found = true;
			list_del(&tt_info->tt_list);
			kfree(tt_info);
		} else if (slot_found) {
828
			break;
829
		}
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	}
}

int xhci_alloc_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *hdev,
		struct usb_tt *tt, gfp_t mem_flags)
{
	struct xhci_tt_bw_info		*tt_info;
	unsigned int			num_ports;
	int				i, j;

	if (!tt->multi)
		num_ports = 1;
	else
		num_ports = hdev->maxchild;

	for (i = 0; i < num_ports; i++, tt_info++) {
		struct xhci_interval_bw_table *bw_table;

		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
		if (!tt_info)
			goto free_tts;
		INIT_LIST_HEAD(&tt_info->tt_list);
		list_add(&tt_info->tt_list,
				&xhci->rh_bw[virt_dev->real_port - 1].tts);
		tt_info->slot_id = virt_dev->udev->slot_id;
		if (tt->multi)
			tt_info->ttport = i+1;
		bw_table = &tt_info->bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
	return 0;

free_tts:
	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
	return -ENOMEM;
}


/* All the xhci_tds in the ring's TD list should be freed at this point.
 * Should be called with xhci->lock held if there is any chance the TT lists
 * will be manipulated by the configure endpoint, allocate device, or update
 * hub functions while this function is removing the TT entries from the list.
 */
876 877 878 879
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;
880
	int old_active_eps = 0;
881 882 883 884 885 886

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
887
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
888 889 890
	if (!dev)
		return;

891 892 893
	if (dev->tt_info)
		old_active_eps = dev->tt_info->active_eps;

894
	for (i = 0; i < 31; ++i) {
895 896
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);
897 898 899
		if (dev->eps[i].stream_info)
			xhci_free_stream_info(xhci,
					dev->eps[i].stream_info);
900 901 902 903 904 905 906 907 908
		/* Endpoints on the TT/root port lists should have been removed
		 * when usb_disable_device() was called for the device.
		 * We can't drop them anyway, because the udev might have gone
		 * away by this point, and we can't tell what speed it was.
		 */
		if (!list_empty(&dev->eps[i].bw_endpoint_list))
			xhci_warn(xhci, "Slot %u endpoint %u "
					"not removed from BW list!\n",
					slot_id, i);
909
	}
910 911
	/* If this is a hub, free the TT(s) from the TT list */
	xhci_free_tt_info(xhci, dev, slot_id);
912 913
	/* If necessary, update the number of active TTs on this root port */
	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
914

915 916 917 918 919 920
	if (dev->ring_cache) {
		for (i = 0; i < dev->num_rings_cached; i++)
			xhci_ring_free(xhci, dev->ring_cache[i]);
		kfree(dev->ring_cache);
	}

921
	if (dev->in_ctx)
922
		xhci_free_container_ctx(xhci, dev->in_ctx);
923
	if (dev->out_ctx)
924 925
		xhci_free_container_ctx(xhci, dev->out_ctx);

926
	kfree(xhci->devs[slot_id]);
927
	xhci->devs[slot_id] = NULL;
928 929 930 931 932 933
}

int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
934
	int i;
935 936 937 938 939 940 941 942 943 944 945 946

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

947 948
	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
949 950
	if (!dev->out_ctx)
		goto fail;
951

952
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
953
			(unsigned long long)dev->out_ctx->dma);
954 955

	/* Allocate the (input) device context for address device command */
956
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
957 958
	if (!dev->in_ctx)
		goto fail;
959

960
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
961
			(unsigned long long)dev->in_ctx->dma);
962

963 964 965
	/* Initialize the cancellation list and watchdog timers for each ep */
	for (i = 0; i < 31; i++) {
		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
966
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
967
		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
968
	}
969

970
	/* Allocate endpoint 0 ring */
971
	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
972
	if (!dev->eps[0].ring)
973 974
		goto fail;

975 976 977 978 979 980 981 982
	/* Allocate pointers to the ring cache */
	dev->ring_cache = kzalloc(
			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
			flags);
	if (!dev->ring_cache)
		goto fail;
	dev->num_rings_cached = 0;

983
	init_completion(&dev->cmd_completion);
984
	INIT_LIST_HEAD(&dev->cmd_list);
985
	dev->udev = udev;
986

987
	/* Point to output device context in dcbaa. */
M
Matt Evans 已提交
988
	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
989
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
M
Matt Evans 已提交
990 991
		 slot_id,
		 &xhci->dcbaa->dev_context_ptrs[slot_id],
992
		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
993 994 995 996 997 998 999

	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct xhci_ring	*ep_ring;

	virt_dev = xhci->devs[udev->slot_id];
	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
	ep_ring = virt_dev->eps[0].ring;
	/*
	 * FIXME we don't keep track of the dequeue pointer very well after a
	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
	 * host to our enqueue pointer.  This should only be called after a
	 * configured device has reset, so all control transfers should have
	 * been completed or cancelled before the reset.
	 */
M
Matt Evans 已提交
1017 1018 1019
	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
							ep_ring->enqueue)
				   | ep_ring->cycle_state);
1020 1021
}

1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * The xHCI roothub may have ports of differing speeds in any order in the port
 * status registers.  xhci->port_array provides an array of the port speed for
 * each offset into the port status registers.
 *
 * The xHCI hardware wants to know the roothub port number that the USB device
 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 * know is the index of that port under either the USB 2.0 or the USB 3.0
 * roothub, but that doesn't give us the real index into the HW port status
1031
 * registers. Call xhci_find_raw_port_number() to get real index.
1032 1033 1034 1035 1036
 */
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct usb_device *top_dev;
1037 1038 1039 1040 1041 1042
	struct usb_hcd *hcd;

	if (udev->speed == USB_SPEED_SUPER)
		hcd = xhci->shared_hcd;
	else
		hcd = xhci->main_hcd;
1043 1044 1045 1046 1047

	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;

1048
	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1049 1050
}

1051 1052 1053 1054 1055
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
1056
	struct xhci_slot_ctx    *slot_ctx;
1057
	u32			port_num;
1058
	u32			max_packets;
1059
	struct usb_device *top_dev;
1060 1061 1062 1063 1064 1065 1066 1067

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
1068 1069
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1070 1071

	/* 3) Only the control endpoint is valid - one endpoint context */
1072
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1073 1074
	switch (udev->speed) {
	case USB_SPEED_SUPER:
1075
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1076
		max_packets = MAX_PACKET(512);
1077 1078
		break;
	case USB_SPEED_HIGH:
1079
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1080
		max_packets = MAX_PACKET(64);
1081
		break;
1082
	/* USB core guesses at a 64-byte max packet first for FS devices */
1083
	case USB_SPEED_FULL:
1084
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1085
		max_packets = MAX_PACKET(64);
1086 1087
		break;
	case USB_SPEED_LOW:
1088
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1089
		max_packets = MAX_PACKET(8);
1090
		break;
1091
	case USB_SPEED_WIRELESS:
1092 1093 1094 1095 1096
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
1097
		return -EINVAL;
1098 1099
	}
	/* Find the root hub port this device is under */
1100 1101 1102
	port_num = xhci_find_real_port_number(xhci, udev);
	if (!port_num)
		return -EINVAL;
1103
	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1104
	/* Set the port number in the virtual_device to the faked port number */
1105 1106 1107
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
1108
	dev->fake_port = top_dev->portnum;
1109
	dev->real_port = port_num;
1110
	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1111
	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	/* Find the right bandwidth table that this device will be a part of.
	 * If this is a full speed device attached directly to a root port (or a
	 * decendent of one), it counts as a primary bandwidth domain, not a
	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
	 * will never be created for the HS root hub.
	 */
	if (!udev->tt || !udev->tt->hub->parent) {
		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
	} else {
		struct xhci_root_port_bw_info *rh_bw;
		struct xhci_tt_bw_info *tt_bw;

		rh_bw = &xhci->rh_bw[port_num - 1];
		/* Find the right TT. */
		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
			if (tt_bw->slot_id != udev->tt->hub->slot_id)
				continue;

			if (!dev->udev->tt->multi ||
					(udev->tt->multi &&
					 tt_bw->ttport == dev->udev->ttport)) {
				dev->bw_table = &tt_bw->bw_table;
				dev->tt_info = tt_bw;
				break;
			}
		}
		if (!dev->tt_info)
			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
	}

S
Sarah Sharp 已提交
1143 1144
	/* Is this a LS/FS device under an external HS hub? */
	if (udev->tt && udev->tt->hub->parent) {
M
Matt Evans 已提交
1145 1146
		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
						(udev->ttport << 8));
1147
		if (udev->tt->multi)
M
Matt Evans 已提交
1148
			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1149
	}
1150
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1151 1152 1153 1154
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
M
Matt Evans 已提交
1155
	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1156

1157
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1158 1159
	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
					 max_packets);
1160

M
Matt Evans 已提交
1161 1162
	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
				   dev->eps[0].ring->cycle_state);
1163 1164 1165 1166 1167 1168

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Convert interval expressed as 2^(bInterval - 1) == interval into
 * straight exponent value 2^n == interval.
 *
 */
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
	if (interval != ep->desc.bInterval - 1)
		dev_warn(&udev->dev,
1182
			 "ep %#x - rounding interval to %d %sframes\n",
1183
			 ep->desc.bEndpointAddress,
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
			 1 << interval,
			 udev->speed == USB_SPEED_FULL ? "" : "micro");

	if (udev->speed == USB_SPEED_FULL) {
		/*
		 * Full speed isoc endpoints specify interval in frames,
		 * not microframes. We are using microframes everywhere,
		 * so adjust accordingly.
		 */
		interval += 3;	/* 1 frame = 2^3 uframes */
	}
1195 1196 1197 1198 1199

	return interval;
}

/*
1200
 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1201 1202
 * microframes, rounded down to nearest power of 2.
 */
1203 1204 1205
static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
		struct usb_host_endpoint *ep, unsigned int desc_interval,
		unsigned int min_exponent, unsigned int max_exponent)
1206 1207 1208
{
	unsigned int interval;

1209 1210 1211
	interval = fls(desc_interval) - 1;
	interval = clamp_val(interval, min_exponent, max_exponent);
	if ((1 << interval) != desc_interval)
1212 1213 1214 1215
		dev_warn(&udev->dev,
			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
			 ep->desc.bEndpointAddress,
			 1 << interval,
1216
			 desc_interval);
1217 1218 1219 1220

	return interval;
}

1221 1222 1223
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
1224 1225
	if (ep->desc.bInterval == 0)
		return 0;
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval, 0, 15);
}


static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval * 8, 3, 10);
}

1238 1239 1240 1241 1242 1243 1244 1245
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
1246
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1247 1248 1249 1250 1251 1252 1253 1254
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
1255
		    usb_endpoint_xfer_bulk(&ep->desc)) {
1256
			interval = xhci_parse_microframe_interval(udev, ep);
1257 1258
			break;
		}
1259
		/* Fall through - SS and HS isoc/int have same decoding */
1260

1261 1262
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1263 1264
		    usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = xhci_parse_exponent_interval(udev, ep);
1265 1266
		}
		break;
1267

1268
	case USB_SPEED_FULL:
1269
		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1270 1271 1272 1273
			interval = xhci_parse_exponent_interval(udev, ep);
			break;
		}
		/*
1274
		 * Fall through for interrupt endpoint interval decoding
1275 1276 1277 1278
		 * since it uses the same rules as low speed interrupt
		 * endpoints.
		 */

1279 1280
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1281 1282 1283
		    usb_endpoint_xfer_isoc(&ep->desc)) {

			interval = xhci_parse_frame_interval(udev, ep);
1284 1285
		}
		break;
1286

1287 1288 1289 1290 1291 1292
	default:
		BUG();
	}
	return EP_INTERVAL(interval);
}

1293
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1294 1295 1296 1297
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
1298
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1299 1300
		struct usb_host_endpoint *ep)
{
1301 1302
	if (udev->speed != USB_SPEED_SUPER ||
			!usb_endpoint_xfer_isoc(&ep->desc))
1303
		return 0;
1304
	return ep->ss_ep_comp.bmAttributes;
1305 1306
}

1307
static u32 xhci_get_endpoint_type(struct usb_device *udev,
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		struct usb_host_endpoint *ep)
{
	int in;
	u32 type;

	in = usb_endpoint_dir_in(&ep->desc);
	if (usb_endpoint_xfer_control(&ep->desc)) {
		type = EP_TYPE(CTRL_EP);
	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
		if (in)
			type = EP_TYPE(BULK_IN_EP);
		else
			type = EP_TYPE(BULK_OUT_EP);
	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
		if (in)
			type = EP_TYPE(ISOC_IN_EP);
		else
			type = EP_TYPE(ISOC_OUT_EP);
	} else if (usb_endpoint_xfer_int(&ep->desc)) {
		if (in)
			type = EP_TYPE(INT_IN_EP);
		else
			type = EP_TYPE(INT_OUT_EP);
	} else {
		BUG();
	}
	return type;
}

1337 1338 1339 1340
/* Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
1341
static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	int max_burst;
	int max_packet;

	/* Only applies for interrupt or isochronous endpoints */
	if (usb_endpoint_xfer_control(&ep->desc) ||
			usb_endpoint_xfer_bulk(&ep->desc))
		return 0;

1353
	if (udev->speed == USB_SPEED_SUPER)
1354
		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1355

1356 1357
	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1358 1359 1360 1361
	/* A 0 in max burst means 1 transfer per ESIT */
	return max_packet * (max_burst + 1);
}

1362 1363 1364
/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
 * Drivers will have to call usb_alloc_streams() to do that.
 */
1365 1366 1367
int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
1368 1369
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
1370 1371 1372 1373 1374 1375
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
	unsigned int max_burst;
A
Andiry Xu 已提交
1376
	enum xhci_ring_type type;
1377
	u32 max_esit_payload;
1378 1379

	ep_index = xhci_get_endpoint_index(&ep->desc);
1380
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1381

A
Andiry Xu 已提交
1382
	type = usb_endpoint_type(&ep->desc);
1383
	/* Set up the endpoint ring */
A
Andiry Xu 已提交
1384
	virt_dev->eps[ep_index].new_ring =
1385
		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1386 1387 1388 1389 1390 1391 1392 1393
	if (!virt_dev->eps[ep_index].new_ring) {
		/* Attempt to use the ring cache */
		if (virt_dev->num_rings_cached == 0)
			return -ENOMEM;
		virt_dev->eps[ep_index].new_ring =
			virt_dev->ring_cache[virt_dev->num_rings_cached];
		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
		virt_dev->num_rings_cached--;
1394
		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1395
					1, type);
1396
	}
1397
	virt_dev->eps[ep_index].skip = false;
1398
	ep_ring = virt_dev->eps[ep_index].new_ring;
M
Matt Evans 已提交
1399
	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1400

M
Matt Evans 已提交
1401 1402
	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1403 1404 1405

	/* FIXME dig Mult and streams info out of ep companion desc */

1406
	/* Allow 3 retries for everything but isoc;
1407
	 * CErr shall be set to 0 for Isoch endpoints.
1408
	 */
1409
	if (!usb_endpoint_xfer_isoc(&ep->desc))
M
Matt Evans 已提交
1410
		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1411
	else
1412
		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1413

M
Matt Evans 已提交
1414
	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1415 1416

	/* Set the max packet size and max burst */
1417 1418
	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
	max_burst = 0;
1419 1420
	switch (udev->speed) {
	case USB_SPEED_SUPER:
S
Sarah Sharp 已提交
1421
		/* dig out max burst from ep companion desc */
1422
		max_burst = ep->ss_ep_comp.bMaxBurst;
1423 1424
		break;
	case USB_SPEED_HIGH:
1425 1426 1427
		/* Some devices get this wrong */
		if (usb_endpoint_xfer_bulk(&ep->desc))
			max_packet = 512;
1428 1429 1430 1431 1432
		/* bits 11:12 specify the number of additional transaction
		 * opportunities per microframe (USB 2.0, section 9.6.6)
		 */
		if (usb_endpoint_xfer_isoc(&ep->desc) ||
				usb_endpoint_xfer_int(&ep->desc)) {
1433
			max_burst = (usb_endpoint_maxp(&ep->desc)
M
Matt Evans 已提交
1434
				     & 0x1800) >> 11;
1435
		}
1436
		break;
1437 1438 1439 1440 1441 1442
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
		break;
	default:
		BUG();
	}
1443 1444
	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
			MAX_BURST(max_burst));
1445
	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
M
Matt Evans 已提交
1446
	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

	/*
	 * XXX no idea how to calculate the average TRB buffer length for bulk
	 * endpoints, as the driver gives us no clue how big each scatter gather
	 * list entry (or buffer) is going to be.
	 *
	 * For isochronous and interrupt endpoints, we set it to the max
	 * available, until we have new API in the USB core to allow drivers to
	 * declare how much bandwidth they actually need.
	 *
	 * Normally, it would be calculated by taking the total of the buffer
	 * lengths in the TD and then dividing by the number of TRBs in a TD,
	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
	 * use Event Data TRBs, and we don't chain in a link TRB on short
	 * transfers, we're basically dividing by 1.
1462 1463 1464
	 *
	 * xHCI 1.0 specification indicates that the Average TRB Length should
	 * be set to 8 for control endpoints.
1465
	 */
1466 1467 1468 1469 1470
	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
	else
		ep_ctx->tx_info |=
			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
1484
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1485 1486 1487

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
1488
	ep_ctx->deq = 0;
1489 1490 1491 1492 1493 1494
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
{
	bw_info->ep_interval = 0;
	bw_info->mult = 0;
	bw_info->num_packets = 0;
	bw_info->max_packet_size = 0;
	bw_info->type = 0;
	bw_info->max_esit_payload = 0;
}

void xhci_update_bw_info(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_input_control_ctx *ctrl_ctx,
		struct xhci_virt_device *virt_dev)
{
	struct xhci_bw_info *bw_info;
	struct xhci_ep_ctx *ep_ctx;
	unsigned int ep_type;
	int i;

	for (i = 1; i < 31; ++i) {
		bw_info = &virt_dev->eps[i].bw_info;

		/* We can't tell what endpoint type is being dropped, but
		 * unconditionally clearing the bandwidth info for non-periodic
		 * endpoints should be harmless because the info will never be
		 * set in the first place.
		 */
		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
			/* Dropped endpoint */
			xhci_clear_endpoint_bw_info(bw_info);
			continue;
		}

		if (EP_IS_ADDED(ctrl_ctx, i)) {
			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));

			/* Ignore non-periodic endpoints */
			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
					ep_type != ISOC_IN_EP &&
					ep_type != INT_IN_EP)
				continue;

			/* Added or changed endpoint */
			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
					le32_to_cpu(ep_ctx->ep_info));
1542 1543 1544
			/* Number of packets and mult are zero-based in the
			 * input context, but we want one-based for the
			 * interval table.
1545
			 */
1546 1547
			bw_info->mult = CTX_TO_EP_MULT(
					le32_to_cpu(ep_ctx->ep_info)) + 1;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
			bw_info->num_packets = CTX_TO_MAX_BURST(
					le32_to_cpu(ep_ctx->ep_info2)) + 1;
			bw_info->max_packet_size = MAX_PACKET_DECODED(
					le32_to_cpu(ep_ctx->ep_info2));
			bw_info->type = ep_type;
			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
					le32_to_cpu(ep_ctx->tx_info));
		}
	}
}

1559 1560 1561 1562 1563
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
1564 1565 1566
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
1567 1568 1569 1570
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

1571 1572
	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
1585 1586 1587
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
1588 1589 1590 1591
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

1592 1593
	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1594 1595 1596 1597 1598 1599 1600

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

1617
	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1618
				     num_sp * sizeof(u64),
1619
				     &xhci->scratchpad->sp_dma, flags);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

	xhci->scratchpad->sp_dma_buffers =
		kzalloc(sizeof(dma_addr_t) * num_sp, flags);

	if (!xhci->scratchpad->sp_dma_buffers)
		goto fail_sp4;

M
Matt Evans 已提交
1633
	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1634 1635
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
1636 1637
		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
				flags);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
		if (!buf)
			goto fail_sp5;

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
		xhci->scratchpad->sp_dma_buffers[i] = dma;
	}

	return 0;

 fail_sp5:
	for (i = i - 1; i >= 0; i--) {
1650
		dma_free_coherent(dev, xhci->page_size,
1651 1652 1653 1654 1655 1656 1657 1658 1659
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);

 fail_sp4:
	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
1660
	dma_free_coherent(dev, num_sp * sizeof(u64),
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
1684
		dma_free_coherent(&pdev->dev, xhci->page_size,
1685 1686 1687 1688 1689
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);
	kfree(xhci->scratchpad->sp_buffers);
1690
	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1691 1692 1693 1694 1695 1696
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

1697
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1698 1699
		bool allocate_in_ctx, bool allocate_completion,
		gfp_t mem_flags)
1700 1701 1702 1703 1704 1705 1706
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

1707 1708 1709 1710 1711 1712 1713 1714
	if (allocate_in_ctx) {
		command->in_ctx =
			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
					mem_flags);
		if (!command->in_ctx) {
			kfree(command);
			return NULL;
		}
1715
	}
1716 1717 1718 1719 1720 1721

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
1722
			kfree(command);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

1733 1734
void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
{
A
Andiry Xu 已提交
1735 1736 1737
	if (urb_priv) {
		kfree(urb_priv->td[0]);
		kfree(urb_priv);
1738 1739 1740
	}
}

1741 1742 1743 1744 1745 1746 1747 1748 1749
void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

1750 1751
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
1752
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
A
Andiry Xu 已提交
1753
	struct dev_info	*dev_info, *next;
1754
	struct xhci_cd  *cur_cd, *next_cd;
A
Andiry Xu 已提交
1755
	unsigned long	flags;
1756
	int size;
1757
	int i, j, num_ports;
1758 1759 1760 1761

	/* Free the Event Ring Segment Table and the actual Event Ring */
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
1762
		dma_free_coherent(&pdev->dev, size,
1763 1764 1765 1766 1767 1768 1769 1770
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
	xhci_dbg(xhci, "Freed ERST\n");
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
	xhci_dbg(xhci, "Freed event ring\n");

1771 1772
	if (xhci->lpm_command)
		xhci_free_command(xhci, xhci->lpm_command);
1773
	xhci->cmd_ring_reserved_trbs = 0;
1774 1775 1776 1777
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
	xhci_dbg(xhci, "Freed command ring\n");
1778 1779 1780 1781 1782
	list_for_each_entry_safe(cur_cd, next_cd,
			&xhci->cancel_cmd_list, cancel_cmd_list) {
		list_del(&cur_cd->cancel_cmd_list);
		kfree(cur_cd);
	}
1783 1784 1785 1786

	for (i = 1; i < MAX_HC_SLOTS; ++i)
		xhci_free_virt_device(xhci, i);

1787 1788 1789 1790
	if (xhci->segment_pool)
		dma_pool_destroy(xhci->segment_pool);
	xhci->segment_pool = NULL;
	xhci_dbg(xhci, "Freed segment pool\n");
1791 1792 1793 1794 1795 1796

	if (xhci->device_pool)
		dma_pool_destroy(xhci->device_pool);
	xhci->device_pool = NULL;
	xhci_dbg(xhci, "Freed device context pool\n");

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	if (xhci->small_streams_pool)
		dma_pool_destroy(xhci->small_streams_pool);
	xhci->small_streams_pool = NULL;
	xhci_dbg(xhci, "Freed small stream array pool\n");

	if (xhci->medium_streams_pool)
		dma_pool_destroy(xhci->medium_streams_pool);
	xhci->medium_streams_pool = NULL;
	xhci_dbg(xhci, "Freed medium stream array pool\n");

1807
	if (xhci->dcbaa)
1808
		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1809 1810
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
1811

1812
	scratchpad_free(xhci);
1813

A
Andiry Xu 已提交
1814 1815 1816 1817 1818 1819 1820
	spin_lock_irqsave(&xhci->lock, flags);
	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
		list_del(&dev_info->list);
		kfree(dev_info);
	}
	spin_unlock_irqrestore(&xhci->lock, flags);

1821 1822 1823
	if (!xhci->rh_bw)
		goto no_bw;

1824 1825 1826 1827 1828 1829 1830
	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	for (i = 0; i < num_ports; i++) {
		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
			struct list_head *ep = &bwt->interval_bw[j].endpoints;
			while (!list_empty(ep))
				list_del_init(ep->next);
1831 1832 1833
		}
	}

1834 1835 1836 1837 1838 1839
	for (i = 0; i < num_ports; i++) {
		struct xhci_tt_bw_info *tt, *n;
		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
			list_del(&tt->tt_list);
			kfree(tt);
		}
1840 1841
	}

1842
no_bw:
1843 1844
	xhci->num_usb2_ports = 0;
	xhci->num_usb3_ports = 0;
1845
	xhci->num_active_eps = 0;
1846 1847 1848
	kfree(xhci->usb2_ports);
	kfree(xhci->usb3_ports);
	kfree(xhci->port_array);
1849
	kfree(xhci->rh_bw);
1850
	kfree(xhci->ext_caps);
1851

1852 1853
	xhci->page_size = 0;
	xhci->page_shift = 0;
1854
	xhci->bus_state[0].bus_suspended = 0;
1855
	xhci->bus_state[1].bus_suspended = 0;
1856 1857
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
		struct xhci_segment *input_seg,
		union xhci_trb *start_trb,
		union xhci_trb *end_trb,
		dma_addr_t input_dma,
		struct xhci_segment *result_seg,
		char *test_name, int test_number)
{
	unsigned long long start_dma;
	unsigned long long end_dma;
	struct xhci_segment *seg;

	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);

	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
	if (seg != result_seg) {
		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
				test_name, test_number);
		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
				"input DMA 0x%llx\n",
				input_seg,
				(unsigned long long) input_dma);
		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
				"ending TRB %p (0x%llx DMA)\n",
				start_trb, start_dma,
				end_trb, end_dma);
		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
				result_seg, seg);
		return -1;
	}
	return 0;
}

/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
{
	struct {
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} simple_test_vector [] = {
		/* A zeroed DMA field should fail */
		{ 0, NULL },
		/* One TRB before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 16, NULL },
		/* One byte before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 1, NULL },
		/* Starting TRB should succeed */
		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
		/* Ending TRB should succeed */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
			xhci->event_ring->first_seg },
		/* One byte after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
		/* One TRB after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
		/* An address of all ones should fail */
		{ (dma_addr_t) (~0), NULL },
	};
	struct {
		struct xhci_segment	*input_seg;
		union xhci_trb		*start_trb;
		union xhci_trb		*end_trb;
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} complex_test_vector [] = {
		/* Test feeding a valid DMA address from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid start and end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->cmd_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[0],
			.end_trb = &xhci->event_ring->first_seg->trbs[3],
			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[3],
			.end_trb = &xhci->event_ring->first_seg->trbs[6],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
			.result_seg = NULL,
		},
		/* TRB not in this ring, and we have a wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
	};

	unsigned int num_tests;
	int i, ret;

1985
	num_tests = ARRAY_SIZE(simple_test_vector);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				xhci->event_ring->first_seg,
				xhci->event_ring->first_seg->trbs,
				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
				simple_test_vector[i].input_dma,
				simple_test_vector[i].result_seg,
				"Simple", i);
		if (ret < 0)
			return ret;
	}

1998
	num_tests = ARRAY_SIZE(complex_test_vector);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				complex_test_vector[i].input_seg,
				complex_test_vector[i].start_trb,
				complex_test_vector[i].end_trb,
				complex_test_vector[i].input_dma,
				complex_test_vector[i].result_seg,
				"Complex", i);
		if (ret < 0)
			return ret;
	}
	xhci_dbg(xhci, "TRB math tests passed.\n");
	return 0;
}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
	u64 temp;
	dma_addr_t deq;

	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
			xhci->event_ring->dequeue);
	if (deq == 0 && !in_interrupt())
		xhci_warn(xhci, "WARN something wrong with SW event ring "
				"dequeue ptr.\n");
	/* Update HC event ring dequeue pointer */
	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
	temp &= ERST_PTR_MASK;
	/* Don't clear the EHB bit (which is RW1C) because
	 * there might be more events to service.
	 */
	temp &= ~ERST_EHB;
	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
			"preserving EHB bit\n");
	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
			&xhci->ir_set->erst_dequeue);
}

2037
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2038
		__le32 __iomem *addr, u8 major_revision, int max_caps)
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
{
	u32 temp, port_offset, port_count;
	int i;

	if (major_revision > 0x03) {
		xhci_warn(xhci, "Ignoring unknown port speed, "
				"Ext Cap %p, revision = 0x%x\n",
				addr, major_revision);
		/* Ignoring port protocol we can't understand. FIXME */
		return;
	}

	/* Port offset and count in the third dword, see section 7.2 */
	temp = xhci_readl(xhci, addr + 2);
	port_offset = XHCI_EXT_PORT_OFF(temp);
	port_count = XHCI_EXT_PORT_COUNT(temp);
	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
			"count = %u, revision = 0x%x\n",
			addr, port_offset, port_count, major_revision);
	/* Port count includes the current port offset */
	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
		/* WTF? "Valid values are ‘1’ to MaxPorts" */
		return;
A
Andiry Xu 已提交
2062

2063 2064 2065 2066
	/* cache usb2 port capabilities */
	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
		xhci->ext_caps[xhci->num_ext_caps++] = temp;

A
Andiry Xu 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	/* Check the host's USB2 LPM capability */
	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
			(temp & XHCI_L1C)) {
		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
		xhci->sw_lpm_support = 1;
	}

	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
		xhci->sw_lpm_support = 1;
		if (temp & XHCI_HLC) {
			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
			xhci->hw_lpm_support = 1;
		}
	}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	port_offset--;
	for (i = port_offset; i < (port_offset + port_count); i++) {
		/* Duplicate entry.  Ignore the port if the revisions differ. */
		if (xhci->port_array[i] != 0) {
			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
					" port %u\n", addr, i);
			xhci_warn(xhci, "Port was marked as USB %u, "
					"duplicated as USB %u\n",
					xhci->port_array[i], major_revision);
			/* Only adjust the roothub port counts if we haven't
			 * found a similar duplicate.
			 */
			if (xhci->port_array[i] != major_revision &&
2096
				xhci->port_array[i] != DUPLICATE_ENTRY) {
2097 2098 2099 2100
				if (xhci->port_array[i] == 0x03)
					xhci->num_usb3_ports--;
				else
					xhci->num_usb2_ports--;
2101
				xhci->port_array[i] = DUPLICATE_ENTRY;
2102 2103
			}
			/* FIXME: Should we disable the port? */
2104
			continue;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
		}
		xhci->port_array[i] = major_revision;
		if (major_revision == 0x03)
			xhci->num_usb3_ports++;
		else
			xhci->num_usb2_ports++;
	}
	/* FIXME: Should we disable ports not in the Extended Capabilities? */
}

/*
 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 * specify what speeds each port is supposed to be.  We can't count on the port
 * speed bits in the PORTSC register being correct until a device is connected,
 * but we need to set up the two fake roothubs with the correct number of USB
 * 3.0 and USB 2.0 ports at host controller initialization time.
 */
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
2124 2125
	__le32 __iomem *addr, *tmp_addr;
	u32 offset, tmp_offset;
2126
	unsigned int num_ports;
2127
	int i, j, port_index;
2128
	int cap_count = 0;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

	addr = &xhci->cap_regs->hcc_params;
	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
	if (offset == 0) {
		xhci_err(xhci, "No Extended Capability registers, "
				"unable to set up roothub.\n");
		return -ENODEV;
	}

	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
	if (!xhci->port_array)
		return -ENOMEM;

2143 2144 2145
	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
	if (!xhci->rh_bw)
		return -ENOMEM;
2146 2147 2148
	for (i = 0; i < num_ports; i++) {
		struct xhci_interval_bw_table *bw_table;

2149
		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2150 2151 2152 2153
		bw_table = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
2154

2155 2156 2157 2158 2159 2160
	/*
	 * For whatever reason, the first capability offset is from the
	 * capability register base, not from the HCCPARAMS register.
	 * See section 5.3.6 for offset calculation.
	 */
	addr = &xhci->cap_regs->hc_capbase + offset;
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

	tmp_addr = addr;
	tmp_offset = offset;

	/* count extended protocol capability entries for later caching */
	do {
		u32 cap_id;
		cap_id = xhci_readl(xhci, tmp_addr);
		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
			cap_count++;
		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
		tmp_addr += tmp_offset;
	} while (tmp_offset);

	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
	if (!xhci->ext_caps)
		return -ENOMEM;

2179 2180 2181 2182 2183 2184
	while (1) {
		u32 cap_id;

		cap_id = xhci_readl(xhci, addr);
		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
			xhci_add_in_port(xhci, num_ports, addr,
2185 2186
					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
					cap_count);
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		offset = XHCI_EXT_CAPS_NEXT(cap_id);
		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
				== num_ports)
			break;
		/*
		 * Once you're into the Extended Capabilities, the offset is
		 * always relative to the register holding the offset.
		 */
		addr += offset;
	}

	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
		xhci_warn(xhci, "No ports on the roothubs?\n");
		return -ENODEV;
	}
	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
			xhci->num_usb2_ports, xhci->num_usb3_ports);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

	/* Place limits on the number of roothub ports so that the hub
	 * descriptors aren't longer than the USB core will allocate.
	 */
	if (xhci->num_usb3_ports > 15) {
		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
		xhci->num_usb3_ports = 15;
	}
	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
				USB_MAXCHILDREN);
		xhci->num_usb2_ports = USB_MAXCHILDREN;
	}

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	/*
	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
	 * Not sure how the USB core will handle a hub with no ports...
	 */
	if (xhci->num_usb2_ports) {
		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
				xhci->num_usb2_ports, flags);
		if (!xhci->usb2_ports)
			return -ENOMEM;

		port_index = 0;
2229 2230 2231
		for (i = 0; i < num_ports; i++) {
			if (xhci->port_array[i] == 0x03 ||
					xhci->port_array[i] == 0 ||
2232
					xhci->port_array[i] == DUPLICATE_ENTRY)
2233 2234 2235 2236 2237 2238 2239 2240 2241
				continue;

			xhci->usb2_ports[port_index] =
				&xhci->op_regs->port_status_base +
				NUM_PORT_REGS*i;
			xhci_dbg(xhci, "USB 2.0 port at index %u, "
					"addr = %p\n", i,
					xhci->usb2_ports[port_index]);
			port_index++;
2242 2243
			if (port_index == xhci->num_usb2_ports)
				break;
2244
		}
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	}
	if (xhci->num_usb3_ports) {
		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
				xhci->num_usb3_ports, flags);
		if (!xhci->usb3_ports)
			return -ENOMEM;

		port_index = 0;
		for (i = 0; i < num_ports; i++)
			if (xhci->port_array[i] == 0x03) {
				xhci->usb3_ports[port_index] =
					&xhci->op_regs->port_status_base +
					NUM_PORT_REGS*i;
				xhci_dbg(xhci, "USB 3.0 port at index %u, "
						"addr = %p\n", i,
						xhci->usb3_ports[port_index]);
				port_index++;
2262 2263
				if (port_index == xhci->num_usb3_ports)
					break;
2264 2265 2266 2267
			}
	}
	return 0;
}
2268

2269 2270
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
2271 2272
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2273
	unsigned int	val, val2;
2274
	u64		val_64;
2275
	struct xhci_segment	*seg;
2276
	u32 page_size, temp;
2277 2278
	int i;

2279 2280 2281
	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
	INIT_LIST_HEAD(&xhci->cancel_cmd_list);

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
			(unsigned int) val);
	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
	val |= (val2 & ~HCS_SLOTS_MASK);
	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
			(unsigned int) val);
	xhci_writel(xhci, val, &xhci->op_regs->config_reg);

2311 2312 2313 2314
	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
2315 2316
	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
			GFP_KERNEL);
2317 2318 2319 2320
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
2321 2322
	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2323
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2324

2325 2326 2327 2328 2329 2330 2331
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
	 * however, the command ring segment needs 64-byte aligned segments,
	 * so we pick the greater alignment need.
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2332
			TRB_SEGMENT_SIZE, 64, xhci->page_size);
2333

2334 2335
	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2336
			2112, 64, xhci->page_size);
2337
	if (!xhci->segment_pool || !xhci->device_pool)
2338 2339
		goto fail;

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	/* Linear stream context arrays don't have any boundary restrictions,
	 * and only need to be 16-byte aligned.
	 */
	xhci->small_streams_pool =
		dma_pool_create("xHCI 256 byte stream ctx arrays",
			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
	xhci->medium_streams_pool =
		dma_pool_create("xHCI 1KB stream ctx arrays",
			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2350
	 * will be allocated with dma_alloc_coherent()
2351 2352 2353 2354 2355
	 */

	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
		goto fail;

2356
	/* Set up the command ring to have one segments for now. */
2357
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2358 2359
	if (!xhci->cmd_ring)
		goto fail;
2360 2361 2362
	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2363 2364

	/* Set the address in the Command Ring Control register */
2365 2366 2367
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2368
		xhci->cmd_ring->cycle_state;
2369 2370
	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2371 2372
	xhci_dbg_cmd_ptrs(xhci);

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
	if (!xhci->lpm_command)
		goto fail;

	/* Reserve one command ring TRB for disabling LPM.
	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
	 * disabling LPM, we only need to reserve one TRB for all devices.
	 */
	xhci->cmd_ring_reserved_trbs++;

2383 2384 2385 2386
	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
	val &= DBOFF_MASK;
	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
			" from cap regs base addr\n", val);
2387
	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2388 2389 2390
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
2391
	xhci->ir_set = &xhci->run_regs->ir_set[0];
2392 2393 2394 2395 2396 2397

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
	xhci_dbg(xhci, "// Allocating event ring\n");
2398
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2399
						flags);
2400 2401
	if (!xhci->event_ring)
		goto fail;
2402 2403
	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
		goto fail;
2404

2405 2406 2407
	xhci->erst.entries = dma_alloc_coherent(dev,
			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
			GFP_KERNEL);
2408 2409
	if (!xhci->erst.entries)
		goto fail;
2410 2411
	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
			(unsigned long long)dma);
2412 2413 2414 2415

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
2416
	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2417
			xhci->erst.num_entries,
2418 2419
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
2420 2421 2422 2423

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
M
Matt Evans 已提交
2424 2425
		entry->seg_addr = cpu_to_le64(seg->dma);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
			val);
	xhci_writel(xhci, val, &xhci->ir_set->erst_size);

	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
	/* set the segment table base address */
2440 2441
	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
			(unsigned long long)xhci->erst.erst_dma_addr);
2442 2443 2444 2445
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2446 2447

	/* Set the event ring dequeue address */
2448
	xhci_set_hc_event_deq(xhci);
2449
	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2450
	xhci_print_ir_set(xhci, 0);
2451 2452 2453 2454 2455 2456

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
2457 2458
	init_completion(&xhci->addr_dev);
	for (i = 0; i < MAX_HC_SLOTS; ++i)
2459
		xhci->devs[i] = NULL;
2460
	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2461
		xhci->bus_state[0].resume_done[i] = 0;
2462 2463
		xhci->bus_state[1].resume_done[i] = 0;
	}
2464

2465 2466
	if (scratchpad_alloc(xhci, flags))
		goto fail;
2467 2468
	if (xhci_setup_port_arrays(xhci, flags))
		goto fail;
2469

2470 2471 2472 2473 2474 2475 2476 2477 2478
	/* Enable USB 3.0 device notifications for function remote wake, which
	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
	 * U3 (device suspend).
	 */
	temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
	temp &= ~DEV_NOTE_MASK;
	temp |= DEV_NOTE_FWAKE;
	xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);

2479
	return 0;
2480

2481 2482
fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
2483 2484
	xhci_halt(xhci);
	xhci_reset(xhci);
2485 2486 2487
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}